L’application surprenante d’un vieux problème d’Apollonius

L’Antiquité grecque s’est passionnée du problème d’Apollonius (trois siècles avant notre ère) sans doute sans y voir la moindre application. Songez ! Étant donné trois cercles du plan, il s’agit de trouver les cercles qui leur sont tangents. Il fallut attendre François Viète (1540 – 1603) pour qu’il trouve une solution complète. Au maximum, huit cercles sont solutions.

Le cercle rouge est tangent aux trois cercles bleus

Repérage acoustique de l’artillerie

Une idée pour repérer les pièces d’artillerie est d’utiliser le son produit lors de la mise à feu. Les instruments essentiels pour ces repérages sont des microphones, dispositifs inventés à la fin du XIXe siècle. S’ils sont adaptés aux basses fréquences et ignorent les autres, les sons de l’artillerie lourde sont distingués des autres bruits du champ de bataille. Il faut en utiliser au moins trois, reliés à un appareil d’enregistrement effectuant un tracé sur un même rouleau enregistreur afin de comparer les instants de réception du son.

Le son de la même mise à feu est enregistré à des instants différents selon la position des micros.

Dans le cas de l’enregistrement ci-dessus, l’onde sonore venant du canon ennemi (en T) se déplace selon un cercle de centre T. Elle atteint d’abord le point A où est placé le premier microphone puis le point B où est placé le second après un temps t mesurable sur l’enregistrement et enfin le point C après un temps t’ (toujours après le point A). En tenant compte de la vitesse du son, la distance de T à A est égale à un nombre R, qu’il s’agit de déterminer, celle de T à B à R + rr correspond à la distance parcourue par le son pendant le temps t et enfin la distance de T à C égale à R + r’ où r’ correspond à la distance parcourue par le son pendant le temps t’.

Si T est connu, le cercle de centre T et de rayon R passe par A et est tangent au cercle de centre B et de rayon r ainsi qu’au cercle de centre de centre C et de rayon r’, ce qui se résume en une figure bien connue des mathématiciens de l’époque, au problème d’Apollonius, l’un des cercles étant de rayon nul :

Le cercle de centre T passe par A et est tangent aux cercles de centres B et C.

Résolution du problème

De nos jours, ce problème est résolu par la géométrie analytique et un logiciel détermine directement les coordonnées de la position de la batterie ennemie (système de localisation de l’artillerie par acoustique, SL2A). Ce système peut être couplé de nos jour avec un radar de contrebatterie (RCB), qui a cependant le défaut d’être lui-même repérable puisqu’un radar émet des ondes, contrairement au système acoustique.

En février 1915, Ferdinand Daussy, ingénieur des mines, soldat à Verdun, réalise, à partir d’un moteur de phonographe et d’un diapason entretenu électriquement, un appareil de repérage au son inscrivant sur un papier d’enregistrement le cent millième de seconde. À partir de trois postes d’observation, il parvint à situer les pièces allemandes pourtant invisibles. Les artilleurs français déclenchèrent un tir sur cet emplacement, arrêtant ainsi le feu ennemi. À cette époque, les microphones étaient reliés au système de contrôle par des fils, ce qui le rendait vulnérable. À Verdun, une attaque allemande mit fin au système de Ferdinand Daussy.

On peut également réduire ce problème à une question d’intersection de deux hyperboles mais, au temps de la Grande Guerre, le calcul se faisait graphiquement sur une carte avec un jeu de disques de divers rayons par tâtonnement sachant que la portée maximale des canons était connue.

La méthode a amélioré le repérage des batteries ennemies mais elle n’est pas toujours précise car la vitesse du son dépend de facteurs météorologiques comme la température et la vitesse du vent. De plus, l’artillerie était souvent utilisée en grand nombre simultanément ce qui rendait délicat le repérage individuel de chaque batterie.

Laissons la conclusion sur l’importance de ces recherches à Paul Painlevé, mathématicien et ministre de la guerre en 1917, dans une allocution après la victoire : les mathématiques les plus abstraites ou les plus subtiles ont participé à la solution des problèmes de repérage et au calcul des tables de tir toutes nouvelles qui ont accru de 25 pour 100 l’efficacité de l’artillerie.

Le chiliogone de Descartes

Dans ses Méditations métaphysiques, René Descartes utilise l’exemple des chiliogones, c’est-à-dire des polygones à 1000 côtés, pour montrer qu’il existe des choses faciles à concevoir sans pour autant qu’il soit possible de les représenter. Essayons de le faire dans le cas du chiliogone régulier convexe !

