Le carré Luoshu

La première référence à un carré magique est une légende chinoise associée à la rivière Luohe, un affluent du fleuve Jaune, qui eut son heure de gloire pendant le millénaire précédant notre ère, quand la ville de Luoyang, bâtie sur ses rives, était capitale de la Chine. Ses multiples versions parlent toutes d’une tortue portant d’étranges inscriptions sur son dos.

Une tortue légendaire

Pour calmer le dieu de la rivière, à chaque inondation, les habitants d’un village menacé d’être englouti lui offraient des sacrifices en vain. Cependant, ils remarquèrent qu’à chaque fois, une tortue venait sur les lieux du sacrifice et repartait. Le dieu du fleuve n’en tenait cure jusqu’à ce qu’un jour, un enfant remarqua des formes curieuses sur le dos de l’animal.

Dos de la tortue selon la légende

Dans chaque ligne, chaque colonne et chaque diagonale, le nombre était le même. Ainsi, les villageois comprirent que le dieu du fleuve demandait quinze sacrifices, et purent l’apaiser…

Les carrés magiques

Ce carré est depuis appelé « carré Luoshu » du nom de la rivière. Il a vite conquis le Moyen-Orient puis la Grèce où il était connu de Pythagore. Il est toujours utilisé comme amulette porte-bonheur et dans des exercices divinatoires. De nos jours, ces carrés où les sommes des nombres des lignes, colonnes et diagonales sont identiques sont appelés « carrés magiques », preuve de l’antique croyance. On peut de plus ajouter une contrainte, celle de n’utiliser que les premiers nombres donc ceux de 1 à 9, dans le cas d’un carré d’ordre trois, et ceux de 1 à 16 pour ceux d’ordre quatre. Avec cette dernière contrainte, il n’existe aucun carré d’ordre deux : vous pouvez disposer les nombres de 1 à 4 comme vous le voulez, le carré formé ne sera jamais magique. De ce fait, les pythagoriciens en faisaient un symbole du chaos. Aux symétries près, le carré d’ordre trois est unique, c’est le Luoshu (voir à la fin de cet article). De nos jours, les ésotériques préfèrent l’écrire de façon à faire apparaître le nombre 618 en première ligne car ce sont les premières décimales du nombre d’or. Pour eux, il devient ainsi doublement magique.

Le carré magique d’ordre 3

Carré magique d’ordre 3 faisant apparaître les décimales du nombre d’or.

Schéma de preuve

Si les cases du carré contiennent tous les nombres de 1 à 9, la somme de toutes les cases est 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, c’est-à-dire 45. Les sommes de toutes les rangées et des diagonales sont donc égales à 45 divisé par 3, soit 15. Selon leur place, les nombres participent à 4, 3 ou 2 sommes égales à 15. En partant d’un nombre initial, comme 1, nous examinons le nombre de décompositions donnant 15 en tout. Pour 1, il en existe deux : 9 + 5 et 8 + 6. En opérant ainsi, nous obtenons le tableau :

Ce tableau permet de remplir le carré.

Les rubans de Pascal

Blaise Pascal (1623 – 1662) a inventé une méthode ingénieuse pour calculer le reste d’une division (sans l’effectuer) et donc de tester la divisibilité d’un nombre par un autre, que nous nommerons n dans la suite de cet article.

Une suite de restes

Pascal considère la suite des restes des puissances de 10 par n en commençant par 0, pour n = 7, cela donne :

puissances 0 1 2 3 4 5 6 7 8 9 10 11 12 13
restes 1 3 2 6 4 5 1 3 2 6 4 5 1 3

 

En effet, le reste de 1 est 1, celui de 10 est 3, celui de 100 est 2 (puisque 100 = 14 x 7 + 2), etc. La suite des restes est périodique. Ce résultat n’est pas lié au nombre 7, il est général. Cette suite est appelée le ruban de Pascal associé au nombre 7.

Calcul du reste d’une division

A partir de ce ruban, pour calculer le reste de la division par 7 d’un nombre comme 348, on écrit les décimales de 348 dans l’ordre inverse en dessous du début du ruban :

ruban 1 3 2
nombre 8 4 3
calculs 8 12=5 6 8+5+6=5

 

On effectue d’abord les multiplications en colonnes de 1 par 8, 3 par 4 et 2 par 3. On retranche autant de fois 7 que possible, donc 12 est remplacé par 5. On additionne alors les résultats obtenus et on retranche à nouveau autant de fois 7 que possible, on trouve 5 qui est le reste de la division de 348 par 7.

Pourquoi ? Cela vient des règles de calcul sur les nombres modulo 7 (c’est-à-dire en ne gardant à chaque étape que le reste dans la division par 7). On part de 348 = 3.102 + 4.101 + 8.100. En remplaçant, les puissances de 10 par leurs restes, on obtient 348 = 3.2 + 4.3 + 8.1 mod 7. On effectue les multiplications et les additions en retranchant 7 autant de fois qu’on peut et on a montré le bien fondé de l’algorithme utilisé ainsi que sa généralité.

On peut ainsi calculer très rapidement le reste des divisions de très grands nombres, comme celui de 56 218 491 par 7.

ruban 1 3 2 6 4 5 1 3
nombre 1 9 4 8 1 2 6 5
calculs 1 27=6 8=1 48=6 4 10=3 6 15=1 0

On trouve rapidement que le reste est égal à 0 donc que 56 218 491 est divisible par 7. Le test de divisibilité par 7 est donc de même nature que le test de divisibilité par 9 : au lieu de faire la somme des chiffres, on en fait une combinaison linéaire dont les coefficients sont ceux du ruban de Pascal. Il en est de même pour tous les nombres.

Divers rubans

Pour utiliser cette technique, il est bon de disposer d’un certain nombre de rubans. Voici ceux des nombres premiers inférieurs à 20 où on s’est arrêté à la partie périodique :

 

Nb
2 1 0
3 1 1
5 1 0
7 1 3 2 6 4 5 1
11 1 10 1
13 1 10 9 12 3 4 1
17 1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1
19 1 10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1

 

On peut ainsi facilement déterminer le reste d’un nombre comme 521 365 941 dans la division par 19.

1 10 5 12 6 3 11 15 17
1 4 9 5 6 3 1 2 5
1 40=2 45=7 60=3 36=17 9 11 30=11 85=9 1+2+7+3+17+9+11+11+9=13

Le reste de 521 365 941 dans la division par 19 est donc 13.