Archives pour la catégorie Mes publications

Les Chroniques de l’espace illustrées (11) : De Mir à la Station spatiale internationale

Ceci est la onzième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

De Mir à la Station spatiale internationale

À la fin des années 1960, deux objectifs se présentent aux explorateurs de l’espace : d’une part la Lune, qui est facilement accessible depuis la Terre après un voyage de trois jours ; d’autre part, faire vivre des Hommes dans l’espace pour les préparer aux vols de plusieurs mois, voire plusieurs années vers la planète Mars. Les Soviétiques sont convaincus que cette dernière option est la plus importante sur le long terme, d’autant qu’ils doivent bien admettre leur défaite dans la course à la Lune.

C’est ainsi qu’en 1971, en plein déroulement du programme Apollo, la Russie place discrètement en orbite terrestre un nouveau véhicule spatial du nom de Saliout, qui veut dire « salut ». Ce gros satellite de 19 tonnes, offrant un espace habitable de 100 mètres cubes pour trois cosmonautes, est la première station spatiale orbitale.

Timbre soviétique datant de 1972 commémorant la mission Saliout 1. Les choses n’avaient pas été  faciles. Lancée le 19 avril 1971 par une fusée Proton depuis le cosmodrome de Baïkonour, Saliout 1 est d’abord placée en orbite sans passagers. Un premier équipage de trois hommes est lancé quatre jours plus tard à bord d’un vaisseau Soyouz; il parvient à réaliser la manœuvre de rendez-vous et à s’amarrer à la station spatiale, mais ne peut y pénétrer à cause d’une écoutille qui reste obstinément fermée. Ils doivent renoncer et revenir sur Terre. Le 6 juin 1971 Soyouz 11 emporte un nouvel équipage de trois cosmonautes qui réussissent cette fois toutes les manœuvres. Ils restent 23 jours à bord, non sans avoir essuyé entre temps un feu dans leur étroit habitacle. Leur retour sur Terre est encore plus catastrophique : ils meurent tous trois, privés d’oxygène à la suite de le dépressurisation de leur module de descente. Ils ont droit à des funérailles nationales et leurs cendres sont scellées dans le mur du Kremlin.
L’équipage de la mission Soyouz 11 composé de Gueorgui Dobrovolski, Viktor Patsaïev et Vladislav Volkov, qui finira tragiquement.

Deux ans plus tard, l’Amérique suit la même voie en plaçant en orbite permanente le troisième étage de sa grande fusée lunaire Saturn 5, rhabillée pour l’occasion en une station orbitale baptisée Skylab.

Dans ces espaces réduits, les astronautes éprouvent le stress du confinement et de la promiscuité, aggravée par les malaises du début du vol en apesanteur et les difficiles conditions hygiéniques, qui rendent invivables les séjours de longue durée.

Ensemble long de 35 mètres et d’une masse de 90 tonnes dont le module principal est réalisé à partir du troisième étage de la fusée lunaire géante Saturn V, Skylab est mise en orbite le 14 mai 1973. Le premier équipage la rejoint quelques jours plus tard. Trois équipages y séjourneront entre 1973 et 1974, dont le dernier, durant près de 84 jours, établira un record provisoire. Les astronautes réalisent à bord de nombreuses observations scientifiques et étudient l’adaptation de l’homme à l’espace. Ici l’astronaute Conrad teste le système de douche.

C’est avec le lancement de la station orbitale Mir, en 1986, que les Soviétiques marquent un pas décisif dans les opérations de survie d’équipages. Avec l’arrimage de cinq modules, la station s’agrandit de façon importante, et une quantité d’améliorations de tous ordres, comme la relève d’équipage et les cargos de ravitaillement, permet d’envisager des vols de plus de six mois.

Superbe photographie de la station russe Mir et ses cinq modules d’habitation, prise depuis la navette spatiale Atlantis en 1997.

La station s’ouvre alors aux vols internationaux, dans lesquels les Américains prennent une part très active. Mir sera une grande réussite. Restée quinze ans en orbite, elle a accueilli 103 passagers appartenant à 13 nations, et a permis de faire 23 000 expériences scientifiques dans l’espace.

Russes et Américains réunis dans la station spatiale Mir en 1995

Mais avec le vieillissement de la station et l’effondrement économique de la Russie, Mir est abandonnée en 2000 et se désintègre lors de son retour sur Terre, l’année d’après. Continuer la lecture

Les Chroniques de l’espace illustrées (10) : Piétons du cosmos

Ceci est la dixième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

 

Piétons du cosmos

Nous sommes le 18 mars 1965. L’URSS lance le vaisseau spatial Voskhod 2 en orbite terrestre avec deux cosmonautes à bord, dont l’ingénieur Alexeï Leonov. Son nom va entrer dans la grande histoire de l’exploration spatiale. Par l’intermédiaire d’un sas ouvert sur le vide, Leonov, équipé d’un scaphandre, effectue la première sortie dans l’espace. Il y passe une vingtaine de minutes, accroché au vaisseau par un simple cordon.

Cliché historique de Leonov effectuant la première sortie dans l’espace.

La télévision soviétique retransmet des images en temps réel de l’exploit. On voit le cosmonaute flotter à côté du sas dans l’espace cosmique. La mission frôle cependant le drame. Une fois dans l’espace, la combinaison de Leonov, trop gonflée par la pression, devient rigide et l’empêche de rentrer par la trappe de sortie. Après dix minutes de lutte fébrile, il réussit à ouvrir une valve pour la dégonfler et peut retourner à bord, pris de vertiges dus à la baisse de pression, mais sain et sauf.

Retour triomphal à Moscou d’Alexei Leonov et son coéquipier Pavel Beliaïev (à sa gauche). De fait la mission a frôlé la catastrophe à plusieurs reprises, et ce sera le dernier vol de la série Voskhod. Outre le problème de la combinaison de Leonov, le système d’orientation automatique du vaisseau permettant sa rentrée atmosphérique s’est révélé déficient. Les deux cosmonautes ont réussi à la faire manuellement, atterrissant cependant à 400 km de la zone prévue dans deux mètres de neige, et passant deux jours dans la nature avant d’être récupérés !

L’événement fait grand bruit. Trois mois plus tard, Edward White fait la première sortie américaine dans l’espace durant seize minutes, s’aidant d’un pistolet à air comprimé pour maîtriser ses mouvements.

Première sortie américaine le 3 juin 1965, avec Edgar White.

Ces deux exploits marquent le début des sorties extravéhiculaires, c’est-à-dire les activités réalisées à l’extérieur d’un véhicule spatial par un astronaute revêtu d’une combinaison. Par la suite et pour des raisons de sécurité, les astronautes effectueront leurs sorties en binôme et resteront attachés au véhicule spatial par un câble, jusqu’à ce qu’en 1984 Bruce McCandless soit le premier à réaliser une sortie autour de la Terre sans être relié au vaisseau, se mouvant dans l’espace au moyen d’un fauteuil équipé de petits propulseurs – auxquels il fallait faire pleinement confiance !

La spectaculaire première sortie extravéhiculaire “libre” (sans cordon ombilical)  effectuée par Bruce McCandless lors de la mission STS-41B de la navette spatiale Challenger. Dans une interview donnée en 2015, il a commenté ainsi sa sortie “Ma femme [Bernice] était dans la salle de contrôle de la mission, et il y avait pas mal d’appréhension. Je voulais dire quelque chose ressemblant à ce que Neil [Armstrong] avait déclaré en se  posant sur la lune, alors j’ai dit “C’était peut-être un petit pas pour Neil, mais pour moi c’est un sacré grand saut” . Cela a un peu relâché la tension.”

L’Homme n’étant pas du tout fait pour vivre dans le vide hostile de l’espace sans équipements spéciaux, la combinaison est cruciale. L’équipement doit fournir à l’astronaute l’oxygène, évacuer le dioxyde de carbone et la vapeur d’eau expirés, et assurer une protection thermique tout en autorisant une mobilité maximale. S’ajoutent généralement à ces fonctions un système de communications, une protection partielle contre les rayons cosmiques et les micrométéorites, et la possibilité pour son occupant de boire. Le piéton de l’espace dispose alors d’une autonomie de huit heures au maximum pour mener à bien des tâches extravéhiculaires nécessitant un outillage adapté au port de la combinaison.

Le russe Anatoly Solovyev détient le record du temps passé lors de sorties dans l’espace :  82 heures 22 minutes en 16 sorties distinctes, effectuées en 1997 lors de la mission Mir 24. Il est ici accompagné de l’ingénieur Pavel Vinogradov pour réparer le panneau solaire Spektr endommagé de la station spatiale Mir.

Les premières femmes à sortir dans l’espace ont été une Russe et une Américaine, et en 1988 ce fut le tour d’un Français, Jean-Loup Chrétien, sorti six heures lors d’une mission de la station spatiale russe Mir.

A gauche, timbre commémoratif de la russe Svetlana Savitskaya, première femme à sortir dans l’espace le 25 juillet 1984 (mission Soyuz T-12). A droite, Jean-Loup Chrétien a été en 1982 le premier spationaute Européen (mission franco-russe PVH sur Saliout 7), et le 9 décembre 1988, le premier non-russe et non-américain à effectuer une sortie extra-véhiculaire (Mission Aragatz sur la station Mir). Sa sortie a duré 5h57, alors record de durée pour une EVA.

