Archives pour la catégorie Regard sur le monde

Le TVI à la Grande Ruine

Pour monter sur un sommet à 3712 mètres d’altitude, comme la Grande Ruine dans le massif de Ecrins (image mise en avant @Hervé Lehning), en partant d’un refuge situé à 3169 mètres d’altitude (le refuge Adèle Planchard), il est nécessaire de passer par toutes les altitudes intermédiaires.

Quelque soit la voie prise pour monter au sommet, nous passerons au moins une fois à chaque altitude entre le point de départ et celui d’arrivée. La photo représente un sommet proche de l’Everest, dans l’Himalaya. @Hervé Lehning

Le Théorème des Valeurs Intermédiaires (ou TVI)

Ce résultat de bon sens correspond à un théorème de mathématiques concernant les fonctions continues sur un intervalle réel à valeurs réelles. La plupart des fonctions qu’on rencontre en mathématiques sont continues sauf, éventuellement, en quelques points exceptionnels, appelés pour cela points de discontinuité. Physiquement, dans la pratique, ces points correspondent souvent à des sauts.

Exemple de discontinuité : en un point x, les limites à droite et à gauche  diffèrent de la valeur en x. Dans ce cas, la fonction présente un saut en x.

Le théorème des valeurs intermédiaires peut s’illustrer ainsi :

Si f est une fonction continue sur [a, b] et m est une valeur entre f (a) et f (b), il existe x tel que f (x) = m.
Ce théorème est donc un théorème existentiel: il affirme l’existence d’un nombre sans permettre pour autant de le calculer.

Utilité

L’utilité pratique  essentielle de ce théorème est de montrer l’existence de racines d’équations : si une fonction continue change de signe entre deux points a et b, elle s’annule entre ces deux points.

On en déduit, par exemple, qu’une fonction continue sur un segment [a, b] à valeurs dans lui-même admet au moins un point fixe, c’est-à-dire un point x tel que f (x) = x. Pour le démontrer, il suffit de remarquer que la fonction g définie par (x) = f  (x)  –  x change de signe entre a et b.

Ombres, couleurs et lumières dans les arts graphiques

Que la lumière soit, et la lumière  fut.

La Bible, Genèse 1

Ce n’est pas un hasard si l’auteur du premier chapitre de la Genèse a placé la création de la lumière en tête, car elle est la condition de toute vie mais aussi de toute perception, des formes comme des couleurs. Elle est à la source des ombres et son étude établit des ponts entre mathématiques et art.

Sous des lumières différentes, le même paysage donne des impressions différentes, comme le montrent ces deux photographies de la rade de Toulon sous les nuages. La différence essentielle est que, dans la seconde photographie, un rayon de lumière vient illuminer les bâtiments en premier plan et créer des ombres. Les couleurs en sont également modifiées. Certains bâtiments passent du rose au jaune ou même au noir !

Vue de la rade de Toulon sous les nuages, avec ou sans rayon de soleil. © Hervé Lehning

Sans lumière, pas de couleurs

La couleur n’existe pas en elle-même, elle correspond à notre perception des ondes lumineuses qui, mathématiquement parlant, sont analogues aux ondes acoustiques. L’ensemble des longueurs d’onde de la lumière visible constitue le spectre de la lumière. Il s’étend du violet, dont la longueur d’onde est de 400 nanomètres, au rouge, dont la longueur d’onde est de 700 nanomètres. Au-delà de ces longueurs d’onde, la lumière devient invisible et on entre dans le domaine de l’ultraviolet, dont les rayons sont responsables du bronzage de la peau et dans l’infrarouge ou rayonnement calorique. On retrouve ces diverses couleurs dans les arcs-en-ciel.

Les différentes couleurs du spectre chromatique, du violet au rouge et de bas en haut, se retrouvent dans cet arc-en-ciel apparaissant au-dessus des chutes du Zambèze © Hervé Lehning

La même théorie mathématique, inventée par Joseph Fourier (1768 – 1830), permet de décomposer les ondes sonores et les ondes lumineuses en sommes d’ondes élémentaires, dites harmoniques en acoustique et ondes monochromatiques en optique. Dans ce dernier cas, celles qui correspondent au spectre visible sont appelées couleurs pures.

Les couleurs telles que nous les voyons dépendent de trois types de récepteurs compris dans nos yeux. Dans chaque onde, chacun capte la part à laquelle il est sensible, notre cerveau réalise la synthèse. Le système RVB, utilisé en photographie, imite ce principe naturel : on ajoute du rouge, du vert et du bleu pour obtenir toutes les couleurs. On retrouve le principe de la décomposition précédente, en la limitant à trois couleurs pures. Le système CMJN, utilisé en imprimerie, est fondé sur un principe soustractif mais aboutit à un résultat identique.

Sans lumière, pas d’ombres

De même, la lumière crée l’ombre. Le photographe, le dessinateur comme le peintre jouent avec cette propriété. L’ombre accentue les formes des objets ou en crée d’étranges.

