Archives pour la catégorie Humour

Enigmes pour extraterrestres

 

Dans l’espoir d’entrer en contact avec des extraterrestres, en 1972 et 1973, les sondes 10 et 11 du programme d’exploration du système solaire Pioneer furent équipées d’une plaque qui voulait décrire l’humanité et son lieu de résidence, la Terre. Sur la droite, un homme et une femme nus, l’homme saluant de la main droite.

En bas, on peut reconnaître le Système solaire avec le Soleil à gauche et neuf planètes : Mercure, Vénus, Terre, Mars, Jupiter, Saturne, Uranus, Neptune et Pluton qui, de nos jours n’est plus considérée comme une planète. Un chemin part de la troisième planète (la Terre) et mène à une représentation de la sonde, qui est à l’échelle et permet de connaître la taille moyenne des humains.

Ce nombre indique à quelle distance moyenne se trouve la planète par rapport au soleil, sachant qu’une unité vaut 6 millions de km. Voici les nombres affichés pour les six premières planètes :

Planète Mercure Vénus Terre Mars Jupiter Saturne
Nombre binaire 1010 10011 11010 100111 10000110 11110111
décimal 10 19 26 39 134 247
distance 60 110 150 230 800 1 400

 

Les autres informations contenues dans la plaque concernent des connaissances en physique, sur l’atome d’hydrogène et en astronomie, sur les pulsars. Les Américains envoyèrent une autre bouteille à la mer interstellaire avec les sondes Voyager 1 et 2 en 1977. Les engins arboraient la plaque et renfermaient un CD avec les instruments pour le lire. La Nasa n’a pas récidivé depuis, peut-être lassée de ne pas recevoir de réponse…

 

Valérie Cheno et la femme de Vitruve

L’homme de Vitruve, un dessin exécuté par Léonard de Vinci (1452 – 1519) d’après le texte de Vitruve sur les proportions, un architecte romain du premier siècle avant Jésus-Christ, est mondialement connu mais qui connait la femme de Vitruve ? Albrecht Dürer (1471 – 1528) en a dessiné une.

Une femme de Vitruve en acier

L’idée est toujours vivante : Valérie Cheno (née en 1968) une sculptrice contemporaine en a créé une en acier.

Femme de Vitruve par Valérie Cheno.

L’homme de Vitruve, et donc la femme de Vitruve également, étant lié à une question mathématique, nous avons découvert que Valérie Cheno avait une formation scientifique ce qui lui sert également à équilibrer ses œuvres et sans doute explique aussi son monde imaginaire fait de lutins de couleur bleue .

Les lutins autour de la piscine

Lors de l’exposition aux Sources à Antibes, l’essentiel de ses œuvres ont été disposées le long d’un parcours autour de la piscine. Nous vous laissons en découvrir une partie ici.

Le grand personnage montre bien la difficulté de l’équilibrage des statues : le centre de gravité doit se trouver à la verticale de la base.
Une statue dans la piscine.

On verra davantage de sculptures, et également des bijoux de Valérie Cheno sur son site : www.cheno.fr

L’inversion et la chasse au lion

Hector Pétard, gendre du divin Bourbaki, mathématicien de génie, sut appliquer les transformations géométriques les plus abstraites à des domaines aussi concrets que la cynégétique.

La chasse au lion

Le lion est un animal constamment sur ses gardes. Comment l’attraper vivant sans éveiller ses soupçons ? Hector Pétard, illustre mathématicien du XXe siècle, apporta des réponses magistrales à ce problème. La principale concerne la géométrie.

L’idée géniale d’Hector Pétard pour chasser le lion sans danger est de disposer d’une cage dans laquelle il s’enferme seul. A l’instant initial, le lion est donc à l’extérieur. Il opère alors une transformation échangeant intérieur et extérieur de la cage. De ce fait, le lion se trouve dans la cage et lui à l’extérieur. L’idée générale étant trouvée, quelle cage et quelle transformation utiliser ?

L’étude des transformations géométriques donne la solution : la cage doit être sphérique et la transformation, une inversion, dont on comprend à ce propos le nom. Il s’agit d’inverser cage et monde extérieur !

La transformation qui à M associe M’ vérifiant : OM.OM’=R² échange extérieur (en vert) et intérieur (en orange) de la sphère de centre O et de rayon R.

Capture du lion

Prenez une inversion à effet limité afin d’éviter la surpopulation dans votre cage. Placez-la à proximité du lion, avec vous à l’intérieur. Opérez l’inversion. Vous vous trouvez à l’extérieur, et le lion à l’intérieur. Malgré la simplicité de la méthode, nous vous conseillons toutefois de l’essayer d’abord sur un chat domestique avant de vous lancer dans la chasse au lion. Je décline toute responsabilité en cas d’accident de chasse.