Continuer la lecture

Les Chroniques de l’espace illustrées (9) : Anecdotes spatiales

Ceci est la neuvième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

 

Anecdotes spatiales

Il y a la grande histoire de l’exploration spatiale, et puis il y a la petite, celle qui se raconte plaisamment, qui met en avant des détails secondaires mais inattendus de l’action principale. En voici quelques anecdotes.

En 1961, la rentrée atmosphérique du vaisseau russe Vostok 2 manque de tourner à la catastrophe. Le module de service ne se détache pas du module de descente et la séparation n’a lieu que tardivement. Guerman Titov réussit de justesse à s’éjecter, mais son parachute manque de débouler sur un train de marchandises en marche. Arrivé enfin au sol sain et sauf, il s’empare d’une grosse canette de bière et, devant un comité d’accueil médusé, il la siffle d’une traite pour se remettre de ses émotions.

Vostok 2 a emmené Guerman Titov en orbite pour un jour 1 heure et 18 minutes afin d’étudier les effets du manque de gravité sur le corps humain. À l’inverse de son prédécesseur Gagarine, Titov a brièvement pris le contrôle manuel de l’appareil. Sur cette galerie de photos on le voit dans sa cabine souffrir du mal de l’espace, puis se ressaisir et utiliser son appareil photo pour prendre des clichés de la Terre. Après son atterrissage mouvementé il se présente en héros aux officiels venus l’accueillir et siffle une canette de bière.

Autre incartade au strict règlement alimentaire due à l’Américain John Young au cours de la mission Gemini 3 : il emporte en cachette dans la poche de sa combinaison un sandwich au corned-beef et commence à le manger sous les yeux effarés de son copilote Gus Grissom. L’affaire fait scandale, John Young est réprimandé, ce qui ne l’empêchera pas quelques années plus tard de commander la mission Apollo 16, au cours de laquelle il restera soixante et onze heures à la surface de la Lune ! Et après moult rapports et commissions d’experts, le corned-beef sera officiellement autorisé dans les navettes spatiales en 1981.

Gus Grissom et John Young font équipe lors de la mission Gemini 3. A un moment Young sort de la poche de sa combinaison spatiale un paquet. Un dialogue s’ensuit (je traduis en français) : “Qu’est-ce que c’est?” demande Grissom. “Un sandwich au corned-beef, ” répond Young. “D’où ça sort?” demande Grissom. Young explique : “Je l’ai apporté avec moi. Voyons quel goût il a. Ça sent bon, n’est-ce pas?” A droite, un sandwich au corned-beef sous cellophane est exposé au Grissom Memorial Museum (Mitchell, Indiana) pour immortaliser la scène.

Autres fantaisies qui ne sont plus d’ordre culinaire : Neil Armstrong, le héros impavide de la mission Apollo 11 et premier homme à marcher sur la Lune, a pour sa part secrètement emporté un ours en peluche. Continuer la lecture

Les Chroniques de l’espace illustrées (8) : Rêves d’univers

Ceci est la huitième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

Rêves d’univers

« Nous rêvons de voyages à travers l’Univers, mais l’Univers n’est-il pas en nous ? » s’interroge en 1793 le poète allemand Novalis. Dans sa Poétique de l’espace de 1957, Gaston Bachelard évoque à son tour le double univers du cosmos et des profondeurs de l’âme humaine. Science et poésie peuvent faire bon ménage, l’astronomie et l’exploration spatiale étant particulièrement propices aux rêveries poétiques.

Je vous propose une brève promenade dans le jardin enchanté de la poésie cosmique avec quatre textes peu connus. Le premier est extrait d’un grand rêve cosmique intitulé La Comète, publié en 1820 par l’Allemand Jean Paul (de son vrai nom Johann Paul Friedrich Richter) :

« Bientôt ne resta plus de notre ciel que le soleil, semblable à une petite étoile, et les flammèches de quelques queues de comètes qui s’en approchaient. Nous passions maintenant entre les soleils d’un vol si rapide qu’à peine ils prenaient un instant à nos yeux la grandeur de lunes, avant de se fondre, derrière nous, en infimes nébuleuses ; et leurs terres, sur notre passage accéléré, ne nous apparaissaient pas. Enfin, le soleil de notre Terre, Sirius, toutes les constellations et la Voie lactée de notre ciel ne furent plus sous nos pieds qu’une claire nébuleuse au milieu de petites nuées plus lointaines. Ainsi traversions-nous les solitudes étoilées ; les cieux, successivement, s’épanouissaient devant nous et se resserraient derrière nous – et des Voies lactées s’accumulaient dans le lointain, comme l’Arc de Triomphe de l’Esprit Infini. »

Un choix des plus belles rêveries cosmiques de Jean Paul a été traduit en français et commenté par Albert Béguin. En particulier, le récit “La Comète” s’inspire du spectaculaire passage de la Grande comète de 1811 (C/1811 F1), qui resta visible pendant 9 mois à l’œil nu et marqua profondément ses contemporains. Sa conjonction avec une importante vague de chaleur a suscité des inquiétudes de fin du monde, dont on trouve l’écho dans la littérature de l’époque. De façon plus positive, elle est associée à une année d’excellents vins en Europe!

Le deuxième texte est dû à la plume féconde de Blaise Cendrars, grand poète et navigateur devant l’Éternel. En 1926, il écrit L’Eubage, voyage intersidéral au cours duquel des marins lèvent l’ancre et se rendent dans les parages du ciel :

« Nous quittâmes la Terre pour entrer dans cet océan de lumière solaire qu’est notre atmosphère respirable. Ayant atteint ses extrêmes limites, nous nous engageâmes résolument dans les rapides de la région de l’ozone. Nous allions si vite que nous ne pouvions estimer la vitesse acquise et qu’il nous semblait rester immobiles. La Terre était invisible dans notre sillage et devant nous, les astres n’existaient plus. Enfin, nous fîmes la grande chute dans le vide, éclaboussés par une écume d’étoiles. »

Pour Blaise Cendrars, l’exploration spatiale est une pure aventure poétique. Durant sa convalescence après ses blessures de guerre, Jacques Doucet – riche couturier ami des arts et des artistes- lui verse une petite rente mensuelle pour écrire les douze chapitres de “l’Eubage, Aux antipodes de l’Unité” (1926). Il s’agit d’un admirable voyage intersidéral dans lequel les marins lèvent l’ancre, quittent la Terre et se rendent dans les parages du ciel.

Dès l’envol du premier cosmonaute russe, en 1961, le poète Charles Dobzynski s’enthousiasme. Dans son Opéra de l’espace, sa description du décollage d’une fusée réconcilie la poésie la plus pure avec la technologie la plus aride – celle des propulseurs :

« Puissance de l’air lourd, musculature du métal dans le faisceau de la fusée attelée à la foudre, ramification d’éclats et d’explosions dans l’épiderme atmosphérique, avez-vous entendu la stridence de l’astronef striant ce que l’on nommait dérisoirement l’éther ? Oisellerie de flammes, l’astronef s’enfonce dans l’infini avec cet abandon tranquille du dormeur ou du noyé. Le vide est chair, et dans ce ventre sans parois l’astronef-graine fonde le futur. »

Continuer la lecture

Les Chroniques de l’espace illustrées (7) : Objectif Lune

Ceci est la septième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

Objectif Lune
Bras de fer symbolique entre Nikita Khrouchtchev  et John F.  Kennedy à propos de l’affaire des missiles de Cuba, qui a mené les deux blocs au bord de la guerre nucléaire.

1962. La guerre froide bat son plein, exacerbée par la crise des missiles de Cuba. Les activités spatiales militaires permettent de développer au pas de charge toute la panoplie des technologies nécessaires pour envoyer un Homme sur la Lune. Côté américain, les programmes Gemini et Apollo se voient attribuer des budgets colossaux. Côté russe, la station orbitale permanente devient l’objectif à long terme, sans toutefois écarter la Lune des projets immédiats.

Une cinquantaine de missions lunaires américaines et soviétiques vont ainsi se dérouler dans les quinze années qui suivent. Certaines placent en orbite lunaire des satellites transmettant des photographies détaillées de la surface, d’autres font atterrir des modules capables d’analyser le sol de notre satellite naturel.

En 1966, Luna 9 réussit la très délicate manœuvre de l’alunissage en douceur. Le premier drapeau à « flotter » sur la Lune est soviétique !

Le 3 Février  1966, la sonde soviétique Luna-9 est le premier vaisseau spatiale à se poser en douceur sur la Lune. Les 4 et 5 février , elle transmet 3 clichés panoramiques pris par une caméra optique mécanique spécialement construite par les ingénieurs russes. Les images sont transmises sous forme de signaux vidéo analogiques à un débit équivalent à  500 pixels/ligne.

Pour ne pas rester en arrière, les Américains réussissent à leur tour l’alunissage avec la sonde Surveyor 1, et à peine un an plus tard Surveyor 6 est le premier module capable de redécoller.

Le programme Surveyor de la NASA a, entre juin 1966 et janvier 1968, expédié sept sondes automatiques sur la Lune pour démontrer la faisabilité d’un alunissage en douceur. .Cinq vaisseaux, dont le premier Surveyor 1, y sont parvenus, mais deux ont échoué : Surveyor 2 s’est écrasé après une correction de trajectoire ratée, and Surveyor 4 a explosé avant d’atteindre le sol. Le 17 novembre 1967, les moteurs de Surveyor 6 sont mis à feu durant 2,5 secondes, ce qui permet à la sonde de décoller du sol lunaire de 3 à 4 mètres et d’atterrir à 2,4 mètres de sa position d’origine. Ce « saut de puce » lunaire a été le premier décollage depuis la surface de notre satellite.