La lumière, venant de l’autre côté de l’opéra de Sydney, crée une ombre qui souligne les formes. © Hervé Lehning

Les dessins d’architecture comportent des ombres portées d’un objet sur un autre, ce qui peut donner des courbes étonnantes. On peut les photographier ou les prévoir d’avance ce qui autrefois prêtait à des constructions de géométrie descriptive intéressantes. Elles sont aujourd’hui réalisées automatiquement à travers des logiciels de géométrie.

Ombres portées sur les toits de la Charité à Marseille. © Hervé Lehning

Il arrive de plus que les ombres prennent des formes étranges ne semblant plus rien à voir avec l’original, comme sur la photographie suivante qui constitue une anamorphose d’un taureau chargeant un toréador.

Ombres portées sur le sol d’un taureau chargeant un toréador dans les arènes d’Arles. © Hervé Lehning

Le clair-obscur

La lumière permet enfin de mettre l’accent sur un personnage et de le modeler, comme sur la photographie suivante où il met en valeur le mouvement des bras du personnage. Certains studios sont réputés pour ce type de photographies qui sculptent les personnages.

Le mouvement des bras de la femme sur cette photographie est mis en valeur par le jeu de lumière et d’ombre. © Hervé Lehning

Avant que cette technique ne soit exploitée en photographie, elle a été particulièrement utilisée par des peintres comme Georges de la Tour (1593 – 1652)  à l’époque classique. Dans le nouveau-né, l’accent est mis sur celui-ci grâce au rayon de lumière envoyé par la bougie cachée par la main de la femme à gauche.

Le nouveau-né par Georges de la Tour

De même, la lumière est au centre de la révolution impressionniste. D’une manière presque mathématique quand on pense à l’analyse de Fourier, les impressionnistes n’utilisent que des couleurs primaires et c’est leur reconstitution dans l’œil, ou plutôt le cerveau, du spectateur qui crée l’impression générale. L’aboutissement de ce courant se trouve sans doute dans les œuvres de Vincent Van Gogh (1853 – 1890).

Terrasse de café le soir par Vincent Van Gogh.

La lumière et ses reflets

C’est de même la lumière qui crée les reflets sur l’eau comme dans cette photographie prise un jour d’orage où les jeux de lumière sont visibles. On y voit également son influence sur les couleurs. La scène originale pouvait ainsi être vue de plusieurs manières.

Le grand canal du parc de Sceaux avant l’orage. © Hervé Lehning

Nous retrouvons ces effets dans nombres d’œuvres figuratives mais aussi dans les fameux noir-lumière de Pierre Soulages (né en 1919).

Tableau de Pierre Soulages.

Conclusion

Comme nous l’avons vu, seule la lumière donne un sens aux œuvres plastiques, que ce soit en photographie, en dessin ou en peinture. Les mathématiques ne sont bien entendu pas nécessaires pour les concevoir mais elles les structurent que ce soit dans l’analyse spectrale de la lumière ou dans ses jeux. Les logiciels de dessin utilisent d’ailleurs un grand nombre de techniques mathématiques, même si elles restent invisibles à l’utilisateur.

L’art du défilement, Vauban et Gaspard Monge

L’un des problèmes pour construire des fortifications à l’époque de Vauban (1633 – 1707) était  :

Comment défiler une fortification des tirs de l’ennemi ?

Le verbe « défiler » doit s’entendre ici au sens commun de « se défiler ». Comment cacher l’intérieur d’un ouvrage aux vues et aux tirs de l’agresseur ? Bien entendu, il suffit de bâtir partout des remparts assez hauts. L’ennui est que la hauteur fragilise les remparts. Le tout doit rester équilibré. Sur le terrain, les bons ingénieurs comme Vauban savaient défiler leurs ouvrages mais comment s’y prendre à partir d’un simple plan côté ?

La géométrie descriptive

Gaspard Monge (1746 – 1818) inventa la géométrie descriptive pour résoudre ce problème. De façon générale, elle permettait d’étudier certains objets de l’espace comme l’intersection de deux tores dans l’épure qui suit. Le résultat pouvait être très esthétique, comme on peut le voir dans ce cas.

Dessin se trouvant dans Objets mathématiques, Institut Henri Poincaré, livre que nous recommandons fortement.

Les déblais et remblais

Le même Monge, sans doute également motivé par la construction de fortifications, publia un Mémoire sur la théorie des déblais et des remblais où il se proposait de résoudre un problème très concret : comment déplacer des tas de sable vers un certain nombre de destinations de la manière la plus économique possible ?

Dessin explicatif du problème dans le mémoire de Monge.

Ici il s’agit de déblayer la zone de gauche pour remblayer celle de droite (ou l’inverse puisque les deux problèmes sont équivalents). Dans son mémoire, Monge étudie ce problème mais ne le résout pas dans sa généralité. Voir l’article d’Étienne Ghys dans Image des mathématiques.