Cette méthode fait honneur à l’esprit mathématique le plus abstrait. Mais le génie d’Hector Pétard ne s’arrêtait pas là. Il sut imaginer des méthodes purement physiques, par exemple celle-ci que nous vous conseillons : un lion est de masse non nulle si bien qu’il a des moments d’inertie. Attendez l’un d’eux. Quand il se produira, vous n’aurez aucun mal à l’attraper !

L’humour mathématique

 

Ralph P. Boas (1912-1992), chasseur de lions

Cet article sur la chasse au lion est un exemple caractéristique d’humour mathématique. Celui-ci frise souvent l’absurde. Hector Pétard est le pseudonyme de Ralph P. Boas. Ses articles les plus cocasses ont été rassemblés par la Mathematical Association of America dans Lion hunting & other mathematical pursuits. Contemporain de la grande époque Bourbachique (1930-1960), il s’est imaginé converger en justes noces avec la fille du maître polycéphale. Son faire-part de mariage évoque ce temps béni des structures abstraites. Ma vocation de vulgarisateur des mathématiques est née de leurs dégâts collatéraux, quand leurs prosélytes ont créé un enseignement « moderne » des mathématiques, oubliant leurs applications. Nous dédions cette sonnerie aux morts à notre magistral chasseur de lions.

Faire-part de mariage de Betti Bourbaki

Monsieur NICOLAS BOURBAKI, Membre Canonique de l’Académie Royale de Poldévie, Grand Maître de l’Ordre des Compacts, Conservateur des Uniformes, Lord Protecteur des Filtres, et Madame, née BIUNIVOQUE, ont l’honneur de vous faire part du mariage de leur fille BETTI avec Monsieur HECTOR PETARD, Administrateur Délégué de la Société des Structures Induites, Membre Diplômé de l’Institute of Class Field Archeologist, secrétaire de l’Œuvre du Sou du Lion.

Monsieur ERSATZ STANISLAS PONDICZERY, Complexe de Recouvrement de Première Classe en retraite, Président du Home de Rééducation des Faiblement Convergents, Chevalier des Quatre U, Grand Opérateur du Groupe Hyperbolique, Knight of the Total Order of the Golden Mean, L.U.B., C.C., H.L.C., et Madame, née COMPACTENSOI, ont l’honneur de vous faire part du mariage de leur pupille HECTOR PETARD avec Mademoiselle BETTI BOURBAKI, ancienne élève des Bien Ordonnées de Besse.

L’isomorphisme trivial leur sera donné par le P. Adique, de l’Ordre des Diophantiens, en la Cohomologie principale de la variété universelle le 3 Cartembre, an VI, à l’heure habituelle.

L’orgue sera tenu par Monsieur Modulo, Assistant Simplexe de la Grassmannienne (lemme chanté par la Schola Cartanorum). Le produit de la quête sera versé intégralement à la maison de retraite des Pauvres Abstraits. La convergence sera assurée. Après la congruence, Monsieur et Madame BOURBAKI recevront dans leurs domaines fondamentaux. Sauterie avec le concours de la fanfare du 7e Corps Quotient. Tenue canonique (idéaux à gauche à la boutonnière)

C.Q.F.D.

 

(Henri) Quatre sur (le pont) Neuf

Prenez un mot de neuf lettres, comme « minutieux », brouillez-les, vous obtenez par exemple XNIIMTUEU. Écrivez-le dans ce nouvel ordre dans un carré 3 par 3 :

Une grille de quatre sur neuf.

Nous avons ainsi formé une grille de notre jeu quatre sur neuf. Le but est maintenant de trouver un maximum de mots français de quatre lettres contenant la lettre centrale (en bleu, ici M) en un minimum de temps. Les accents ne comptent pas, ainsi mute et muté sont considérés comme le même mot.

Si on commence par les mots dont la première lettre est M, nous trouvons rapidement : mite, mine, mixe, mute, muni, muet, meut, etc. Nous pouvons continuer en essayant de placer M dans une autre position : émut, etc.

Quelle est la meilleure stratégie possible ? Chacun la sienne sans doute mais le jeu demande manifestement des qualités de lecture d’un pavé de trois lettres sur trois. Comment voir les chemins intéressants ? Il demande aussi de considérer les digrammes selon leurs fréquences. Par exemple, ici, « en » et « un » sont fréquents donc à considérer pour gagner du temps.