Cinq sondes Lunar Orbiter sont placées en orbite pour cartographier 99 % de la surface lunaire et définir les sites d’atterrissage des missions Apollo.

Cette photographie du cratère Copernicus prise par la sonde Orbiter 2 le 24 Novembre 1966 a suscité un tel enthousiasme qu’elle a été baptisée “Image du siècle”.

Pour des raisons de mécanique céleste, le voyage Terre-Lune aller-retour se présente de façon optimale lors de certaines fenêtres de tir périodiques et prévisibles. Une fenêtre se présente fin décembre 1968. Le premier vol humain en orbite lunaire est réalisé par le vaisseau Apollo 8, dont les trois membres d’équipage passent Noël à 380 000 kilomètres de chez eux. Les missions s’enchaînent avec succès.

Apollo 8 est le premier vaisseau spatial avec équipage à atteindre la Lune, à s’y mettre en orbite sans se poser et à en revenir. Les trois astronautes  Frank Borman, James Lovell et William Anders sont les premiers à assister à un lever de Terre depuis son satellite naturel et à le photographier. A gauche, photo de l’équipe en orbite autour de la Lune, Borman au centre. A droite, première image de la Terre entière prise par les humains, probablement photographiée par William Anders. Le Sud est en haut, l’Amérique du Sud est au milieu.

En mai 1969, Apollo 10 se met en orbite lunaire et teste toutes les manœuvres conçues pour l’alunissage.

La Terre, la Lune et l’alunisseur d’Apollo 10 vus de la capsule orbitale en mai 1969. Apollo 10,  quatrième mission avec équipage du programme américain, est  une répétition générale pour le premier atterrissage lunaire qui aura lieu deux mois plus tard.

Enfin le 21 juillet 1969, Apollo 11 dépose le module Eagle sur la mer de la Tranquillité. Continuer la lecture

Les Chroniques de l’espace illustrées (6) : Animaux dans l’espace

Ceci est la sixième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

Animaux dans l’espace

Avant que des êtres humains soient embarqués dans l’espace, ce sont nos amis les animaux qui ont servi de cobayes. Le 19 septembre 1783 déjà, un coq, un mouton et un canard font l’expérience du premier vol habité en montgolfière. Cela se passe devant le château de Versailles, en présence du roi Louis XVI. Leur nacelle s’élève jusqu’à 480 mètres de hauteur avant de redescendre, ils sont recueillis bien vivants.

Deux gravures d’époque illustrant le vol en montgolfière du 19 septembre 1783 avec des animaux. Contrairement à ce suggère l’illustration de droite, l’expérience s’est effectuée en grande pompe au Château de Versailles, devant le Roi. Un mouton, un coq et un canard (enfermés dans un panier d’osier et non pas à l’air libre!) furent ainsi les premières créatures vivantes à voler dans une machine fabriquée de main d’homme.
On alluma d’abord un feu, alimenté par de vieilles chaussures, de la viande en décomposition et de la paille humide afin de faire beaucoup de fumée – on croyait alors que c’était la fumée qui ferait élever l’engin, et non pas l’air chaud. Quand tout le monde lâcha en même temps les cordes qui retenaient le ballon au sol, ce dernier s’éleva majestueusement mais une rafale la renversa sur le côté. Heureusement l’aérostat se redressa, s’éleva à près de 500 mètres et atterrit trois kilomètres plus loin. À part une dispute entre le coq et le chien, tout s’était bien déroulé….

L’aventure spatiale du XXsiècle offre un scénario identique, à ceci près qu’un vol à bord d’une fusée ou d’un satellite artificiel est autrement périlleux qu’une simple ascension en ballon dans la basse atmosphère. Au départ, les scientifiques ne savent pas si l’être humain peut survivre aux fortes accélérations de départ et aux longs séjours en apesanteur. Dès 1948, Américains et Soviétiques commencent donc à expérimenter avec des animaux. Les Russes utilisent d’abord des lapins, des rats et des souris pour des vols sans retour, puis des chiennes, qu’ils tentent de ramener vivantes sur Terre. Les Américains préfèrent les singes, dont la physiologie est plus proche de celle de l’Homme. Nombre d’entre eux sont sacrifiés au nom de la science, lors des phases de décollage, de retour au sol des fusées, ou dans les vols orbitaux.

Les premières créatures vivantes envoyées dans l’espace ont été des mouches à fruits, à bord d’une fusée V2. Lors du vol du 20 février 1947 elles ont atteint une altitude de 108 km, puis ont été récupérées vivantes dans une petite capsule parachutée. Trois quarts de siècle plus tard on continue à étudier leur comportement dans l’espace à bord de la Station Spatiale Internationale. En 1953 l’US Air Force a fait un film sur le comportement de souris dans l’espace. A droite, le premier singe dans l’espace, Albert II, a atteint le 4 juin 1949 une altitude de 134 km mais a péri à la descente à cause d’un problème de parachute. Ses congénères Albert I, II et IV ont également péri dans l’explosion de leurs fusées.

C’est ainsi que le 3 novembre 1957, une chienne noir et blanc nommée Laïka embarque à bord de Spoutnik 2. Le lancement est effectué sans tests préliminaires et dans la précipitation, s’agissant de damer le pion aux Américains. Le satellite atteint effectivement son orbite, Laïka est le premier être vivant à voyager dans l’espace interplanétaire. Las, il n’a jamais été prévu que Spoutnik 2 revienne. Équipée d’une combinaison de cosmonaute et enfermée dans un petit habitacle, Laïka s’affole au décollage, son cœur bat la chamade. Après la mise sur orbite, la température de la capsule monte à 41 degrés. Laïka met cinq heures à mourir de déshydratation, de chaleur et de convulsions. Spoutnik 2 se consumera dans l’atmosphère quelques mois plus tard. Quarante ans après, une statue a été érigée à Moscou en l’honneur de Laïka. On lui devait bien cela.

Commémoration du vol de Laïka à bord de Spoutnik 2 le 3 novembre 1957

Heureusement, beaucoup d’animaux ont survécu. C’est notamment le cas avec la mission Spoutnik 5, en 1960, qui embarque 2 chiennes nommées Belka et Strelka, 40 souris, 2 rats, des centaines d’insectes, des végétaux tels que maïs, blé, oignons et champignons, des bactéries et des préparations de peau humaine. Tous sont récupérés sur Terre en parfait état. Strelka a plus tard donné naissance à 6 chiots, dont l’un a été offert à John Kennedy pour son fils ! Continuer la lecture

Les Chroniques de l’espace illustrées (5) : De Gagarine à Kennedy

Ceci est la cinquième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

De Gagarine à Kennedy

Après la récupération réussie d’animaux envoyés dans l’espace, toute l’attention est désormais tendue vers un seul objectif : l’Homme. Aux États-Unis le programme Mercury fait l’objet d’une propagande effrénée. On se pose la question de savoir qui embarquer : un condamné à mort gracié, un acrobate de cirque, un voltigeur aérien ? On se rabat finalement sur le pilote de chasse, dont la discipline est à toutes épreuves. Le film L’étoffe des héros de Philip Kaufman est un document très réaliste sur les problèmes de la sélection. La NASA prévoit le lancement d’une capsule habitée pour la fin avril 1961.

Le film de 1983 “L’étoffe des héros” est adapté du remarquable roman de Tom Wolfe paru en 1979.

Le programme russe, lui, est beaucoup plus discret mais suit le même chemin en sélectionnant le profil du candidat idéal: un bon soldat avant tout. Il est vrai que les chances de réussite du lancement ne sont à l’époque que de 50 %. Après une sélection féroce, le pilote de chasse russe Youri Gagarine fait partie, avec son collègue German Titov, des deux derniers candidats au premier vol humain orbital de l’histoire. La commission tranche en faveur de Gagarine, dont les origines plus modestes symbolisent « l’idéal de l’égalité soviétique ». Déçu, Titov ne bronche pas mais il ne félicite pas Gagarine comme il serait d’usage.

Gagarine et Titov en 1961

Le 12 avril 1961 à 08:40, l’agence Tass annonce qu’un homme a pris place à bord de Vostok 1, un vaisseau spatial de 4 tonnes et demi. Gagarine a accompli une révolution complète autour de la Terre durant 108 minutes, en orbite basse montant jusqu’à 327 km d’altitude, et il a été récupéré vivant sur le territoire de l’URSS. La grande Histoire de l’exploration spatiale a désormais son Christophe Colomb.

Article du 13 avril 1961 dans Literatournaïa gazeta relatant le vol de Youri Gagarine. A droite, le module de descente de Vostok1, sorte de grosse boîte de conserve dans laquelle Gagarine n’avait aucune liberté de mouvement!