Le transport optimal

Ce problème se généralise en problème du transport optimal : comment un fournisseur peut-il livrer un certain nombre de points de vente de façon à minimiser ses coûts ? Le problème de Monge a ainsi été redécouvert par Léonid Kantorovitch (1912 – 1986) qui obtint le prix Nobel d’économie en 1975 pour ses avancées sur la question en ouvrant un nouveau domaine, celui de la programmation linéaire. Plus récemment, Cédric Villani (né en 1973) a obtenu la médaille Fields en revisitant le problème du transport optimal en le rapprochant du problème de la diffusion des gaz. Cette capacité de rapprochement entre des domaines a priori différents est un marqueur des grands mathématiciens.

 

Une astroïde dans un autobus

La notion d’enveloppe de droites recouvre deux notions en général équivalentes. D’un côté, il s’agit d’une courbe séparant deux domaines entre eux, de l’autre une courbe tangente à toutes les droites. La seconde se prête mieux au calcul.

Exemple d’une porte d’autobus

Prenons un exemple concret, celui d’une porte d’autobus coulissante à deux battants s’ouvrant selon le schéma :

Porte d’autobus à deux battants se repliant. Au sol, on obtient deux segments de droite. Celui de gauche pivote pour décrire un quart de disque. Celui de droite est plus intéressant à étudier.

La projection sur le sol de la porte de droite (sur la figure) est un segment qui définit une droite coupant deux droites perpendiculaires selon un segment AB de longueur constante (celle de la porte entière).

La projection de la porte sur le sol de l’autobus est constituée des deux segments égaux AI et IO. Comme IO = IB, le segment AB est de longueur constante.

Apparition d’une enveloppe

Il est facile de tracer un grand nombre de segments AB en faisant varier l’angle t de 0 à 90° on voit alors apparaître une courbe en négatif : leur enveloppe.

Les segments AB restent tangents à une même courbe. Cette courbe est leur enveloppe.

Si on fait varier l’angle t de 0 à 360°, on obtient une courbe en forme d’astre, appelée pour cela astroïde.

L’astroïde en entier.

Point de Monge

Gaspard Monge (1746 – 1818), l’un des créateurs de l’école polytechnique et de l’école normale supérieure où il a ensuite enseigné a trouvé un moyen de décrire l’enveloppe d’une famille de droites dépendant d’un paramètre D (t) comme le lieu d’un point mobile, appelé depuis point de Monge en son hommage, ou simplement point caractéristique de D (t). Il se définit comme la limite du point d’intersection de  D (t) et D (t + dt) quand dt tend vers zéro, ce qui permet son calcul à travers la notion de dérivée : le point de Monge est à l’intersection de  D (t) et  D’ (t) qui s’obtient en dérivant l’équation de  D (t) par rapport à  t.

Pour les férus de calculs, si a est le longueur de la porte, l’équation de D (t) est  x sin t + y cos t = a cos t sin t donc les coordonnées du point de Monge est solution du système :

On en déduit ses coordonnées :

ce qui permet de tracer l’enveloppe de la famille de droites D.

Jean-Henri Fabre, un précurseur

Jean-Henri Fabre est connu pour son observation des insectes. Excellent vulgarisateur, il est de ceux qui savent communiquer leurs passions. Les mathématiques en font partie.

Jean-Henri Fabre

Jean-Henri Fabre (1823 – 1915)

Bien que titulaire d’une licence de mathématiques, d’un doctorat en sciences naturelles et de plusieurs autres diplômes, Jean-Henri Fabre est un autodidacte comme il le rappelle lui-même :

Apprendre sous la direction d’un maître m’a été refusé. J’aurais tort de m’en plaindre. L’étude solitaire a sa valeur ; elle ne vous coule pas dans un moule officiel, elle vous laisse votre pleine originalité. Le fruit sauvage, s’il arrive à maturité, a une autre saveur que le produit de serre chaude ; il laisse aux lèvres qui savent l’apprécier un mélange d’amertume et de douceur dont le mérite s’accroît par le contraste.

Son côté autodidacte le rend attachant pour certains et agaçant pour d’autres. Quelques modernes lui reprochent aussi de ne pas avoir épousé les thèses de Darwin qui, en revanche, reconnaissait en lui un observateur incomparable. Il s’explique lui-même dans une de ses lettres à Darwin :

Vous vous étonnez de mon peu de goût pour les théories, si séduisantes qu’elles soient. Ce travers d’esprit, si c’en est un, tient un peu à mes longues études mathématiques qui m’ont habitué à ne reconnaître la vérité qu’à la lueur d’un irrésistible faisceau de lumière. Ne jurant par aucun maître, libre d’idées préconçues, peu enclin aux séductions des théories, je cherche avec passion la vérité, près à l’admettre quelle qu’elle soit et de quelque fait qu’elle vienne. Et comme moyen de recherche, je ne connais qu’une chose : l’expérience.

Par ailleurs, Darwin l’avait chargé d’expériences sur les insectes retournant à leurs nids. Les résultats se trouvent dans l’œuvre de Fabre. De façon générale, on trouvera la plupart des écrits de Fabre sur internet.

