Archives pour l'étiquette cryptographie

Une carte à Léa

Une carte postale adressée à une jeune fille nommée Léa chez ses parents le 27 janvier 1905 a de quoi surprendre car elle ne comporte que des  nombres séparés de points ou de tirets.

Transcription de la carte

Le texte est constitué de nombres entre 2 et 25, qui représentent sans doute des lettres de l’alphabet, séparés par des points et des tirets. Les tirets séparent probablement les mots entre eux. Nous le reproduisons ici en remplaçant les tirets par des espaces :

25.22     21.2.8.8.24     7.22.4.19.2.20.20.24     25.2.23       5.24   12.9.24   17.24   18.22.23   24.5.4.23.18 17.24   20.22.14.22.23.8 4.23.24.20   4.24.5.9   19.24.7.9.23.8   2  17.2.9.4.8     17.22.23 23.9 18.24.8   2   5.22.4.18.24.8     5.24   25.22.18.23.20   17.24 20.22.23     4.23.24.20   24.9   22     17.22.14.24     8.23     18.9 8.22.14.22.23.8     5.2.25.25.24     17.24     8.9.23.8 23.25.7.22.18.23.24.20.18     12.9.22.20.19       24.13.13.24.8 8.2.20.18     24.20     4.24.18.22.4.19     22.9     4.24.14.2.23.4 25.2.20     22.20.21.24     22.19.2.4.24     18.2.9.18     22   18.2.23

Analyse

On remarque rapidement que le numéro 24 est majoritaire. Il représente sans doute le E. Un mot à l’avant dernière ligne se trouve alors à moitié décrypté. Il s’agit de 24.13.13.24.8. Le numéro 13 répété entre deux E ne peut être qu’une consonne, plus précisément L. On en déduit que ce mot est « elles ». Le suivant est alors probablement « sont ». Le chiffre s’écroule alors progressivement. En particulier la formule de politesse est « tout à toi ». Finalement, on obtient le texte :

Ma gosse, pardonne-moi ce que je t’ai écrit, je n’avais rien reçu depuis 2 jours. J’ai eu tes 2 cartes ce matin. Je n’ai rien eu à ja*e. Si tu savais comme je suis impatient quand elles sont en retard. Au revoir mon ange. Tout à toi.

L’étoile dans le texte est sans doute une erreur de chiffrement.

Comment peut-on chiffrer avec une courbe ?

Vous avez peut-être entendu d’une méthode de cryptographie utilisant des courbes, des courbes elliptiques plus précisément. Mais comment peut-on chiffrer, c’est-à-dire transformer un message clair en un message caché, avec une courbe ?

Les courbes elliptiques

Les courbes en question sont les courbes elliptiques, c’est-à-dire des courbes d’équation y2 = x3 + a x + ba et b sont des nombres, par exemple y2 = x3 – 2 x + 1 ce qui peut se dessiner. On obtient la figure suivante.

La courbe est l’ensemble des points M de coordonnées x et y vérifiant l’équation ci-dessus, c’est-à-dire y2 = x3 – 2 x + 1.

Le rapport avec les ellipses, qui sont des cercles « aplatis » sur l’un de leur diamètre, est indirect puisqu’il concerne le calcul de leurs longueurs. Nous n’insisterons pas sur ce point car il n’a aucun rapport avec la cryptographie. L’intérêt est qu’on peut définir des opérations transformant les points de cette courbe en un autre. On s’approche de l’idée de chiffrement … sans encore l’avoir atteinte toutefois.

Loi de groupe sur une courbe elliptique

L’avantage des courbes elliptiques est qu’on peut y définir une loi. La figure suivante montre comment, à deux points P et Q de la courbe, on associe un point que l’on note P + Q.

Dans le cas général, on trace la droite PQ. Elle coupe la courbe en un point R, P + Q est le symétrique de R par rapport à l’axe des abscisses. Si P = Q, PQ est la tangente en P à la courbe. Pour que cette définition fonctionne dans tous les cas, nous devons adjoindre à la courbe un point à l’infini, que nous notons 0. Si PQ est verticale, P + Q = 0.

On montre que cette loi + a les propriétés habituelles de l’addition des nombres, soit l’associativité, la commutativité, l’existence d’un point neutre (le point à l’infini) et d’un symétrique pour tout point (le symétrique par rapport à l’axe des abscisses justement).

Remarque : on trouvera les détails des calculs sur mon site : ici

Chiffrement

Pour chiffrer, on ne considère pas les courbes elliptiques sur le corps des nombres réels mais sur un corps fini comme Z / N où N est un nombre premier. La courbe a alors un nombre fini de points. L’idée de départ est qu’un texte peut être transformé en une suite de points de la courbe. Cela revient à écrire dans un alphabet ayant autant de signes que la courbe a de points. Notons que le problème sous-jacent n’a rien de simple mais, théoriquement, le chiffrement consiste alors à transformer un point de la courbe. La clef secrète est constituée d’un point P de la courbe et d’un nombre entier, comme 3 par exemple. On calcule ensuite P ’ = 3 P. La clef publique est alors le couple de points (P, P ’). Pour crypter un point M, le chiffreur choisit un entier, 23 par exemple, et transmet le couple (U, V) défini par : U = 23 P et V = M + 23 P ’. La connaissance du premier nombre, ici 3, suffit pour retrouver M car M = V – 3 U.