Dans le monde c’est la stupeur. Après le camouflet de Spoutnik 1, L’URSS a de nouveau damé le pion aux Américains. En toute hâte, ces derniers expédient le 5 mai Alan Shepard à 180 km d’altitude, mais dans un petit bond balistique d’à peine 15 minutes. Les Russes, eux, frappent encore plus fort au mois d’août. Gagarine n’a séjourné dans l’espace que le temps d’une orbite. Le deuxième vol de Vostok, lui, va durer 25 heures, soit 17 orbites. Titov tient sa revanche, mais la mission ne se déroule pas sans quelques péripéties. Au bout de quelques tours de Terre le cosmonaute ressent pour la première fois le mal de l’espace. Il parvient malgré tout à filmer durant 10 minutes l’horizon courbe de notre planète. Un grande première à nouveau. Son état s’améliore, il boucle la dernière orbite, s’éjecte du module de descente et regagne le sol en parachute et en parfaite santé. Il a 25 ans, Titov reste à ce jour le plus jeune être humain à être allé dans l’espace.

Ce poster célébrant le vol de Titov à bord de Vostok 2 porte les signatures des 9 premiers cosmonautes soviétiques Gagarine, Titov, Nikolaev, Popovich, Bykovsky, Tereshkova, Komarov, Egorov et Belyaev sous l’inscription manuscrite de Gagarine disant: “Le vol de Guerman Titov est une preuve de plus de la grandeur et de la puissance de la Science et de la Technique Soviétiques”.

Continuer la lecture

Les Chroniques de l’espace illustrées (4) : Spoutnik, Pioneer, Lunik et les autres

Ceci est la quatrième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

Spoutnik, Pioneer, Lunik et les autres

« À toute chose malheur est bon », dit le proverbe. La course à l’espace des années 1960 en est une illustration. Conséquence d’un terrible conflit politique entre les États-Unis et l’Union soviétique, elle aurait probablement été remplacée par une guerre nucléaire si les deux superpuissances n’avaient pas trouvé l’arène spatiale pour croiser symboliquement le fer.

Dans cette rivalité technologique, les premières victoires sont russes. Le 4 octobre 1957, un satellite de 85 kilos est mis en orbite autour de la Terre par le puissant lanceur mis au point par Korolev. Dédié à la géophysique il se nomme Spoutnik 1, ce qui signifie « voyageur 1 ». C’est le premier engin à atteindre la vitesse de satellisation, il va tourner plusieurs mois dans l’espace.

Préparation de Spoutnik 1 dans son laboratoire soviétique (image colorisée). C’est une petite sphère en aluminium de 58 centimètres de diamètre pesant 84 kg, dotée de quatre antennes. La sphère est constituée de deux coques concentriques, la coque externe servant de protection thermique, la seconde formant une enceinte pressurisée dans laquelle étaient placés les différents équipements.

À peine un mois plus tard, Spoutnik 2 crée à son tour la sensation. Non seulement sa masse atteint la demi-tonne, mais il a embarqué la chienne Laïka. Elle restera vivante quelques heures avant de mourir par arrêt du système permettant la survie à bord. Le sacrifice de l’animal est caché par les autorités russes, mais l’information essentielle passe : un être humain pourra vivre au moins quelques jours dans l’espace.

La chienne Laïka positionnée dans son habitacle Spoutnik 2 avant le lancement, ne se doutant certainement pas ce qu’elle allait subir… .

Pour les Américains, qui ne croyaient pas l’URSS aussi avancée, c’est un choc, une blessure d’orgueil, un Pearl Harbor technologique. Ils tentent de riposter aussitôt, mais le lancement de leur minisatellite Pamplemousse est un désastre. C’est finalement le 31 janvier 1958 que, grâce à la fusée Jupiter, de l’ex-ingénieur nazi Wernher von Braun – entre-temps naturalisé américain –, ils réussissent à mettre en orbite un petit satellite de 14 kilos, Explorer 1.

L’échec américain du lancement de la fusée Pamplemousse est en première page du journal La Liberté du 07/12/1957
Devancé par Spoutnik, Explorer 1 a malgré tout lancé les Etats-Unis dans la course à l’espace et réussi une première collecte de données scientifiques. Sur la photo, W. H. Pickering, J. Van Allen et W. Von Braun célèbrent le succès du satellite.

Dès lors, la compétition bat son plein. En mai 1958, l’énorme Spoutnik 3, soviétique, 1 400 kilos, découvre une zone de fortes radiations située entre 700 et 10 000 kilomètres d’altitude, invivable pour les humains s’ils doivent y rester sans protection : les ceintures de Van Allen.

Schéma des ceintures dites de Van Allen, mises pour la première fois en évidence par Spoutnik 3 et structurées par les lignes du champ magnétique terrestre. La ceinture intérieure contient des atomes lourds issus du rayonnement cosmique et des protons issus du soleil. La ceinture extérieure est constituée d’électrons solaires.

Continuer la lecture

Hommage à Giordano Bruno : l’ivresse de l’infini

Le 17 février 1600, Giordano Bruno est brûlé vif à Rome par l’Inquisition : la liberté d’esprit face à la pensée unique. L’article qui suit lui rend hommage. Je le reprends d’une de mes publications parue en mai 2007 dans la Revue Europe n°937.

Bruno et Galilée au regard de l’infini

« Qui est là ? Ah très bien : faites entrer l’infini »
Louis Aragon, Une vague de rêves (1924)

Une des questions les plus anciennes à propos de l’univers est de savoir quelle est son étendue. Est-il fini ou infini ? Il va de soi que la question n’est pas seulement d’ordre scientifique, mais qu’elle a suscité nombre de débats philosophiques et théologiques. Selon les époques et les cultures, la réponse a oscillé, telle une valse hésitante, entre ces deux visions radicalement opposées du monde. On ne peut analyser les positions respectives de Giordano Bruno et de Galileo Galilei face à cette question sans remonter aux sources mêmes de la pensée cosmologique occidentale.

Détail de la fresque de Raphaël “L’école d’Athènes”, censé représenter Anaximandre de Milet.

Dès le VIe siècle avant notre ère, dans la Grèce antique, les premières écoles de savants et de philosophes, dites «présocratiques », tentent chacune à leur façon d’expliquer rationnellement le «monde », c’est-à-dire l’ensemble formé par la Terre et les astres conçu comme un système organisé. Pour Anaximandre, de l’école de Milet, le monde matériel où se déroulent les phénomènes accessibles à nos investigations est nécessairement fini. Il est toutefois plongé dans un milieu qui l’englobe, l’apeiron, correspondant à ce que nous considérons aujourd’hui comme l’espace. Ce terme signifie à la fois infini (illimité et éternel) et indéfini (indéterminé). Pour son contemporain Thalès, le milieu universel est constitué d’eau et le monde est une bulle hémisphérique flottant au sein de cette masse liquide infinie. On retrouve cette conception intuitive d’un monde matériel fini baignant dans un espace-réceptacle infini chez d’autres penseurs : Héraclite, Empédocle, les stoïciens notamment, qui ajoutent l’idée d’un monde en pulsation, passant par des phases de déflagrations et d’explosions périodiques.

Buste de Démocrite

L’atomisme, fondé au Ve siècle par Leucippe et Démocrite, prône une tout autre version de l’infini cosmique. Il soutient que l’univers est construit à partir de deux éléments primordiaux : les atomes et le vide. Indivisibles et insécables (atomos signifie « qui ne peut être divisé »), les atomes existent de toute éternité, ne différant que par leur taille et leur forme. Ils sont en nombre infini. Tous les corps résultent de la coalescence d’atomes en mouvement; le nombre de combinaisons étant infini, il en découle que les corps célestes sont eux-mêmes en nombre infini : c’est la thèse de la pluralité des mondes. La formation des mondes se produit dans un réceptacle sans bornes : le vide (kenon). Cet « espace » n’a d’autre propriété que d’être infini, de sorte que la matière n’influe pas sur lui : il est absolu, donné a priori.

Schéma du cosmos atomiste
Détail d’une fresque de l’Université Nationale d’Athènes représentant Anaxagore. Artiste : Eduard Lebiedzki, d’après un dessin de Carl Rahl (vers 1888).

La philosophie atomiste est fermement critiquée par Socrate, Platon et Aristote. De plus, en affirmant que l’univers n’est pas gouverné par les dieux, mais par de la matière élémentaire et du vide, elle entre inévitablement en conflit avec les autorités religieuses. Au IVe siècle avant notre ère, Anaxagore de Clazomènes est le premier savant de l’histoire à être accusé d’impiété – en quelque sorte le malheureux précurseur de Bruno et Galilée; toutefois, défendu par des amis puissants (Périclès !), il est acquitté et peut s’enfuir loin de l’hostilité d’Athènes. Grâce à ses deux plus illustres porte-parole, Épicure (341-270 av. J.-C.) – qui fonde la première école admettant des femmes pour étudiantes –, et Lucrèce (Ier siècle av. J.-C.), auteur d’un magnifique poème cosmologique, De la nature des choses, l’atomisme n’en demeure pas moins florissant jusqu’à l’avènement du christianisme.

Une édition anglaise du poème de Lucrèce

Parménide, au Ve siècle avant notre ère, est peut-être le premier représentant du finitisme cosmologique. Selon lui, le Monde, image de l’Etre Parfait, est pareil à une « balle bien ronde » et possède nécessairement des limites. Dans Le Timée, Platon (428-347) introduit un terme spécifique, khora, pour désigner l’étendue ou espace en tant que réceptacle de la matière, et défini par elle. Il le considère comme fini, clos par une sphère ultime contenant les étoiles. De la même façon, Aristote (384-322) prône une Terre fixe au centre d’un monde fini, circonscrit par la sphère qui contient tous les corps de l’univers. Mais cette sphère extérieure n’est « nulle part », puisque au-delà il n’y a rien, ni vide ni étendue.