Fabre créationniste ?

Parmi les critiques modernes faites à Jean-Henri Fabre, certains le stigmatisent comme créationniste car il ne croyait pas à la théorie de Darwin, qu’il comparait à celle de la génération spontanée. À la défense de Fabre, il faut noter que la théorie originelle de Darwin n’était pas celle qui porte son nom aujourd’hui. Il s’agissait plutôt d’une transposition de la sélection des espèces domestiques, pratiquée depuis longtemps par les éleveurs, en une sélection naturelle sous l’effet de modifications du milieu. Autrement dit, il lui manquait l’explication qui viendra avec la découverte des gênes, par Gregor Mendel au début du XXe siècle. La théorie de l’évolution telle que nous la connaissons est postérieure de vingt ans à la mort de Fabre ! Comment peut-on lui reprocher de ne pas l’avoir reconnue ?

Mais l’essentiel n’est pas là, il est dans deux choses, sans parler de l’inélégance d’attaquer les morts, qui ne peuvent se défendre. Premièrement, il faut savoir ne pas se tromper d’adversaires. Les obscurantistes que sont les créationnistes ne sont pas les disciples de Jean-Henri Fabre. Ils sont dans des religions qui refusent la science, et malheureusement pas la violence. Deuxièmement, de Jean-Henri Fabre retenons plutôt l’exceptionnel talent de vulgarisateur. Pour finir sur une note poétique et liée à la question de l’évolution, voici l’un de ses commentaires sur la parade nuptiale des scorpions languedociens : La colombe a, dit-on, inventé le baiser. Je lui connais un précurseur : c’est le scorpion.

Parade amoureuse de scorpions languedociens. Dans un cas sur deux au moins, le mâle (à droite) finira dévoré par la femelle (à gauche), ce qui atténue l’impression romantique donnée par Fabre.

Jean-Henri Fabre a réussi à me faire regarder les scorpions autrement, c’est pourquoi je me souviens de cette remarque. Aujourd’hui, elle me fait m’interroger : selon la théorie créationniste, parler de précurseur d’une espèce a-t-il un sens ?

Descriptions et mathématiques chez Fabre

Dans ses souvenirs entomologiques, Jean-Henri Fabre dépeint les mœurs des insectes de manière vivante, en les ramenant souvent aux nôtres. Il décrit ainsi le carabe doré en nous emmenant d’abord visiter les abattoirs de Chicago pour comparer ensuite leur efficacité à celles des carabes dont on saisit mieux ainsi la férocité comme la voracité.

Le carabe doré, qui sera l’occasion d’une digression sur les mœurs humaines pour Jean-Henri Fabre.

Il conclut alors sur nos origines et notre avenir, avec l’abolition de l’esclavage et l’instruction des femmes, les deux voies du progrès moral selon lui. Cette façon de généraliser sera parfois critiquée plus tard, comme peu scientifique. Il est vrai que, par moments, Fabre concluait un peu vite. Par exemple, voici comment il décrit la toile d’une araignée, l’épeire :

Nous reconnaîtrons d’abord que les rayons sont équidistants ; ils forment de l’un à l’autre des angles sensiblement égaux […] les divers tours de spire […] avec les deux rayons qui les limitent, forment d’un côté un angle obtus et de l’autre un angle aigu […] d’un secteur à l’autre, ces mêmes angles, l’obtus comme l’aigu, ne changent pas de valeur, autant que peuvent en juger les scrupules du regard seul.

Fabre reconnaît alors une propriété caractéristique de la spirale logarithmique et en conclut que la toile de l’épeire épouse cette forme, ce qui est rapide surtout quand la mesure a été faite à l’œil. Ceci dit, cela n’enlève rien à la qualité de son travail, et il n’en reste pas moins que, du fait de sa construction, la toile prend une forme de spirale.

Scarabée sacré en train de confectionner une boule.

De même, c’est de manière très mathématique qu’il explique la forme de poire que le scarabée sacré donne à la bouse dans laquelle il dépose son œuf : une sphère pour minimiser la surface externe afin de réduire la dessiccation, qui rendrait la bouse immangeable pour la larve, coiffée d’une sorte de cylindre contenant l’œuf, qui se trouve ainsi dans un endroit plus aéré.

 

Les lois de Mendel et le principe de Hardy

Gregor Mendel (1822 – 1884) est connu pour avoir posé les premières lois de la génétique. Elles sont de nature si mathématique que Godfrey Hardy, le grand mathématicien britannique du début XXe siècle, connu pour sa critique des mathématiques appliquées, les a prolongées. Imaginons qu’une fleur vienne en deux couleurs : blanche et noire, jamais grise ou autre et que ces deux variétés puissent s’hybrider, c’est-à-dire se mélanger. Imaginons que deux parents à fleurs blanches donnent toujours des enfants à fleurs blanches, alors que les parents à fleurs noires peuvent donner des blanches comme des noires.