Les polygones réguliers convexes

Si nous nous limitons aux polygones réguliers convexes, les premiers sont le triangle équilatéral, le carré, le pentagone régulier convexe et l’hexagone régulier convexe.

Les polygones convexes réguliers de 3, 4, 5 et 6 côtés.

Le chiliogone régulier convexe

À partir de là, il est facile d’imaginer le chiliogone régulier convexe : en pratique, il est indiscernable du cercle.

Le chiliogone régulier convexe est indiscernable du cercle

Si on supprime la condition de régularité et si les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée convexe. Si la condition de convexité est supprimée et les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée … qui peut ressembler à un infâme gribouillis.

Un polygone à 20 côtés peut déjà être très embrouillé, à 1000 côtés il peut devenir un infâme gribouillis

 

 

Quels poids portent-ils ?

Sur les chemins de l’Himalaya, jusqu’à 5000 mètres d’altitude, on rencontre sans cesse des porteurs et porteuses, parfois des enfants, surmontés de charges impressionnantes. Comment évaluer leurs poids ?

Compter les canettes

L’évaluation est relativement simple pour les porteurs de caisses de bière : on compte le nombre de canettes. le poids de chacune est facile à évaluer, un peu plus d’un tiers de kilo. Vingt paquets de dix donnent un fardeau de 70 kilogrammes … à porter sur des milliers de mètres de dénivelée !

Hotte d’un colporteur de l’Himalaya. Elle pèse environ 70 kg.                             © Hervé Lehning

Evaluer des volumes et des densités

Quel poids porte cette petite fille de 13 ans rencontrée sur le chemin de son village ?

Fillette de 13 ans, surmontée d’un imposant chargement, en route pour Phortse (400 mètres plus haut).             © Hervé Lehning

Elle y transporte des feuilles, que l’on utilise pour transformer le produit des toilettes en compost. La charge correspond malgré tout aux bottes de foin ordinaires qui, pressées, pèsent environ 20 kilogrammes. Malgré le côté impressionnant de sa charge, il est peu probable que cette jeune fille transporte plus de 10 à 15 kilogrammes sur son dos. Cela reste important pour une enfant dont la croissance n’est manifestement terminée, mais reste comparable aux poids des cartables de certains de nos collégiens.

Une buse de fonte

Buse en fonte sur le chemin de Namché Bazar. © Hervé Lehning

Autrement plus impressionnante est la buse en fonte que transporte cet homme en route vers Namché Bazar. Elle est destinée à créer une conduite forcée, pour servir à une micro usine hydro électrique. Le progrès vient ici à dos d’homme. Quel est le poids de cette buse ? Il est relativement facile d’évaluer le volume de fonte. La longueur est de 2,5 mètre environ, le diamètre 30 centimètres et l’épaisseur 1 centimètre. En mètres cubes, le volume est donc égal à :

2,5 x (0,152 – 0,142) x 3,14

soit 0,018 m3. La fonte ayant une densité de 7,4 tonnes au m3, nous en déduisons un poids de 130 kilogrammes environ. Même si nous admettons une erreur de 20 % dans notre évaluation, nous aboutissons à un poids supérieur à 100 kilogrammes, ce qui est impressionnant.

Les ponts himalayens

Les ponts himalayens sont des ouvrages souples suspendus par leurs deux extrémités. L’ancrage étant essentiel, leur altitude dépend de la qualité de la roche. Les deux extrémités doivent être approximativement à la même hauteur et indéracinables.

La courbe du pont

Globalement, le pont se comporte comme une chaîne suspendue par ses deux extrémités. Autrement dit, il prend la forme d’une courbe appelée chaînette pour cette raison. Les lignes électriques hautes tensions ainsi que les câbles de téléphériques en donnent d’autres exemples. Galilée pensait qu’il s’agissait d’une parabole, sans doute parce qu’elle est presque indiscernable de l’arc de parabole de même longueur suspendu entre les mêmes points. En fait, son équation est liée à la fonction exponentielle.

Parabole (en rouge) et chaînette (en bleu) de même longueur suspendue entre les mêmes points.

Minimiser la tension

En tendant fortement les câbles soutenant le pont, il serait possible que cette courbe se confonde avec une droite. L’observation montre que ce n’est jamais le cas. Pourquoi ? Tout simplement pour réduire la tension exercée aux extrémités qui, à terme, pourrait faire céder le pont. Pour la minimiser, la forme idéale est celle utilisée pour suspendre les lignes haute tension.