Logarithme discret

Pour retrouver le nombre choisi, 3 dans notre exemple, connaissant P et P ’, il suffit de savoir résoudre l’équation : P ’ = 3 P. L’utilisation du verbe « suffir » ne doit pas tromper. Cela ne signifie absolument pas que cela soit facile mais que, si vous savez le faire, vous savez décrypter. Le nombre 3 est alors appelé un logarithme discret ce qui n’est guère intuitif si on utilise la notation additive ci-dessus. Avec une notation multiplicative de l’opération de groupe, cela devient plus habituel puisque l’équation s’écrit alors : P ’ = P3. Dans l’ensemble des nombres usuels, 3 correspondrait au logarithme de base P de P ’ d’où le nom dans le cadre d’un groupe fini. À l’heure actuelle, ce problème est considéré comme très difficile. On estime qu’une clef de 200 bits pour les courbes elliptiques est plus sûre qu’une clef de 1024 bits pour la méthode R.S.A. Comme les calculs sur les courbes elliptiques ne sont pas compliqués à réaliser, c’est un gros avantage pour les cartes à puces où on dispose de peu de puissance, et où la taille de la clef influe beaucoup sur les performances. Les inconvénients sont de deux ordres. D’une part, la théorie des fonctions elliptiques est complexe et relativement récente. Il n’est pas exclu que l’on puisse contourner le problème du logarithme discret. D’autre part, la technologie de cryptographie par courbe elliptique a fait l’objet du dépôt de nombreux brevets à travers le monde. Cela pourrait rendre son utilisation coûteuse !

Une victoire remportée par la seule arme du chiffre

Le décryptement d’un seul message peut décider du sort d’une bataille ou d’une négociation. Ce fut le cas en 1626 quand les troupes du prince de Condé assiégeant Réalmont interceptèrent un messager sortant de la ville, porteur d’un message incompréhensible. Condé fit venir un jeune professeur de mathématiques de la région, Antoine Rossignol des Roches, qui en trouva le sens. Le message annonçait que la ville était à cours de munition. Condé fit porter le message décrypté à la ville, qui se rendit. La bataille fut gagnée grâce à la seule arme du Chiffre !

Chiffrement par alphabet chiffré

Ce message avait vraisemblablement été chiffré au moyen d’un alphabet chiffré, où chaque lettre est remplacée par un symbole, très en vogue à l’époque.

Un alphabet chiffré de 1626 (Archives de Strasbourg). Chaque lettre doit être remplacée par le symbole inscrit au dessus.

Le décryptement repose à la fois sur les mathématiques et sur la linguistique. Les mathématiques par la méthode des fréquences qui permet au moins de trouver le symbole représentant la lettre « e ». La linguistique par la méthode du mot probable qui permet de deviner des lots du message selon le contexte. Par exemple, dans un message sortant d’une ville assiégée, on peut s’attendre à des mots comme « vivres » ou « munitions ».

Chiffrement par dictionnaire chiffré

La faiblesse des alphabets chiffrés, même améliorés en chiffrant de plusieurs façons différentes les lettres fréquentes et en ajoutant des nulles, c’est-à-dire des symboles ne signifiant rien, amena Rossignol à créer des dictionnaires chiffrés c’est-à-dire des dictionnaires bilingues dont l’une des langues est le français et la seconde, des nombres. Ainsi, on chiffre non seulement des lettres (et ce de plusieurs manières), comme auparavant, mais aussi des syllabes et des mots. La méthode des fréquences n’a alors plus aucun sens et celle du mot probable devient difficile à utiliser. Leur inconvénient principal est leur sensibilité à l’espionnage ou aux hasards de la guerre.

Un dictionnaire chiffré où les lettres, mots, syllabes sont chiffrés par des nombres. Archives de Srasbourg

 

Les messages chiffrés du Figaro en 1890

En 1890, le Figaro contenait une rubrique de correspondances personnelles dont certains messages étaient a priori incompréhensibles. Voici une partie de ceux du premier janvier :

La rubrique correspondances personnelles du Figaro, du premier janvier 1890. @ BNF

Chiffre de César

Parmi des messages écrits en style télégraphique, nous en trouvons deux, manifestement entièrement chiffrés. Dans le premier, bonne année est devenue cpoof booff. Autrement dit, il s’agit d’un simple décalage (ou chiffre de César) et le tout signifie : Bonne année d’un ami bien malheureux.

Substitution alphabétique

Le message suivant (d’indicatif LILI) est bien plus intéressant à décrypter. De prime abord, nous pouvons juste penser que le chiffre 2 représente e, du moins si la méthode de chiffrement utilisée est une substitution alphabétique car il s’agit du symbole majoritaire. Heureusement, en feuilletant le Figaro des jours suivants, nous rencontrons un grand nombre de messages sous le même indicatif LILI. Nous nous arrêtons naturellement le douze janvier sur un message à moitié chiffré, une erreur classique de chiffrement.