Né Johann Mendel en 1822, Mendel prendra le prénom de Gregor à son entrée au monastère de Brunn (Tchéquie), en Autriche à l’époque. Il y trouva un milieu intellectuel stimulant et put y installer un jardin expérimental, où il fit ses recherches sur l’hybridation. En 1866, il devint supérieur de son couvent, ce qui mit fin à ses recherches en botanique. Il se consacra alors à l’administration du monastère ainsi qu’à des recherches en météorologie, pour lesquelles il fut reconnu par ses contemporains … davantage que pour ses apports à la génétique.

La mathématique de l’hybridation

Gregor Mendel a étudié ces lois de l’hybridation en pollinisant artificiellement des pois, qui se présentent sous deux formes facilement discernables. Nous ne décrirons pas ses expériences en détail. Son premier résultat est d’ordre statistique. En croisant une fleur noire et une fleur blanche, à la première génération, on obtient des fleurs blanches et, à la seconde, trois quarts de fleurs blanches et un quart de fleurs noires.

Deux premières générations d’un croisement blanche / noire.

Pour le mathématicien, une explication logique est de penser que le gène de la couleur des fleurs se divise en deux moitiés, ses deux allèles : blanc et noir. A priori, il existe donc quatre combinaisons possibles de ces deux allèles : blanc / blanc, blanc / noir, noir / blanc et noir / noir. Cette propriété est cachée car seuls les porteurs du gène blanc / blanc ont des fleurs blanches, tous les autres ont des fleurs noires. C’est pourquoi on parle de caractère dominant pour la couleur noire, et de caractère récessif pour la couleur blanche. Cette domination est cependant très relative car les combinaisons se faisant de façon équiprobable, à la seconde génération, nous trouvons une fois sur quatre la combinaison blanc / blanc, donc des fleurs blanches.

Cette théorie de Mendel ne fut pas comprise en son temps. Les biologistes pensaient que les caractères dominants devaient forcément augmenter dans la population, ce que les calculs précédents nient. Plus étrangement encore, on ne vit pas immédiatement le lien avec la théorie de l’évolution de Darwin, pourtant contemporaine de celle de Mendel.

Le principe de Hardy

À l’opposé de Mendel, qui était prêtre, Godfrey Hardy était un athée convaincu. Son athéisme comprenait cependant une étrange part d’autodérision, si on en croît l’anecdote suivante. La peur d’un naufrage lui fit écrire à un collègue pour lui annoncer qu’il avait démontré l’hypothèse de Riemann. Il aurait ensuite justifié son envoi en disant que Dieu, qu’il tenait pour son ennemi intime, n’allait pas le laisser mourir et laisser croire ainsi qu’un tel impie avait réussi à démontrer cette conjecture, encore ouverte de nos jours. Il est tout aussi étrange qu’un mathématicien pur aussi convaincu ait publié un article de biologie. Il le serait encore davantage si, un jour, il était plus connu pour son apport à la génétique que pour ses théorèmes mathématiques. Le moteur de recherche Google laisse penser que ce jour viendra puisque « théorème Hardy » donne 56 700 résultats alors que « principe Hardy » en donne 4 450 000. Godfrey Hardy y verrait sans doute une revanche de son ennemi.

Si les mathématiques appliquées ont pu un jour être vues comme « impures » par certains mathématiciens « purs », ce fut le cas de Godfrey Hardy. On s’étonnera alors de voir son nom mêlé à une question de biologie. C’est pourquoi il s’excusa presque de s’immiscer dans ce domaine. En 1908, au cours d’un dîner, on lui demanda s’il était possible de déterminer mathématiquement la proportion d’allèles dominants permettant l’évolution dans une population. Hardy étant un mathématicien pur, sa réponse réclama quelques hypothèses. Tout d’abord, la population devait être de grande taille, sans migration, estimée infinie, les individus s’y croiseraient aléatoirement mais les générations seraient séparées. Enfin, il n’y aurait ni mutation, ni sélection. Tout ceci assure la rigueur du raisonnement suivant.

Considérons un gène à deux allèles A et a possédant les fréquences p et q = 1 – p  dans une certaine génération. Quelles sont les fréquences à la génération suivante ?

Pour le déterminer, comptons d’abord les fréquences des diverses combinaisons à la génération suivante : AA, Aa et aa. Il s’agit d’une question élémentaire de probabilité. Pour qu’un individu soit AA, il doit avoir reçu l’allèle A de ses deux parents, supposés aléatoires d’après l’hypothèse de Hardy. La fréquence de chacun étant égale à p, la probabilité est égale à p2. De même, celle de aa est q2. Pour Aa, deux cas sont possibles puisque cela peut provenir d’un A de la mère et d’un a du père, comme du contraire. On obtient donc 2 pq.

Si la population totale de cette nouvelle génération est égale à N, le nombre d’allèles y est égal à 2N. L’allèle A se trouve deux fois dans AA et une fois dans Aa, son nombre est donc égal à 2 p2 N + 2 pq N. Sa fréquence est ainsi égale à p2 + pq = p (p + q) = p puisque p + q = 1. Il en est de même de l’allèle a. Autrement dit, sous les hypothèses énoncées plus haut, la fréquence des allèles ne se modifie pas d’une génération à l’autre.