Combien existe-t-il de solutions pour cette grille ? La question est ouverte et la réponse dépend du dictionnaire utilisé. Peut-on trouver une grille sans solution ? Avec une seule ? Deux, etc. ? Toutes ces questions sont ouvertes cher lecteur… et attendent vos réponses. On comprendra, par exemple, que de partir d’un mot de neuf lettres assure la présence de lettres, digrammes et trigrammes relativement fréquents… et donc augmente le nombre de solutions.

Pour vous exercer

Il est facile de créer d’autres grilles, et de même de créer un logiciel pour jouer à ce jeu en français.

On part d’une liste de mots de neuf lettres (il en existe plus de 50 000), d’un générateur de permutations aléatoires d’un ensemble à neuf éléments puis d’un dictionnaire pour vérifier les solutions trouvées. Il reste à ajouter une horloge pour augmenter le stress du joueur. Attention avant de créer ce jeu : il est hautement addictif et son abus peut provoquer de graves ennuis de santé !

Magie et mathématique

Certaines croyances magiques restent attachées aux mathématiques. L’exemple le plus simple est celui du nombre treize qui porte chance … ou malchance selon les personnes. On évite ainsi, même chez certains mathématiciens, d’être treize à table. Cette croyance est extra-mathématique. Elle vient du dernier repas du Christ avec ses apôtres et non pas d’une propriété mathématique du nombre treize. Il en est de même de la plupart des nombres considérés comme magiques ou sacrés, comme sept par exemple. Nous n’insisterons pas sur cette question, et pas davantage sur la numérologie ou sur l’arithmancie qui prétendent prévoir l’avenir au travers de quelques additions. Leurs relations aux mathématiques sont les mêmes que celle de l’astrologie à l’astronomie. Même si certains mathématiciens furent numérologues comme certains astronomes furent astrologues jusqu’à l’époque de Kepler (XVIIe siècle), aujourd’hui, il est difficilement imaginable qu’un mathématicien ou un astronome pratique ce type de pseudosciences.

Les nombres parfaits

Plus étonnants que ces nombres auxquels on attribue un pouvoir surnaturel, d’autres sont considérés comme magiques pour des raisons internes aux mathématiques. Parmi les plus étudiés sont les nombres parfaits dont parle déjà Euclide au IIIe siècle avant notre ère dans ses Éléments. Par définition, les nombres parfaits sont les nombres égaux à la somme de leurs diviseurs autres qu’eux-mêmes. Par exemple, 6 est parfait puisque ses diviseurs stricts sont 1, 2 et 3 dont la somme est égale à 6. La traduction littérale du terme grec utilisé par Euclide pour désigner les nombres parfaits est nombre à qui il ne manque rien ce qui permet de mieux comprendre les définitions de nombre abondant et de nombre déficient : nombre dont la somme des diviseurs est supérieure (respectivement inférieure) au nombre donné. Ainsi 12 est abondant, 3, 4 et 5 sont déficients.

Quand Dieu est contraint à la perfection …

Saint Augustin (354 – 430) d’après un tableau de la Renaissance

Cela pourrait être une simple curiosité et peu importe le nom utilisé mais, dans l’Antiquité, la perfection de ces nombres était bien vue comme telle. Ainsi, dans La cité de Dieu, on peut lire sous la plume d’Augustin d’Hippone (354 – 430) une vision mystique de cette perfection : Ainsi, nous ne devons pas dire que le nombre six est parfait, parce que Dieu a achevé tous ses ouvrages en six jours : loin de là, Dieu a achevé tous ses ouvrages en six jours parce que le nombre six est parfait ; supprimez le monde, ce nombre resterait également parfait ; mais s’il n’était pas parfait, le monde, qui reproduit les mêmes rapports, n’aurait plus la même perfection.

On trouve des idées voisines dans Arithmetica d’un philosophe néo-pythagoricien comme Nicomaque de Gérase (Ier siècle de notre ère), pourtant véritable mathématicien puisqu’il découvrit le quatrième nombre parfait : Il arrive que, de même que le beau et le parfait sont rares et se comptent aisément, tandis que le laid et le mauvais sont prolifiques, les nombres excédents et déficients sont en très grand nombre et en grand désordre ; leur découverte manque de toute logique. Au contraire, les nombres parfaits se comptent facilement et se succèdent dans un ordre convenable ; on n’en trouve qu’un seul parmi les unités, 6, un seul dans les dizaines, 28, un troisième assez loin dans les centaines, 496 ; quant au quatrième, dans le domaine des mille, il est voisin de dix mille, c’est 8128. Ils ont un caractère commun, c’est de se terminer par un 6 ou par un 8, et ils sont tous invariablement pairs.