Platon et Aristote au centre de la fresque de Raphaël, “l’Ecole d’Athènes” (1511)

Il existe ainsi, dans l’Antiquité grecque, trois grandes écoles de pensée cosmologique. L’une, qui rassemble les milésiens, les stoïciens, etc., fait la distinction entre le monde physique (l’univers matériel) et l’espace : l’univers est considéré comme un îlot de matière fini plongé dans un espace extracosmique infini et sans propriété, qui l’englobe et le contient. Les deux autres, atomiste et aristotélicienne, considèrent que l’existence même de l’espace découle de l’existence des corps; le monde physique et l’espace coïncident; ils sont infinis pour les atomistes, finis pour les aristotéliciens.

La conception stoïcienne du cosmos

Les premiers théologiens du christianisme ne s’y trompent pas : ils rejettent violemment la philosophie atomiste, qui est matérialiste, mais aussi la doctrine aristotélicienne, qui implique un temps éternel et un univers non créé. Les modèles cosmologiques du Haut Moyen-Âge reviennent aux conceptions archaïques des milésiens, à savoir un cosmos fini baignant dans le vide, à la distinction près que le cosmos revêt maintenant la forme d’un tabernacle, ou celle d’un cœur !

L’univers en forme de tabernacle, selon le moine byzantin Cosmas Indicopleustes

La cosmologie d’Aristote, perfectionnée par l’astronomie de Claude Ptolémée (vers 150 de l’ère chrétienne), est toutefois réintroduite en Occident au XIe siècle, grâce aux traductions et aux commentaires arabes, et aménagée pour satisfaire aux exigences des théologiens. Notamment, ce qui se situe au-delà de la dernière sphère matérielle du monde acquiert le statut d’espace, sinon physique, du moins éthéré ou spirituel. Baptisé «Empyrée », il est considéré comme le lieu de résidence de Dieu, des anges et des saints. Ce cosmos médiéval aristotélo-chrétien, si bien illustré par La divine comédie de Dante, est non seulement fini et centré sur la Terre fixe, mais il est très petit : la distance de la Terre à la sphère des étoiles fixes est estimée à 20 000 rayons terrestres, de sorte que le paradis, à sa frontière, est raisonnablement accessible aux âmes des défunts. Le chrétien trouve naturellement sa place au centre de cette construction.

Système du monde médiéval dans la Cosmographie d’Apianus)

Si ce modèle d’univers s’impose rapidement, il n’empêche pas la résurgence d’idées atomistes. Après la redécouverte du manuscrit de Lucrèce, le cardinal allemand Nicolas de Cues (1401-1464) plaide en faveur de l’infinité de l’Univers, de la pluralité des mondes habités et du mouvement de la Terre dans son Traité de la Docte Ignorance (vers 1440). Mais son argumentation reste principalement métaphysique : l’univers est infini parce qu’il est l’œuvre de Dieu, lequel ne saurait être limité dans ses œuvres.

La docte ignorance, de Nicolas de Cuse

Un siècle plus tard, le chanoine polonais Nicolas Copernic (1473-1543) réintroduit l’héliocentrisme, vieille hypothèse déjà formulée au IIIe siècle avant notre ère par Aristarque de Samos mais restée en sommeil, malgré la tentative de Nicolas de Cues. Son De Revolutionibus (1543) pose les hypothèses que la Terre n’est pas le centre de l’Univers ; que toutes les sphères tournent autour du Soleil, centre de l’Univers ; que tout mouvement céleste est produit par le mouvement de la Terre et non par celui du firmament ; que la Terre effectue une rotation complète autour de ses pôles en un jour et une révolution complète autour du Soleil dans le plan de l’écliptique en une année.

Copernic conserve toutefois la conception aristotélicienne d’un univers fini, enclos à l’intérieur de la sphère des étoiles fixes. Il le déclare seulement immense, et renvoie la balle aux philosophes. Néanmoins, l’héliocentrisme porte en germe une révolution fondamentale : tant que l’univers était en rotation autour de la Terre fixe, il était difficile d’imaginer qu’il puisse être infini. La difficulté disparaît dès qu’il est reconnu que le mouvement apparent du ciel est dû au mouvement terrestre. En outre, Copernic élargit le Monde médiéval. Son modèle est 2000 fois plus grand que celui de Ptolémée : il constitue un tout petit pas vers l’infini, mais en est encore loin …

Le système de Copernic, dans le De Revolutionibus de 1543

En 1572, une « étoile nouvelle »[1] observée par l’astronome danois Tycho Brahe (1546-1601) fournit un premier élément observationnel propre à accélérer la chute de la cosmologie aristotélicienne. C’est en effet dans la sphère des étoiles fixes qu’elle apparaît, c’est-à-dire dans le Monde supra-lunaire jusqu’alors réputé immuable.

Dès 1576, Thomas Digges, l’un des plus habiles observateurs de son temps et leader des coperniciens anglais, démantèle la sphère des fixes et en éparpille les étoiles dans l’espace infini. Son manifeste, A Perfit Description of the Caelestial Orbes (1576), contient un schéma héliocentrique montrant explicitement, pour la première fois dans l’histoire, des étoiles non plus fixées sur une couche mince, à la surface de la dernière sphère du monde, mais disséminées à l’infini. Ce nouveau modèle fait brutalement passer du monde clos des Anciens à un univers, sinon infini, du moins extrêmement vaste, peuplé d’étoiles innombrables qui sont autant de soleils. Toutefois, Digges ne propose pas de conception véritablement physique de l’espace infini. Pour lui, le ciel et ses étoiles constituent toujours l’Empyrée, la demeure de Dieu, et, à ce titre, n’appartiennent pas vraiment à notre monde sensible.

Système du monde de Digges (1576)

Giordano Bruno, ou l’ivresse de l’infini

La vraie rupture épistémologique est déclenchée par deux philosophes italiens. En 1587, Francesco Patrizi (1529-1597) fait paraître De l’espace physique et mathématique[2], où il émet l’idée révolutionnaire que le véritable objet de la géométrie est l’espace en tant que tel, et non les figures, comme on le considérait depuis Euclide. Patrizi inaugure un nouveau concept d’espace physique homogène et infini, obéissant à des lois mathématiques – donc accessible à l’entendement.

Mais c’est surtout à son contemporain Giordano Bruno (1548-1600) que doit être attribuée la paternité de la cosmologie infinitiste. Continuer la lecture

La révolution copernicienne chez les humanistes provençaux (5) : Cassini

Suite du billet précédent La révolution copernicienne chez les humanistes provençaux (4) : Gassendi et fin

De la Provence à Paris : Cassini Ier

Concluons ce récit en évoquant plus brièvement la vie et l’œuvre de Gian-Domenico Cassini (1625-1712), astronome d’origine également provençale. Né à Perinaldo, alors dans le comté de Nice appartenant au Duché de Savoie, il est éduqué au collège jésuite de Gênes. Ses brillantes aptitudes le font remarquer d’un riche amateur de Bologne, le marquis Cornelio Malvasia. En 1644, ce dernier l’engage pour travailler à l’Observatoire de Panzano encore en construction. De nombreux instruments sont mis à sa disposition et il côtoie les pères jésuites Giovanni Riccioli et Francesco Grimaldi, deux astronomes de grande notoriété qui complèteront son éducation.

La qualité de ses observations et ses publications astronomiques de valeur lui valent d’être nommé professeur d’astronomie et de mathématiques à l’Université de Bologne, en 1650. Il a alors vingt-cinq ans.

Explication des mouvements planétaires selon Ptolémée dans un ouvrage de Cassini

Dans les états sous juridiction de l’église catholique romaine, il est obligé d’enseigner l’astronomie de Ptolémée. Cependant, après l’observation suivie de la comète de 1652-53, il est conduit à adopter le système géo-héliocentrique de Tycho Brahe, déjà favori des jésuites (il n’adhèrera au modèle copernicien que sur le tard).

Expert également en hydraulique et en ingénierie, Cassini acquiert une telle réputation que le sénat de Bologne et le pape le chargent de plusieurs missions scientifiques et politiques. Mais c’est l’astronomie qui l’occupe principalement. Il découvre la grande tache rouge de Jupiter en 1665, et détermine la même année la vitesse de rotation de Jupiter, Mars et Vénus.

La planète Jupiter et sa tache dessinée en Italie par Giovanni Cassini en 1666

Sa notoriété franchit les frontières et, en 1668, Colbert, qui recherche des savants étrangers pour la toute nouvelle Académie des Sciences parisienne, lui offre d’en devenir membre correspondant. Cassini accepte. Colbert l’invite alors à venir en France pour un séjour de durée limitée, afin de l’aider dans la construction du nouvel observatoire. Continuer la lecture

La révolution copernicienne chez les humanistes provençaux (4) : Gassendi

Suite du billet précédent La révolution copernicienne chez les humanistes provençaux (3) : Peiresc

De l’astronomie à l’atomisme

Pierre Gassendi naît le 22 janvier 1592 près de Digne, dans les Alpes de Haute-Provence. Après avoir commencé ses études au collège de Digne, il suit des cours de philosophie à l’université d’Aix. En 1614, après l’obtention d’un doctorat de théologie à Avignon, il est nommé professeur de rhétorique et chanoine à Digne, puis professeur de philosophie à Aix, dont il semble avoir été chassé par la venue des jésuites. Il terminera sa vie le 24 octobre 1655 à Paris, après avoir été nommé, dix ans auparavant, professeur de mathématiques au Collège Royal (devenu depuis le Collège de France). Gassendi est le type même de l’humaniste polyvalent : il est à la fois astronome, mathématicien, philosophe, théologien et biographe[i]. Mais c’est en astronomie et en philosophie que ses travaux seront les plus durables.