Ainsi, les relations de dominance entre allèles n’influent pas sur leurs fréquences. Autrement dit, l’évolution est impossible sous les hypothèses de Hardy … il faut tenir compte des mutations.

 

La spirale logarithmique, une courbe zoologique ?

La même courbe se retrouve-t-elle dans les galaxies, certains mollusques et les toiles d’araignées ? Enquête sur la spirale logarithmique.

La spirale d’Archimède

Imaginez ! Une droite tourne à vitesse angulaire constante autour d’un point O. Si, partant de O, un point M parcourt cette droite à vitesse constante, on obtient une spirale d’Archimède. On démontre facilement que les spires y sont régulièrement espacées.

Spirale d’Archimède. Elle est engendrée par un point mobile M partant d’un point O, à vitesse constante sur une droite tournant à vitesse angulaire constante autour de O.

La spirale logarithmique

Si, toujours partant de O, le point M parcourt la droite à une vitesse proportionnelle à la longueur OM, il dessine une autre courbe, appelée spirale logarithmique depuis Pierre Varignon (1654 – 1722) mais étudiée auparavant par René Descartes (1596 – 1650) avant d’être choisie par Jacques Bernoulli (1654 – 1705) pour orner sa tombe. Malheureusement, le sculpteur ignorait cette courbe et grava une spirale d’Archimède.

 

Spirale logarithmique. Elle est engendrée par un point mobile M partant d’un point O, à vitesse proportionnelle à OM sur une droite tournant à vitesse angulaire constante autour de O.

Au lieu d’être régulièrement espacées, les spires suivent une progression géométrique de raison constante. Autre propriété de la spirale : elle coupe le rayon OM suivant un angle constant.

Inscription sur la tombe de Jacques Bernoulli, avec la spirale en bas.
Sur cet agrandissement, on voit que le sculpteur a gravé une spirale d’Archimède et non une spirale logarithmique. L’inscription latine « eadem mutata resurgo » signifie « déplacée, je réapparais à l’identique ».

Le développement du nautile

Le nautile est un mollusque marin dont la coquille est en forme de spirale. L’espace entre les spires étant triplé à chaque enroulement, elle évoque une spirale logarithmique. Pour examiner si cette forme est fortuite ou non, il est nécessaire d’en comprendre la provenance.

Coupe d’un nautile faisant apparaître une forme de spirale logarithmique.

La coquille du nautile est divisée en chambres closes, l’animal n’occupant que la dernière. Les autres sont remplies d’un mélange de liquide et de gaz, toutes communiquent entre elles au moyen d’un siphon.

Nautile vivant. L’animal n’occupe que la dernière chambre. Il se déplace d’avant en arrière en expulsant de l’eau du côté de sa bouche.

Ces chambres correspondent à l’évolution progressive du mollusque. Quand il grossit, ne pouvant agrandir la chambre où il se trouve, il en crée une autre dans son prolongement, un peu plus grosse mais semblable.

Pour montrer que cette idée mène effectivement à une spirale logarithmique, prenons comme modèle de la coquille une suite de triangles rectangles d’angle au sommet constant égal à 30°. Le rapport entre un triangle et son suivant est de 115 % (l’inverse du cosinus de 30° soit 2  divisé par racine de 3 pour être précis), ce qui correspond bien à une spirale logarithmique. L’idée correspond à un accroissement progressif de la taille de l’animal. Il n’est pas besoin d’imaginer de plans compliqués inscrits dans les gènes du nautile pour cela, juste une façon de croître.

Suite de triangles rectangles formant une (approximation de) spirale logarithmique.

La spirale logarithmique se retrouve pour les mêmes raisons dans d’autres animaux, comme la planorbe, un escargot marin très utilisé dans les aquariums car il se nourrit d’algues et de plantes à la limite du pourrissement.

Une coquille de planorbe en forme de spirale logarithmique.

Les toiles d’araignées

La toile d’araignée est avant tout un piège destiné à attraper des insectes. Certaines espèces tissent des toiles où il est bien difficile de reconnaître la moindre régularité.

Il n’est pas facile de reconnaître la moindre courbe mathématique dans cette toile d’araignée. En revanche, sans le soleil en contre jour, il est difficile de la détecter.

Les espèces les plus communes en France, les épeires, fabriquent cependant des toiles en forme de spirales. Après avoir bâti un cadre entre quelques branches, l’araignée tisse un réseau régulier de segments rectilignes partant tous d’un même point. Un fois ce travail fini, elle forme une spirale en les reliant. Le célèbre entomologiste Jean-Henri Fabre (1823 – 1915) a voulu y reconnaître une spirale logarithmique, tout en remarquant que l’action de la pesanteur transformait chaque segment en chaînette, la forme que prend naturellement un fil pesant comme les câbles électriques ou les chaînes que l’on porte autour du cou.