Minimisation de la tension. Le rapport entre la flèche et la distance doit être égal à 1 / 3.

Pour cela, le calcul montre que la flèche doit être égale au tiers de la distance entre les points d’appui, s’ils sont à la même altitude. Bien entendu, dans la pratique, il suffit que la tension reste à un niveau raisonnable. La flèche est donc rarement aussi importante. Au départ, la descente serait d’ailleurs dangereuse ! En pratique, on dépasse rarement une flèche de l’ordre du dixième de la distance.

Stabiliser le pont

Un pont fabriqué ainsi est sujet à des mouvements de roulis et de tangages, ce qui rend sa traversée délicate dès que plusieurs utilisateurs l’empruntent. Le vent a également une influence non négligeable sur sa stabilité. Pour éviter ces inconvénients, le plus simple est de le stabiliser par des câbles exerçant une tension latérale.

Cette photographie montre les câbles tendant latéralement le pont de chaque côté. Ils sont régulièrement espacés le long de deux courbes symétriques, de forme parabolique.   © Hervé Lehning

La courbe tendant ces câbles épouse la forme d’une parabole afin que la tension exercée soit constante le long du pont. Dans les ponts himalayens, on retrouve donc simultanément deux courbes : la chaînette et la parabole.

Chaînette et parabole se trouvent dans ce pont himalayen. © Hervé Lehning

Les philosophes font-ils la cuisine ?

Un célèbre philosophe contemporain aurait affirmé : « les mathématiques ne servent à rien dans la vie quotidienne ». Pourtant, je me souviens parfaitement de ma mère me demandant : « quatre tiers de 200 grammes, ça fait combien Hervé ? ».

Des maths à la cuisine

Pourquoi cette question ? Pas pour tester ma capacités en calcul mental. Tout simplement parce que nous étions 8 à table et que ma mère utilisait une recette de cuisine donnée pour 6. Les ingrédients devaient donc être multipliés par 8/6, soit 4/3.  Vue la précision des balances, une réponse précise était 270 grammes, répondre 266,666… aurait été ridicule.

Des notions subtiles

Autrement dit, nous avons affaire ici, dans la vie quotidienne, à deux notions mathématiques subtiles : la multiplication par une fraction et la notion d’approximation. Pour répondre à la question avec toute la rigueur mathématique qu’elle exige, nous dirons donc : « certains philosophes ne font pas la cuisine ».

La forme de la tour Eiffel

Selon les écrits de Gustave Eiffel, la forme de sa tour ne doit rien au hasard, même si le résultat pourrait plaider pour un simple souci d’esthétique. Selon lui, tout a été étudié mathématiquement pour résister au vent. Plus précisément, il affirme que le moment des forces appliquées par le vent en chaque point est égal et opposé au moment du poids de la structure en ce point. Les calculs mathématiques d’Eiffel n’ayant pas été publiés, on a longtemps soupçonné les ingénieurs d’Eiffel d’avoir opéré empiriquement pour obtenir la forme de type exponentiel qu’on connaît.

La tour Eiffel vue du champ de Mars @Hervé Lehning

Reconstitution des calculs

Les calculs ont été repris en 2005 par deux mathématiciens américains, Patrick Weidman et Iosif Pinelis. En suivant les indications d’Eiffel, ils ont débouché sur une équation intégro-différentielle relativement simple … pour les spécialistes … dont la solution est bien une exponentielle.

Axes choisis par Weidman et Pinelis, f (x0) = 5 m, l’équation à résoudre est écrite en dessous.

Mais, en réalité, la tour Eiffel est composée de deux exponentielles pour tenir compte de la différence de forces du vent à la base et au sommet.

Les abeilles avaient raison et les logarithmes, tort !

Les abeilles seraient-elles mathématiciennes ? Sans doute non mais elles sont étonnantes. Le gâteau de cire qu’elles construisent pour y déposer leur miel est formé par deux couches d’alvéoles opposées par leur fond. Dès l’antiquité, on avait remarqué que les alvéoles ressemblaient à des prismes droits à base hexagonale régulière. Ce n’est qu’au XVIIIe siècle que l’on remarqua que le fond était l’assemblage de trois losanges identiques appartenant chacun à deux alvéoles opposées.

Les alvéoles des abeilles sont des prismes de base hexagonale terminés par trois losanges inclinés, un peu comme un crayon taillé.

Une mesure, une hypothèse …

En 1712, Giacomo Filippo Maraldi (1665 – 1729), un astronome de l’observatoire de Paris, mesura l’angle des losanges et trouva : 109 degrés et 28 minutes. En 1739, René-Antoine Réaumur ( 1683 – 1757) soupçonna les abeilles de construire le fond de façon à utiliser le minimum de cire possible.