Lieu de naissance de Gassendi à Champtercier, près de Digne. Lithographie de Victor Camoin, Musée Gassendi

Fils de cultivateurs peu aisés, Pierre Gassendi aurait dès son enfance contracté sa passion pour les choses du ciel en gardant les troupeaux de nuit. Toute sa vie il ne cessera d’observer, utilisant à la fois des lunettes et des instruments à pinnules. Pendant ce premier demi-siècle d’existence des lunettes, les deux méthodes se pratiquent en effet en parallèle : avec les lunettes on cherche à faire des découvertes, avec les instruments traditionnels comme le quart de cercle ou le rayon astronomique que l’on utilise à l’œil nu, on prend les mesures, ce que les lunettes ne permettent pas encore de faire[ii].

Dessin des taches solaires par Scheiner

Les taches solaires sont l’une des grandes nouveautés révélées par la lunette, mais dans un premier temps elles ne sont pas comprises. A l’époque de Gassendi, il faut multiplier les observations pour essayer de déterminer leur vraie nature. Les taches sont-elles sur la surface du soleil, ou de petits satellites tournant autour de lui ? Sont-elles des nuages, ou bien une imperfection de la lunette elle-même ? Gassendi commence ses observations en 1620 et en fait une longue série, avec un regain d’activité autour de 1626, l’année des premiers travaux de Christoph Scheiner (1575-1650) sur la question, qui prend les taches pour des satellites. Gassendi suit au contraire Galilée, en les considérant comme des marques sur la surface du soleil, et donc une preuve de la rotation de notre étoile. A partir de ses observations des taches, il détermine la vitesse de rotation du soleil, obtenant une estimation de 25 à 26 jours, résultat assez remarquable pour ces valeurs qui varient selon la latitude. Malheureusement, la plupart des observations solaires de Gassendi, faites avant la période où il a conservé systématiquement ses notes dans des cahiers, sont perdues. Par la suite, Gassendi devient l’un des premiers astronomes à comprendre l’importance que peut avoir un recueil d’observations. Le 27 septembre 1635, il écrit à Peiresc que « pour empêcher que ces papillotes ou plumitifs de mes observations ne s’égarent plus, j’ai commencé depuis quelque temps d’écrire le tout en une main de papier toute entière que j’ai cousue et couverte en parchemin à ce dessein. » Son diaire (journal astronomique) est né, en même temps que la reconnaissance de la nature essentiellement historique de l’astronomie, qui le poussera à organiser et préserver ses propres observations.

portrait de Gassendi, gravure de Claude Mellan – Musée Gassendi

J’ai parlé dans le billet précédent du projet d’atlas lunaire mené conjointement par Gassendi et Peiresc à partir de 1634. De septembre à décembre 1636, on peut suivre les observations de la lune dans le diaire de Gassendi. Hélas, la mort de Peiresc le 24 juin 1637 met un terme à la préparation de l’atlas. Le graveur Claude Mellan reste à Paris et Gassendi, très affecté, abandonne le projet. Comme il l’explique dans sa Vie de Peiresc, leur objectif, outre le pur intérêt astronomique, était d’ordre cosmologique, s’agissant de mettre en évi­dence le fait que le globe de la lune est sem­blable au globe terrestre, et d’avaliser l’intuition de Galilée sur la profonde unité entre la physique terrestre et la physique céleste. Continuer la lecture

La révolution copernicienne chez les humanistes provençaux (3) : Peiresc

Suite du billet précédent (2) : L’apport de Galilée

Peiresc, le prince des curieux

Nicolas-Claude Fabri de Peiresc naît le 1er décembre 1580 à Belgentier, petite commune de Provence située entre Aix et Toulon. Sa vie nous est essentiellement connue par la biographie qu’en fit son grand ami Pierre Gassendi[i].

Le château de Peiresc à Belgentier (Var)

Adolescent, Peiresc est élève des jésuites dans leurs collèges d’Avignon puis de Tournon ; à l’âge de seize ans il y reçoit un enseignement d’astronomie, qui le passionne malgré l’austérité de cette science qui à l’époque se limite à inventorier les étoiles et, par des mesures d’angles à l’arbalestrille ou à l’astrolabe, à suivre leurs mouvements. Peiresc revient ensuite faire sa philosophie à Aix-en-Provence, puis se rend à Padoue pour étudier le droit, tout en suivant nombre d’autres enseignements.

L’humaniste Gian Vincenzo Pinelli, ami de Galilée et de Peiresc.

Il se lie rapidement avec l’humaniste italien Gian Vincenzo Pinelli (1535-1601), qui devient son maître et modèle. C’est de Pinelli, dont la bibliothèque aurait été la plus vaste du XVIe siècle, que Peiresc tirera son goût immodéré pour les livres et les cabinets de curiosité. C’est chez lui également qu’il rencontre pour la première fois Galilée, à qui Pinelli avait ouvert sa bibliothèque.

Après plus de trois ans passés en Italie et à la mort de Pinelli qui l’affecte profondément, Peiresc revient en France pour continuer ses études de droit. Il séjourne à Montpellier pour passer sa thèse de doctorat puis, après divers voyages à Paris, Londres et les Flandres, il est nommé conseiller au Parlement de Provence. L’astronomie va cependant rester l’une de ses occupations majeures : jamais il ne s’éloignera de cette discipline et, par périodes, lui consacrera toute son activité.

Portrait de Peiresc jeune

Dès l’automne 1604, Peiresc observe la rencontre des trois planètes supérieures Mars, Jupiter et Saturne, événement qui ne se produit que tous les huit cents ans et qu’on appelle la Grande Conjonction. En même temps paraît une étoile de la grandeur de Jupiter, qu’on voit plus d’un an à l’un des pieds de la constellation du Serpentaire. Peiresc n’ayant pas encore de globe céleste pour s’assurer du nombre des étoiles fixes, croit qu’il s’agit d’une étoile déjà répertoriée par les Anciens. Cependant, par les lettres qu’il reçoit quelques mois après, il apprend qu’il s’agit d’une nouvelle étoile, que Galilée observe en même temps que lui et dont l’apparition porte un coup de plus à la doctrine aristotélicienne de l’immuabilité du ciel des fixes. Ces « étoiles nouvelles » sont appelées de nos jours des supernovæ. Celle observée par Peiresc est connue sous le nom de « supernova de Kepler », car ce dernier l’observa pendant près d’un an et en tira d’intéressantes leçons.[ii] Continuer la lecture

La révolution copernicienne chez les humanistes provençaux (2) : L’apport de Galilée

Suite du billet précédent : Montaigne

La révolution galiléenne

Au cours des soixante années qui suivent la publication du De revolutionibus, seule une poignée d’astronomes répartis en Europe mesurent l’importance de la thèse copernicienne et s’attachent à la défendre, voire à l’adopter et à l’améliorer : William Gilbert et Thomas Digges en Angleterre, Galileo Galilei dans la très catholique Italie, Georg Joachim Rheticus, Michael Maestlin, Christophe Rothmann et Johannes Kepler en pays luthériens. Ils doivent cependant faire face aux virulentes critiques adressées à la doctrine du double mouvement de la Terre, jugée absurde. Reprenant l’argumentation d’Osiander, la majorité des savants de l’époque ne retiennent en effet de l’œuvre copernicienne que l’ingénieuse fiction mathématique permettant de faciliter et d’améliorer les calculs d’éphémérides célestes. En témoignent les nouvelles tables astronomiques dites Pruténiques, élaborées en 1551 par Erasmus Reinhold et s’appuyant sur la théorie héliocentrique, qui s’avèrent légèrement supérieures aux séculaires Tables Alphonsines fondées sur le système géocentrique de Ptolémée.

Ce sentiment de défiance est conforté par le Danois Tycho Brahé (1546-1601), le plus célèbre astronome de son temps réputé pour l’extrême qualité de ses observations. S’il admire l’œuvre du chanoine polonais, il ne peut en aucune manière adhérer au géocinétisme, raison pour laquelle il propose en 1583 un modèle dit géo-héliocentrique, système mixte dans lequel la Terre est immobile, la Lune, le Soleil et les étoiles fixes tournent autour d’elle, mais les cinq planètes tournent autour du Soleil. Ce confortable et astucieux compromis, qui lui permet de rester fidèle aux principes de la physique aristotélicienne et à l’interprétation théologique de la Bible, recueille rapidement l’aval de la majorité des astronomes, des philosophes et des théologiens de l’époque, qu’ils soient catholiques ou réformés. Continuer la lecture

La révolution copernicienne chez les humanistes provençaux (1) : Montaigne

Début d’une série de billets adaptés d’un article paru en anglais dans la revue Inference

Le Soleil fixe au milieu des planètes

Dans le premier livre, je décris toutes les positions des orbes, ainsi que les mouvements que j’attribue à la Terre, afin que ce livre contienne pour ainsi dire la constitution générale de l’univers.
Nicolas Copernic, lettre-préface au pape Paul III, Des révolutions des orbes célestes, 1543 (trad. A. Koyré, Paris, Alcan, 1934)

Manuscrit du Commentariolus

L’œuvre princeps du chanoine polonais Nicolas Copernic (1473-1543), De Revolutionibus orbium cœlestium[i], publiée l’année même de sa mort, a été le fruit d’un long travail préparatoire présenté pour la première fois en 1515 sous forme réduite et manuscrite dans le Commentariolus[ii], diffusé uniquement auprès d’un cercle restreint d’intellectuels. Le traité astronomique complet de 1543 est considéré par les historiens modernes comme étant à l’origine de la vision moderne de l’univers. Il a pour objet d’attaquer, en vue de la remplacer, la thèse géocentrique consacrée par Aristote quelque deux mille ans plus tôt, et confortée par l’astronome alexandrin Claude Ptolémée dans son célèbre Almageste, prestigieux monument de science observationnelle et mathématique écrit dans les années 140 de notre ère, et qui depuis lors régnait sur l’astronomie occidentale et arabe.