Des conjectures à la pelle

À l’heure actuelle, le dernier point évoqué par Nicomaque de Gérase reste une conjecture. Personne n’a encore réussi à prouver qu’il n’existait pas de nombres parfaits impairs, même si le fait que personne n’en ait jamais trouvé un seul milite dans ce sens. De même, l’existence d’une infinité de nombres parfaits pairs est une conjecture. Les quatre premiers sont connus depuis l’Antiquité : 6, 28, 496 et 8128 et, à l’heure actuelle, nous n’en connaissons que 49 ! Les plus grands n’ont été découverts que récemment et ont plusieurs dizaines de millions de chiffres. Ils sont tous d’une forme liée à la notion de nombre premier, ce que nous verrons plus loin.

Les temps ont changé et plus personne ne comprend l’expression « nombre parfait » dans le sens d’une perfection externe aux mathématiques.

Boby Lapointe et le bibi-binaire

Boby Lapointe (1922 – 1972) est connu comme chanteur humoriste, le seul chanteur français jamais sous-titré en France. Pourquoi ? Pas à cause de son élocution aléatoire mais parce que l’apprécier demandait une sacrée gymnastique intellectuelle ! Voici le début d’une de ses chansons les plus faciles pour en montrer le style.

Le poisson Fa

Il était une fois
Un poisson fa.
Il aurait pu être poisson-scie,
Ou raie,
Ou sole,
Ou tout simplement poisseau d’eau,

Ou même un poisson un peu là,
Non, non, il était poisson fa :
Un poisson fa,
Voilà.

et cela continue avec toutes les notes…

Une formation mathématique

Pas étonnant diront certains car la formation de Boby Lapointe  était fortement marquée par les mathématiques. Il aurait pu faire partie de l’Oulipo, comme adepte des littératures à contraintes ! Après un bac MathElem en 1940, il suivit les cours d’une classe de MathSpé et aurait intégré SupAero s’il n’avait pas été requis par le STO (service du travail obligatoire) en Autriche, dont il s’est évadé pour vivre dans la clandestinité. Boby Lapointe était donc un matheux et on le voit dans une de ses inventions.

L’hexadécimal

Revenons aux mathématiques avant de revenir à Boby Lapointe ! Vous avez sans doute remarqué que les clefs Wifi sont formées de chiffres décimaux entrecoupés de quelques lettres, entre A et F, comme par exemple : 9A8356D713058F4569C54039A0.

Il s’agit en fait d’un nombre écrit en base seize, en hexadécimal autrement dit. Dans cette base, les chiffres sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Les cinq derniers représentent les nombres décimaux de 10 à 15. Ce système permet d’écrire les nombres binaires de façon raccourcie. Par exemple, pour écrire le nombre binaire 1 100 101 en hexadécimal, il suffit de grouper les bits par quatre : 110 0101 et de traduire ces groupes : 110 vaut 6 et 0101, 5. Ce nombre s’écrit donc 65 en base seize. De même, un milliard, qui s’écrit 11 1011 1001 1010 1100 1010 0000 0000 en binaire, s’écrit 3B 9AC A00 en hexadécimal, ce que l’on obtient en traduisant chaque groupe de quatre bits.

Signification des chiffres hexadécimaux, c’est-à-dire des chiffres du système de base 16. En plus des chiffres usuels, ce système utilise les chiffres A, B, C, D, E et F qui représentent 10, 11, 12, 13, 14 et 15.

Le système bibi-binaire

Boby Lapointe inventa une notation pour les chiffres hexadécimaux où chaque chiffre se voit attribuer un symbole et une prononciation.

Système bibi-binaire de Boby Lapointe. Chaque chiffre du système hexadécimal se voit attribuer un graphisme et une prononciation dépendant de son écriture en base deux. L’ordre de l’écriture est indiqué pour le chiffre 0.

Ainsi 2019, qui s’écrit 7E3 en hexadécimal puisque 2019 vaut         7 x 16² + 14 x 16 + 3, se dit “bidehi” en bibi-binaire et s’écrit :

Zéro est-il un nombre ?

Zéro est un symbole utile pour écrire les nombres mais est-il lui-même un nombre ? Si nous restons sur l’idée des nombres naturels, la réponse est « non ». Ils sont faits pour compter, et que signifie dénombrer l’absence ? Zéro est un être troublant. Il n’a été accueilli que tardivement dans la communauté des nombres. À son introduction, zéro était plus la marque d’une absence, pour faciliter la notation positionnelle des nombres, qu’un nombre véritable. 