Cette toile d’épeire laisse plus penser à une spirale d’Archimède qu’à une spirale logarithmique. On y remarque également les segments transformés en chaînette sous l’effet de la pesanteur.

Sornettes sur la planète

Les scientifiques essayent d’expliquer le monde dans lequel ils vivent, en utilisant du mieux qu’ils le peuvent leurs connaissances, fondées sur l’observation. Cela n’a pas été toujours sans difficultés, erreurs et tâtonnements en fonction des savoirs du moment. Ainsi en a-t-il été de la forme de la Terre ou de sa position et de son mouvement dans le système Solaire.

Le goût des métaphores

Aux époques où l’érudition, et le savoir en général, était, dans chaque pays, détenu par les autorités religieuses, les débats se sont souvent enlisés dans des joutes stériles entre rationnel et irrationnel. Les religions se sont, en général, construites sur des écrits d’époques reculées ou l’emploi de métaphores était courant. Ainsi l’affirmation que l’on trouve au chapitre 5 de l’évangile de Matthieu « vous êtes le sel de la Terre » n’indique pas que les disciples de Jésus étaient faits en sel et non en chair et en os ! Il en est de même des quatre coins de la Terre !

Le géocentrisme fait de la résistance

Représentation géocentrique de l’univers. La Bible le justifie par un court verset du livre de Josué (10-13) où le soelil s’arrête pour permettre la victoire d’Israël.

Ces époques lointaines devraient être révolues car si la fabrication du savoir est entre les mains de scientifiques de plus en plus performants, la connaissance que l’on a de ce savoir est maintenant l’affaire de chacun, de sa propre culture et de son accès à l’information. Quelques cas resteront cependant irréductibles : en 1999, année de l’éclipse totale de Soleil en France, j’ai été pris à parti un jour dans un café, par un consommateur qui croyait encore et doit croire toujours que le Soleil tourne autour de la Terre. Mais, hélas, la crédulité des uns fait le bonheur des autres.

La Terre est plate !

Les peuples de marins peuvent difficilement ignorer que la Terre est ronde. Même par ciel dégagé, les bateaux disparaissent graduellement derrière l’horizon. Ceci ne s’expliquerait pas si la Terre était plate. En revanche, si elle est sphérique, c’est logique. De nos jours, nous disposons d’une preuve qui semble incontournable : les photographies prises de l’espace.

 

Photographie de la Terre prise de l’espace.

Pour certains, cela prouve simplement l’existence d’un complot international pour faire croire que la Terre est ronde ! L’obscurantisme a toujours fait recette à travers les siècles. D’autres sont des personnes cultivant un sens de l’humour atypique. Ainsi, on peut lire sur internet, plaisanterie ou délire ?

La Terre est plate, elle a la forme d’un disque avec, au centre, le Pôle Nord et les continents groupés autour de lui sauf l’Antarctique qui correspond en fait à la circonférence du disque. Personne n’est jamais tombé du disque car personne n’a jamais pu traverser l’Antarctique…

La Terre plate avec le pôle nord en son centre et le pôle sud comme montagne frontière empêchant les océans de se déverser à l’extérieur.

Les expériences d’un ingénieur anglais

Au XIXe siècle, un ingénieur anglais et original, Samuel Rowbotham (1816 – 1864) décida de réaliser des expériences pour décider si la Terre était ronde ou plate. L’idée était de vérifier, en utilisant un télescope, si une rivière, la Bedford, en l’occurrence s’incurvait ou pas. Si la Terre est bien ronde, on ne peut voir un bateau plat sur une rivière à plus de cinq kilomètres… or Rowbotham réussit à en voir un à plus de dix kilomètres ! Preuve que la Terre est plate ? Non, sans doute mais l’expérience est troublante… En fait, elle s’explique par la réfraction de la lumière, le phénomène qui explique les mirages dans le désert. Même si notre ingénieur était animé d’un esprit malicieux, sa démarche était sans contexte de nature scientifique… et son expérience ne fait que raffermir la théorie selon laquelle la Terre est ronde.

La Terre est creuse !

L’existence de vastes cavernes souterraines est une évidence. Tous les spéléologues peuvent en témoigner. Les théories selon lesquelles certaines seraient occupées par des animaux fantastiques ou des civilisations intra-terrestres sont plus hasardeuses. C’est parfait quand elles ne sont que l’occasion d’œuvres littéraires fantastiques, comme chez Jules Verne et son Voyage au centre de la Terre et chez Edgar Jacobs et L’énigme de l’Atlantide.

C’est beaucoup plus ennuyeux quand certains commencent à croire à une Terre réellement creuse et habitée à l’intérieur. Au XVIIe siècle, l’astronome Edmund Halley, celui qui prédit correctement le retour de la comète qui depuis porte son nom, a envisagé une Terre creuse faite de plusieurs coquilles séparées par des atmosphères. Son but était d’expliquer des anomalies dans le champ magnétique. L’hypothèse d’une atmosphère lumineuse à l’intérieur de la Terre expliquait de plus les aurores boréales en s’échappant vers l’extérieur… d’où l’hypothèse d’entrées au niveau des pôles. Halley alla jusqu’à émettre l’hypothèse que ces trois mondes intérieurs pouvaient être habités.