Conscient des imperfections du système géocentrique de Ptolémée et soucieux de trouver une harmonie géométrique dans l’organisation du cosmos, Copernic réintroduit le système héliocentrique, modèle astronomique déjà évoqué dans l’Antiquité mais resté en sommeil, selon lequel le Soleil est au centre géométrique du monde tandis que la Terre tourne autour de lui en un an et sur elle-même en un jour. Ravalée au rang de simple planète, c’est-à-dire d’astre errant au même titre que Mercure, Vénus, Mars, Jupiter et Saturne, notre planète cesse ainsi d’occuper une position cosmologique privilégiée.

Dans la seconde moitié du XVIe siècle, le premier à mentionner le nom de Copernic en France est Omer Talon (1510-1562), un disciple de Petrus Ramus, dans les Academicae questiones de 1550 : la réception est plutôt favorable, car les ramistes sont hostiles à Aristote[iii]. En revanche, peu de ses contemporains prennent Copernic au sérieux, et les jugements sur l’héliocentrisme sont majoritairement négatifs. On lit notamment des railleries à l’égard de la thèse copernicienne chez les poètes de La Pléiade, comme le célèbre Du Bartas[iv] ou le moins connu Jean Bodin[v]. De fait, la doctrine de Copernic, jugée absurde car contraire à l’évidence sensorielle de l’immobilité terrestre, se répand très lentement ; le terme même de « révolution scientifique » qui lui est attaché n’a fait son apparition qu’au XXe siècle sous la plume de l’épistémologue Thomas Kuhn[vi].

Guillaume de Salluste seigneur du Bartas (1544-1590)

Il se trouve entre nous des esprits frénétiques
Qui se perdent toujours par des sentiers obliques
Et, de monstres forgeurs, ne peuvent point ramer
Sur les paisibles flots d’une commune mer.
Tels sont comme je crois ces écrivains qui pensent
Que ce ne sont pas les cieux ou les astres qui dansent
A l’entour de la terre, mais que la terre fait
Chaque jour naturel un tour vraiment parfait.
Guillaume de Salluste du Bartas, La Sepmaine ou création du monde, 1578.

Cependant, Michel de Montaigne (1533-1592) fait figure d’exception en soutenant, dans ses Essais, non seulement la thèse héliocentrique, mais en percevant aussi l’œuvre de Copernic comme une révolution scientifique en train de s’accomplir. Pour en comprendre les raisons profondes, il faut rappeler la position fondamentalement sceptique de Montaigne concernant la philosophie de la connaissance.

Le système héliocentrique de Copernic, déjà proposé dans l’Antiquité par Philolaos et Aristarque de Samos

Exercice de jugement sceptique sur l’astronomie

Montaigne reçoit une éducation humaniste dès son plus jeune âge ; il fait une carrière de magistrat, exerce la fonction de maire de Bordeaux et prend sa retraite à l’âge de trente-sept ans pour écrire et réviser, de 1571 à sa mort, les fameux Essais, qui sont des exercices de jugement. Continuer la lecture

Mes romans (7) : Ulugh Beg, l’astronome de Samarcande

Ulugh Beg, l’astronome de Samarcande

310 pages, JC Lattès, Paris, 2015 – ISBN 978-2709644839

CouvertureEn 1429, Samarcande, escale majeure de la route de la soie connaît une animation encore plus vive qu’à l’ordinaire. Le plus grand observatoire jamais conçu vient d’être inauguré. Les ambassadeurs du monde vont contempler un immense sextant de 80 mètres de haut et 40 mètres de rayon plongeant dans une fosse vertigineuse, un gigantesque cadran solaire dont les parois externes sont couvertes d’une vaste fresque représentant le zodiaque et qui recèle les plus perfectionnés des instruments de mesure du temps et de l’espace : sphères armillaires, clepsydres, astrolabes…
Le promoteur de ce prodige architectural, mais aussi le directeur de l’observatoire n’est autre que le prince et gouverneur de Samarcande, Ulugh Beg, le petit-fils du conquérant redoutable qui mit tout l’Orient à feu, de l’Indus au Jourdain : Tamerlan.
Amoureux des sciences et du ciel, piètre politique et militaire – ce qui lui coûtera la vie -, Ulugh Beg entouré des meilleurs astronomes de son temps, va calculer la position de mille étoiles et rédiger un ouvrage majeur : les tables sultaniennes qui fascineront les savants, les lettrés et les voyageurs du monde entier.
C’est l’histoire totalement hors du commun de ce savant poétique et rigoureux que Jean-Pierre Luminet nous invite à découvrir dans une fresque romanesque épique, au cœur d’un monde de grandes étendues désertiques, de cités au raffinement incomparable et de guerres permanentes où, cependant, l’homme continue plus que jamais sa conquête de la science et des étoiles.

Continuer la lecture

Mes romans : Les bâtisseurs du ciel (l’intégrale)

Les Bâtisseurs du ciel (l’intégrale)

EAN : 9782709636377Parution : 10/11/2010
1640 pages

Batisseurs-couvRassemblés en un volume, les quatre grands romans de Jean-Pierre Luminet consacrés à ceux qui ont totalement changé notre vision de l’univers : Copernic, Kepler, Tycho Brahé, Galilée, Newton.
« Au cours du XVIe et du XVIIe siècle, une poignée d’hommes étranges, des savants astronomes, ont été des précurseurs, des inventeurs, des agitateurs de génie. Ce qu’on ignore généralement – peut-être parce que leurs découvertes sont tellement extraordinaires qu’elles éclipsent les péripéties de leur existence – c’est qu’ils ont été aussi des personnages hors du commun, des caractères d’exception, des figures romanesques dont la vie fourmille en intrigues, en suspense, en coups de théâtre… »
La série Les Bâtisseurs du ciel est un hymne à la science, au plaisir et à la hardiesse.

****************************************************************

DOSSIER DE PRESSE

« Vulgarisateur surdoué et passionné, Jean-Pierre Luminet nous ouvre les portes de la nuit. »
Télérama

« Dans ses romans s’expriment toute la précision et la clarté du scientifique. »
Le MondeContinuer la lecture

L’univers holographique (6) : Black Holism

Suite du billet précédent : L’univers holographique (5) : la quête des dualités ET FIN

Dans son livre, le brillant physicien canadien Lee Smolin s'élève contre l'hégémonie de la théorie des cordes et analyse les aspects sociologiques de la recherche fondamentale.
Dans son livre, le brillant physicien américain Lee Smolin s’élève contre l’hégémonie de la théorie des cordes et analyse les aspects sociologiques de la recherche fondamentale.

La correspondance AdS/CFT, et plus généralement les dualités holographiques, ont soulevé énormément d’enthousiasme dans la communauté des cordistes, suscité des milliers de publications et des centaines de thèses de doctorat – ce qui après tout constitue l’activité courante et « normale » de la recherche scientifique. On peut cependant rester perplexe devant un tel phénomène qui, au-delà de l’intérêt technique certain qu’il peut représenter, relève surtout d’une certaine dérive sociologique pointée du doigt par d’éminents chercheurs de la discipline[1].

Au crédit de la correspondance, il faut reconnaître qu’elle permet de troquer certains calculs difficiles, voire impossibles, contre des calculs plus faciles. A minima, la dualité holographique apparaît comme un intéressant outil de calcul en physique fondamentale. Le “dictionnaire” qu’elle propose entre le monde en espace-temps plat et le monde courbe où se trouve la gravitation fonctionne dans les deux sens. Certains calculs sont plus simples avec la supergravité que dans la théorie de jauge duale, de sorte qu’aucun de ces mondes n’est plus fondamental que l’autre. Mais ce n’est pas parce que l’on peut considérer des calculs plus simplement dans un espace-temps plat, sans gravitation et de plus basse dimension que celui de la théorie des cordes, qu’il en découle que la réalité cosmique est un hologramme ! On peut entièrement encoder la topographie 3D d’un terrain dans une carte 2D sur laquelle le relief est indiqué par des courbes de niveau (un encodage bien utile aux randonneurs), mais, selon le célèbre aphorisme d’Alfred Korzybski, il ne faut jamais perdre de vue que « la carte n’est pas le territoire »[2].