Et un calcul

Samuel König

Sans lui donner l’origine de son problème, il demanda de le résoudre à Samuel König (1712 – 1757), le mathématicien allemand connu pour avoir enseigné les mathématiques à la marquise Émilie du Châtelet (1706 – 1749), traductrice de Newton en français. König traita le problème par le calcul différentiel et, en utilisant une table de logarithmes, il en déduisit la valeur de 109 degrés et 26 minutes. L’erreur des abeilles était négligeable. On s’émerveilla de cette précision.

Un naufrage

À l’époque, les marins utilisaient la même table que König pour leurs calculs. Malheureusement, il fallut un naufrage quelques années plus tard pour que l’on y découvre quelques erreurs. En 1743, Colin Mac Laurin (1698 – 1746) corrigea la valeur trouvée par König : il s’agissait bien de 109 degrés et 28 minutes. La table de logarithmes avait tort et les abeilles, raison !

 

Le chiffre de la reine Marie-Antoinette

Pour qu’elles ne puissent pas être interceptées, Marie-Antoinette chiffrait ses lettres. La méthode qu’elle utilisait était a priori excellente… mais avec une erreur majeure : elle ne chiffrait qu’une lettre sur deux.

Chiffre de Vigenère

Marie-Antoinette chiffrait ses lettres par substitution poly-alphabétique, selon la méthode décrite par Blaise de Vigenère plus précisément. Cette méthode suppose de disposer d’une table de chiffrement, si possible une par destinataire. Voici comment se présentait ces tables :

Une table de chiffrement utilisée par Marie-Antoinette. @ Archives nationales

On notera que ce tableau ne contient que 22 lettres, les lettres manquantes sont J, K, U et W, ce qui correspond à un usage venant du latin où I et J d’un côté, U et V de l’autre sont confondues. K peut être remplacé par C et W par V.

Clef de chiffrement

L’utilisation de ce tableau pour chiffrer demande une clef secrète qu’on partage avec le destinataire. Par exemple, si la clef est sel, pour chiffrer la première lettre, on utilise la ligne dont la première colonne est ST, D est alors changé en N (et N en D), E en O, etc. Pour chiffrer la seconde, on utilise la ligne dont la première colonne est EF.

Utilisation correcte

Pour chiffrer une phrase comme je vous aime, on peut construire un tableau à 10 lignes et 3 colonnes :

J E V O U S A I M E
S E L S E L S E L S
S T D E F B X Z Q O

 

Le message chiffré est donc stdefbxzqo. Si vous essayez de chiffrer une lettre ainsi, vous verrez la difficulté d’éviter les erreurs. C’est pour cela que, on ne sait quel cryptologue avait conseillé à Marie-Antoinette de ne chiffrer qu’une lettre sur deux ce qui, en fournissant des repères, simplifie grandement le chiffrement mais l’affaiblit tout aussi grandement. Nous allons voir pourquoi.

Utilisation par Marie-Antoinette

Le tableau devient ainsi :

J E V O U S A I M E
S E L S E
J O V M U B A S M T

 

Le message chiffré est maintenant jovmubasmt. On peut examiner des lettres chiffrées ainsi par Marie-Antoinette aux Archives nationales, comme la suivante :

Lettre de Marie-Antoinette au comte de Fersen où on voit qu’elle ne chiffrait qu’une lettre sur deux. @ Archives nationales

Décryptement

Le décryptement sans connaître la clef est ainsi facilité, surtout si on connaît le tableau de chiffrement. C’est ici que des talents de cruciverbiste sont utiles. En effet, on peut deviner un mot si on en connaît une lettre sur deux comme ici J-V-U-A-M, qui est transparent pour tout amateur de mots croisés. Ensuite, on sait que la première lettre de la clef transforme E en O ce qui ne se produit que pour ST, en continuant ainsi, on décrypte le message quel que soit sa longueur.

 

L’art de moyenner

Quand on veut calculer la taille moyenne des Français, le principe est simple. On mesure la taille de chaque français de plus de 18 ans (les mesurer depuis la naissance fausserait la moyenne), on fait le total de ces tailles et on divise par le nombre total de Français adultes. On trouve un nombre comme 176 cm qui est donc la taille moyenne des Français adultes. On peut recommencer avec les Françaises, on trouve 163 cm.