Modèle de Terre creuse.

Cette hypothèse n’a pas convaincu ses collègues scientifiques de l’époque… mais plaît davantage à toutes sortes d’ésotériques modernes. Certains voient même un soleil intérieur et des habitants vivants dans un monde concave, donc les pieds en l’air, ce miracle ayant lieu grâce à la force centrifuge. Bien entendu, la physique nous apprend que c’est impossible !

L’annulation du champ magnétique

Le champ magnétique terrestre s’inverse avec une période fluctuant entre quelques milliers et quelques millions d’années, c’est-à-dire que le pôle nord magnétique est parfois au pôle nord géographique, parfois au pôle sud. La polarité des roches magmatiques, qui dépend du champ magnétique à l’époque de leur solidification, montre que celui-ci s’est inversé plusieurs fois. Que se passe-t-il entre ces deux phases ? Si un champ passe de la valeur –1 à la valeur +1 de manière continue, il semble clair qu’il doit passer par 0 entre les deux. Quand le champ est annulé, le pire devient probable sinon certain, car le magnétisme terrestre est une protection contre les bombardements cosmiques ! On ne peut cependant pas attribuer les principales extinctions de masse (celle du Permien, celle des Dinosaures ou celle des Mammouths) à une inversion du champ magnétique terrestre, comme certains l’ont proposé, car les dates ne correspondent pas ! De plus, un champ continu sur une sphère peut s’inverser sans jamais s’annuler. Il s’agit d’un résultat mathématique. En revanche, il est exact qu’une valeur réelle continue ne peut changer de signe sans s’annuler. Le danger de l’annulation du champ magnétique terrestre est un mythe.

La Terre, être vivant !

Le souffle de Gaïa par Josephine Wall.

1979, un chimiste, James Lovelock, puisant dans la mythologie, assimila la Terre à un organisme vivant, qu’il nomma Gaïa, du nom de la déesse grecque qui personnifie notre planète. En fait, son idée personnelle n’était pas aussi radicale. Il voyait plutôt l’atmosphère terrestre comme un système autorégulé, pas comme un être vivant. Malheureusement, comme on pouvait s’y attendre, cette idée a suscité un bon nombre de dérives mystiques aussi dangereuses qu’inconséquentes. Nous voyons les dangers d’une déification de notre planète ! Respecter notre environnement est une chose, sacrifier l’humanité à une soi-disant déesse en est une autre.

Si le fragile vaisseau Terre doit être préservé, c’est essentiellement pour offrir à l’humanité qui y vit la meilleure chance de se développer.

L’os d’Ishango

Au musée des sciences naturelles de Bruxelles, se trouve un os strié de nombreuses entailles, découvert dans les années 1950 à Ishango au Congo belge (devenu RDC) par Jean de Heinzelin de Braucourt (1920 – 1998). Cet os daté de 20000 ans avant notre ère n’est pas le plus ancien artefact de ce type connu, mais le nombre de ses entailles a donné un grand nombre d’hypothèses.

Compter les entailles

L’os d’Ishango est couvert de stries.

Si on sait chercher, on y trouve le nombre 60 qui, depuis les Mésopotamiens, est lié à l’astronomie, des nombres premiers comme 11, 13, 17 et 19, etc. Certains en ont déduit qu’il s’agissait d’un calendrier lunaire car 60 correspond presqu’au nombre de jours de deux lunaisons. La somme des nombres de deux colonnes se retrouvant parfois ailleurs, d’autres y voient l’ancêtre de la calculatrice. Une autre hypothèse proposée est qu’il s’agirait d’un jeu mathématique qu’aurait pratiqué l’homme d’Ishango.

Calcul des probabilités

La multiplicité des hypothèses montre que leur origine commune réside dans le calcul des probabilités : plus vous considérez de nombres, plus vous y trouverez de relations entre eux et avec d’autres. Il est cependant probable que l’os d’Ishango n’ait été destiné qu’à compter, peut-être du gibier. C’est le plus important car cela prouve que l’homme d’Ishango savait compter, même s’il n’était pas le premier.

La chiralité des cochons et des escargots

Les coquilles des escargots sont des spirales qui peuvent croître de manière dextre ou senestre. En fait, ils sont presque tous dextres. Seuls un sur dix mille est senestre dans l’espèce des petits gris mais il existe des espèces où c’est le contraire.

Un petit gris. Si on place sa tête à gauche, sa coquille s’enroule dans le sens inverse des aiguilles d’une montre.

De même la queue en tire-bouchon des cochons peut être dextre ou senestre. Dans ce cas, il se trouve qu’il y a autant de cochons dextres que de cochons senestres. Ces différences entre dextre et senestre se retrouvent au niveau des molécules, ce qui a parfois des conséquences sur leurs propriétés.