Une vue bien naïve de l'holographie appliquée à l'univers dans son ensemble, ce qu'on appelle en anglais du "wishful thinking"...
Une vue bien naïve de l’holographie appliquée à l’univers dans son ensemble, ce qu’on appelle en anglais du “wishful thinking”…

A son crédit également, et là je parle en ardent pratiquant de la théorie de la relativité générale classique dont nous célébrons cette année le centenaire[3], la dualité jauge/gravité a conféré à la théorie d’Einstein un statut beaucoup plus large. L’édifice intellectuel de la relativité générale a certes connu de remarquables succès au cours du siècle dernier, et fourni un édifice crucial pour toute la partie de la physique théorique traitant de la gravitation. La révolution conceptuelle qu’elle a entraînée sur la nature de l’espace et du temps a rendu la théorie populaire, au point qu’il serait difficile de trouver aujourd’hui une personne possédant un minimum de culture scientifique mais n’ayant jamais entendu parler de la théorie d’Einstein.

Continuer la lecture

L’univers holographique (5) : La quête des dualités

Suite du billet précédent : L’univers holographique (4) : la conjecture de Maldacena

Des centaines de chercheurs ont exploré les conséquences de la conjecture de Maldacena, avec l’espoir que la dualité jauge/gravité, sous sa forme la plus générale, puisse établir une sorte de dictionnaire pratique entre les propriétés d’un système physique en gravitation quantique, décrit par la théorie des cordes dans un espace courbe de dimensionnalité élevée (la Matrice), et un autre système physique, plus simple celui-là, décrit quantiquement par une théorie de jauge sur l’enveloppe de la Matrice – espace plat de dimensionnalité moindre. Il existe notamment une approche en théorie M développée en 1997 et baptisée BFSS[1], destinée à fournir une formulation numériquement calculable, qui a en outre le mérite d’établir un lien avec l’approche a priori différente de la géométrie non-commutative d’Alain Connes – pour plus de détails voir l’excellent billet de L. Sacco sur Futura Sciences.

L’avantage serait évident : certains calculs très complexes – voire impossibles – en gravité quantique pourraient être menés de façon plus simple dans le cadre de la théorie de jauge, comme on l’a vu dans le billet précédent  pour l’évaporation quantique d’un trou noir dans AdS5. Inversement, quand les champs de la théorie quantique sont fortement couplés (comme dans le plasma quark-gluon, voir ci-dessous), ceux de la théorie gravitationnelle interagissent faiblement et pourraient être plus facilement appréhendés mathématiquement. Cette dualité forte/faible permet ainsi d’explorer des aspects complexes de la physique nucléaire et de la physique de la matière condensée, en les traduisant en termes de théorie des cordes à haut degré de symétrie, plus aisément traitable.

Les possibles réalisations de la dualité jauge-gravité font aujourd’hui l’objet d’ambitieux programmes théoriques, rattachés à trois vastes domaines de la physique :

  • physique nucléaire, avec notamment l’étude du plasma quark-gluon (programme AdS/QCD)
  • physique de la matière condensée, avec l’étude des états exotiques de la matière (programme AdS/CMT)
  • relativité générale et cosmologie, avec les programmes Kerr/CFT et dS/CFT.

Développons brièvement chacun de ces programmes, en mentionnant leurs succès et leurs échecs. Continuer la lecture

L’univers holographique (4) : La conjecture de Maldacena

Suite du billet précédent : L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Juan Maldacena en 2013
Juan Maldacena en 2013

Confrontés à la difficulté d’appliquer le principe holographique à un modèle d’univers réaliste, les physiciens se sont tournés vers des modèles d’univers simplifiés, dans lesquels le principe pourrait s’appliquer. La première réalisation concrète a été l’œuvre du jeune chercheur argentin Juan Maldacena qui, en novembre 1997, publia un résultat étonnant, assorti d’une audacieuse conjecture mathématique[1].

Considérant un trou noir dans un modèle d’espace-temps à cinq dimensions macroscopiques caractérisé par une géométrie dite anti-de Sitter, il montra que les détails des phénomènes se déroulant dans cet univers, décrits par la théorie des cordes et incluant donc la gravitation, étaient entièrement codés dans le comportement de certains champs quantiques (non gravitationnels) se déroulant sur la frontière quadridimensionnelle de cet univers.

Vue d'artiste de l'équivalence
Vue d’artiste de l’hypothèse de Maldacena

L’espace-temps de de Sitter est une solution exacte des équations de la relativité générale ordinaire découverte dès 1917, vide de matière mais qui comprend une force répulsive appelée constante cosmologique, de valeur positive ; si maintenant on change le signe de la constante cosmologique, la force de répulsion devient attractive et le modèle se transforme en un espace-temps anti-de Sitter[2] . Ce dernier acquiert une géométrie spatiale hyperbolique (c’est-à-dire de courbure négative) et, bien qu’il soit infini, possède un « bord » bien défini. Pour représenter ce bord, on utilise la représentation de Poincaré du disque hyperbolique qui, à l’aide d’une transformation conforme conservant les angles mais pas les distances, ramène l’infini à distance finie. L’artiste néerlandais Mauritz Cornelius Escher a créé une célèbre série d’estampes intitulées Circle Limits dans lesquelles il utilise la représentation de Poincaré, voir par exemple [3].

Poincaré representation of the hyperbolic disc.
Représentation de Poincaré du disque  hyperbolique.

Circular Limit III, zn engraving by M.C.E. Escher, using the Poincaré representation of hyperbolic space.
Circle Limit III, une gravure de M.C.E. Escher utilisant la représentation de Poincaré de l’espace hyperbolique.
L'esapce anti-de Sitter en dimension 3 se présente comme un empilement de disques hyperboliques, chacun représentant l'état d'un univers 2D à un instant donné. L'espace-temps 3D qui en résulte resemble à un cylindre solide.
L’esapce anti-de Sitter en dimension 3 se présente comme un empilement de disques hyperboliques, chacun représentant l’état d’un univers 2D à un instant donné. L’espace-temps 3D qui en résulte resemble à un cylindre solide.

Pour l’espace-temps anti-de Sitter en dimension 5, noté AdS5, le bord est de dimension 4 et, localement autour de chaque point, ressemble à l’espace de Poincaré-Minkowski, qui est précisément le modèle d’espace-temps plat utilisé en physique non-gravitationnelle. Cela signifie qu’un trou noir dans l’espace-temps anti-de Sitter 5D est strictement équivalent à un champ de particules et de rayonnement existant dans l’espace-temps plat 4D de la frontière. Or, cette dernière description fait appel à des théories de champs quantiques bien connues et maîtrisées, analogues aux champs de Yang-Mills utilisés par exemple en chromodynamique quantique (qui est la théorie de l’interaction forte). Notons cependant qu’aux cinq dimensions spatiales de l’espace-temps anti-de Sitter il faut rajouter cinq dimensions spatiales compactifiées en forme de sphère S5, afin de traiter le problème dans le cadre de la théorie des cordes standard à dix dimensions.

Continuer la lecture

L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Suite du billet précédent L’univers holographique (2) : la gravité quantique façon théorie des cordes

Dans le cadre de la théorie des cordes, il s’agissait dans un premier temps de retrouver les lois de la thermodynamique classique des trous noirs, c’est-à-dire savoir calculer, en termes de mécanique statistique quantique, leur entropie et leur température en fonction de leur aire et de leur gravité de surface. La tâche n’est pas aisée. Comme en thermodynamique, l’entropie mesure le nombre total d’états microscopiques internes correspondant à un état externe donné du trou noir, défini par ses trois paramètres (M, J, Q). Encore faut-il comptabiliser les « vrais » états microscopiques, c’est-à-dire les degrés de liberté ultimes sur lesquels il faut calculer l’entropie. Pour évaluer le contenu ultime en informations d’un élément de matière, c’est-à-dire son entropie thermodynamique, il faut en toute rigueur connaître ses constituants fondamentaux au niveau le plus profond de structuration. Dans le modèle standard de la physique des particules, les quarks et les leptons semblent suffisants pour coder toute l’information. Mais dans la théorie des cordes et sa théorie-mère (M-theory), les quarks et les leptons sont des états excités de supercordes, qui deviennent alors les constituants les plus élémentaires du monde physique.

Gerard 't Hooft, né en 1946 aux Pays-Bas, est professeur à l'Institut de physique théorique de l'université d'Utrecht depuis 1977.
Gerard ‘t Hooft, né en 1946 aux Pays-Bas, est professeur à l’Institut de physique théorique de l’université d’Utrecht depuis 1977.

En 1993, Gerard t’Hooft (futur lauréat du prix de Nobel de physique 1999 pour ses travaux sur l’interaction électrofaible)  fut le premier à revisiter le travail de Hawking sur la thermodynamique des trous noirs dans le cadre de la théorie des cordes. Il calcula que le nombre total de degrés de liberté dans le volume d’espace-temps intérieur au trou noir était proportionnel à la superficie de son horizon[1]. La surface bidimensionnelle du trou noir peut être divisée en unités quantiques fondamentales appelées aires de Planck (10–66 cm2). Du point de vue de l’information, chaque bit sous forme de 0 ou de 1 correspond à quatre aires de Planck, ce qui permet de retrouver la formule de Bekenstein-Hawking S = A/4 pour l’entropie. Tout se passe comme si l’information perdue pour un observateur extérieur – l’entropie du trou noir – portée initialement par la structure 3D des objets ayant traversé l’horizon des événements, était codée sur sa surface 2D à la façon d’un hologramme, et t’Hooft en conclut que l’information avalée par un trou noir devait être intégralement restituée lors du processus d’évaporation quantique.

L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck (10–66 cm2) est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.
L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck  est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.

Continuer la lecture