Pour calculer la moyenne de la taille des girafes, on ne retient que la taille des adultes. @ Hervé Lehning

La moyenne arithmétique

En mathématiques, on parle de moyenne arithmétique. Par exemple, la moyenne arithmétique des dix nombres du tableau ci-dessous est égale à leur somme 618 divisée par 10 soit 61,8.

82

71 98 64 77 39 86 69 22

10

La vitesse moyenne

Prenons l’exemple du calcul d’une vitesse moyenne sous la forme d’une petite énigme :

Deux villes A et B sont distantes de 100 km, un automobiliste effectue le trajet de A à B en une heure et le retour en deux heures. Quelle est sa vitesse moyenne ?

Comme le premier trajet s’effectue à 100 km/h de moyenne et le retour à 50 km/h, on peut être tenté de faire la moyenne arithmétique des deux nombres et répondre 75 km/h. En fait, ce résultat est faux. Un raisonnement plus correct consiste à dire que l’automobiliste a parcouru 200 km en trois heures et donc que sa vitesse moyenne a été de 200 / 3 = 67 km/h (en arrondissant). La différence est notable.

La moyenne harmonique

Cette nouvelle moyenne, adéquate pour calculer les vitesses, est appelée la moyenne harmonique. Si on considère une suite finie de n nombres a, b, etc. les moyennes arithmétique et harmonique A et B sont données par les formules :

A = (a + b + …) / n   et   1 / H = (1/a + 1/b + …) / n

Il existe toute sorte d’autres moyennes correspondantes chacune à la nature des quantités à moyenner. On ne moyenne pas de même des longueurs, des poids, des vitesses, des températures, etc.

Les messages chiffrés du Figaro en 1890

En 1890, le Figaro contenait une rubrique de correspondances personnelles dont certains messages étaient a priori incompréhensibles. Voici une partie de ceux du premier janvier :

La rubrique correspondances personnelles du Figaro, du premier janvier 1890. @ BNF

Chiffre de César

Parmi des messages écrits en style télégraphique, nous en trouvons deux, manifestement entièrement chiffrés. Dans le premier, bonne année est devenue cpoof booff. Autrement dit, il s’agit d’un simple décalage (ou chiffre de César) et le tout signifie : Bonne année d’un ami bien malheureux.

Substitution alphabétique

Le message suivant (d’indicatif LILI) est bien plus intéressant à décrypter. De prime abord, nous pouvons juste penser que le chiffre 2 représente e, du moins si la méthode de chiffrement utilisée est une substitution alphabétique car il s’agit du symbole majoritaire. Heureusement, en feuilletant le Figaro des jours suivants, nous rencontrons un grand nombre de messages sous le même indicatif LILI. Nous nous arrêtons naturellement le douze janvier sur un message à moitié chiffré, une erreur classique de chiffrement.

La rubrique correspondances personnelles du 12 janvier 1890 dans le Figaro. @BNF

Écrit en style télégraphique, le message commence par votre pensée ne me quitte pas, est tout mon bonheur, voudrais vous voir, la suite qu’on veut cacher est 32. u. 13. n2. La disposition des deux 2 nous fait penser à je t’aime si i et j sont assimilés comme ils le sont en latin. Les chiffres 1, 2 et 3 représentent donc les voyelles a, e et i, les lettres u et n représentent t et m. La méthode de chiffrement semble être de représenter chaque voyelle par son numéro d’ordre et chaque consonne par la lettre qui la suit. Pour vérifier cette hypothèse, nous revenons au message du premier janvier :

1.w. m2. qs2n32s n2t w25y c400. 100. w45e. 2us2. u. qs2t e w. o. q20t r s2w.

En le déchiffrant selon la méthode que nous venons d’exposer, on obtient une phrase en style télégraphique :

a v le premier mes veux bonn ann voud etre t pres d v n pens q rev

ce qui signifie probablement :

À vous le premier, mes vœux de bonne année. Je voudrais être tout près de vous. Ne pense qu’un rêve !

Même si une erreur a pu se glisser dans la dernière phrase, le sens des deux premières prouve que notre hypothèse est correcte. De façon étonnante, la méthode de décryptement fonctionne pour un autre message du douze janvier, celui portant l’indicatif Bleuet :

 Complètement rétabli. Rentre à Paris semaine prochaine, je serai heureux de pouvoir vous voir mercredi 4 h. Mille amitiés.

Intérêt

Au-delà des curieux, ces messages chiffrés pourront intéresser les historiens qui y verront un témoignage des rapports humains à cette époque, surtout de ceux que l’on souhaitait cacher.