La rubrique correspondances personnelles du 12 janvier 1890 dans le Figaro. @BNF

Écrit en style télégraphique, le message commence par votre pensée ne me quitte pas, est tout mon bonheur, voudrais vous voir, la suite qu’on veut cacher est 32. u. 13. n2. La disposition des deux 2 nous fait penser à je t’aime si i et j sont assimilés comme ils le sont en latin. Les chiffres 1, 2 et 3 représentent donc les voyelles a, e et i, les lettres u et n représentent t et m. La méthode de chiffrement semble être de représenter chaque voyelle par son numéro d’ordre et chaque consonne par la lettre qui la suit. Pour vérifier cette hypothèse, nous revenons au message du premier janvier :

1.w. m2. qs2n32s n2t w25y c400. 100. w45e. 2us2. u. qs2t e w. o. q20t r s2w.

En le déchiffrant selon la méthode que nous venons d’exposer, on obtient une phrase en style télégraphique :

a v le premier mes veux bonn ann voud etre t pres d v n pens q rev

ce qui signifie probablement :

À vous le premier, mes vœux de bonne année. Je voudrais être tout près de vous. Ne pense qu’un rêve !

Même si une erreur a pu se glisser dans la dernière phrase, le sens des deux premières prouve que notre hypothèse est correcte. De façon étonnante, la méthode de décryptement fonctionne pour un autre message du douze janvier, celui portant l’indicatif Bleuet :

 Complètement rétabli. Rentre à Paris semaine prochaine, je serai heureux de pouvoir vous voir mercredi 4 h. Mille amitiés.

Intérêt

Au-delà des curieux, ces messages chiffrés pourront intéresser les historiens qui y verront un témoignage des rapports humains à cette époque, surtout de ceux que l’on souhaitait cacher.

Le code des éventails

Dame avec un éventail © Gustav Klimt

À l’époque où les jeunes filles de la cour d’Espagne étaient très surveillées, elles inventèrent un code fondé sur la position et les mouvements de leurs éventails, qui devinrent ainsi des instruments de séduction. Par exemple, le placer près du cœur signifiait « tu as gagné mon amour », bouger l’éventail entre les mains, « je te hais », le faire glisser sur la joue pour aller jusqu’au menton, « je t’aime », le placer sur les lèvres, « embrasse-moi ». Il existait ainsi une trentaine de codes, assez pour faire passer ses sentiments et ses envies à celui qui est face à vous. La connaissance de ces codes est utile pour comprendre certains films, même si les mimiques peuvent aussi suggérer le message. Il s’agit d’une sorte de cryptographie gestuelle.

Sur la toile de Klimt, la façon dont la femme tient son éventail signifie « tu as gagné mon amour ». L’histoire ne dit pas si Klimt l’a placé ainsi volontairement.

Extrait du code

 

S’éventer lentement Je suis mariée
… rapidement Je suis fiancée
Laisser l’éventail reposer sur sa joue droite Oui
…  sur sa joue gauche Non
Tenir l’éventail dans la main droite Vous êtes entreprenant
Maintenir l’éventail sur l’oreille gauche Laissez-moi tranquille
Tournoyer l’éventail avec la main droite J’en aime un autre
… avec la main gauche Nous sommes surveillés
Toucher avec le doigt sa partie haute Je voudrais te parler
Descendre l’éventail, le laisser pendre Nous serons amis
Le placer devant le visage en main gauche À quoi penses-tu ?
… avec la main droite Suis-moi
Le tenir en main gauche face au visage Je désire un entretien
Le porter ouvert dans la main gauche Allons parle-moi
Ouvrir complètement l’éventail Attends-moi
L’éventail placé près du cœur Tu as gagné mon amour
Bouger l’éventail autour de la joue Je t’aime
Cacher ses yeux derrière l’éventail ouvert Je t’aime
Rendre l’éventail fermé M’aimes-tu ?
Le glisser sur la joue jusqu’au menton Je vous aime
Porter l’éventail ouvert dans la main droite Je suis très amoureuse
L’éventail moitié ouvert posé sur les lèvres Peux-tu m’embrasser ?
Placer l’éventail sur les lèvres Embrasse-moi
Tourner l’éventail avec la main gauche On nous voit
Le fermer complètement ouvert, lentement Je promets de t’épouser
Le fermer en se touchant l’œil droit Quand te verrai-je ?
Le nombre de branches ouvertes donne… La réponse à la question
Mouvement menaçant, éventail fermé Ne sois pas imprudent
Le placer ouvert devant l’oreille gauche Cache notre secret
Bouger l’éventail autour du front Tu as changé
Approcher l’éventail autour des yeux Je suis désolée
Ouvrir et fermer l’éventail plusieurs fois Tu es cruel
Placer l’éventail derrière la tête Ne m’oublie pas
Les mains jointes serrant l’éventail ouvert Oublie-moi !
L’éventail derrière la tête, doigts tendus Au revoir, adieu
Bouger l’éventail entre les mains Je te hais