Naissance de zéro comme nombre

Nous devons son apparition en tant que nombre au mathématicien indien Brahmagupta (598 – 668). Dans le Brahmasphutasiddhanta, ce qui signifie « l’ouverture de l’Univers », écrit entièrement en vers, il donne les règles régissant zéro, ainsi que les nombres positifs ou négatifs, en termes de dettes et de fortunes :

Une dette moins zéro est une dette. Une fortune moins zéro est une fortune. Zéro moins zéro est zéro. Une dette soustraite de zéro est une fortune. Une fortune soustraite de zéro est une dette. Le produit de zéro par une dette ou une fortune est zéro. Le produit de zéro par zéro est zéro. Le produit ou le quotient de deux fortunes est une fortune. Le produit ou le quotient de deux dettes est une fortune. Le produit ou le quotient d’une dette et d’une fortune est une dette. Le produit ou le quotient d’une fortune et d’une dette est une dette.

Chacun reconnaîtra dans ces lignes une version ancienne de la règle des signes, dont un extrait de La vie de Henry Brulard, le roman autobiographique de Stendhal (1783 – 1842) semble un écho humoristique :

Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ?

L’usage des termes mathématiques hors contexte peut donner des résultats amusants, cependant la question n’est pas là. L’important est que les règles de calcul habituelles sur les nombres soient respectées, mais revenons à Brahmagupta. Pour lui, zéro n’est pas seulement la notation d’une absence d’unité, de dizaine ou de centaine, etc., comme dans la numération de position, mais aussi un vrai nombre, sur lequel on peut compter. Il le définit d’ailleurs comme le résultat de la soustraction d’un nombre par lui-même. Il donne les bons résultats l’impliquant dans les opérations licites (addition, soustraction et multiplication) mais se trompe en estimant que 0 divisé par 0 est égal à lui-même. On peut le comprendre, la question n’est pas simple. Elle est restée obscure, même pour un grand nombre de mathématiciens jusqu’au XIXe siècle puisque, dans ses Éléments d’algèbre, Alexis Clairaut (1713 – 1765), après avoir donné les règles de calcul, est obligé d’insister sur la nuance entre le signe d’un nombre et celui d’une opération :

On demandera peut-être si on peut ajouter du négatif avec du positif, ou plutôt si on peut dire qu’on ajoute du négatif. À quoi je réponds que cette expression est exacte quand on ne confond point ajouter avec augmenter. Que deux personnes par exemple joignent leurs fortunes, quelles qu’elles soient, je dirai que c’est là ajouter leurs biens, que l’un ait des dettes et des effets réels, si les dettes surpassent les effets, il ne possédera que du négatif, et la jonction de la fortune à celle du premier diminuera le bien de celui-ci, en sorte que la somme se trouvera, ou moindre que ce que possédait le premier, ou même entièrement négative.

Ces questions de fortunes et de dettes, de Brahmagupta à Clairaut font penser que le zéro serait venu d’un problème de comptabilité patrimoniale. Au-delà des termes utilisés, rien ne permet cependant de l’affirmer.

Zéro dans les opérations

La règle d’extension des résultats à zéro n’est pas d’origine philosophique, mais calculatoire. Par exemple, à partir de la définition que donne Brahmagupta de zéro : 2 – 2 = 0, on déduit des règles habituelles de l’arithmétique :

2 + 0 = 2 + (2 – 2) = 4 – 2 = 2

ce qui peut sembler une évidence par ailleurs : quand on ajoute rien, on conserve ce que l’on a… La question est beaucoup moins évidente quand on veut multiplier par zéro. Quel sens cela a-t-il dans l’absolu ? Pour le voir, l’important est de se focaliser sur les règles de calcul, sans y chercher d’autre philosophie. La question se traite de la même manière que la précédente :

3 x 0 = 3 x (2 – 2) = 3 x 2 – 3 x 2 = 6 – 6 = 0.

Bien entendu, dans les raisonnements précédents, les nombres 2 et 3 peuvent être remplacés par n’importe quels autres, le résultat n’est pas modifié. Un nombre multiplié par zéro est donc égal à zéro. Ce résultat, qui peut sembler étrange de prime abord, est nécessaire pour la généralité des règles opératoires.

La méthode permet de trouver des résultats plus étonnants. Par exemple, que vaut un nombre à la puissance zéro ? Pour répondre à cette question, se demander ce que signifie de porter un nombre à la puissance zéro est inutile, voire nuisible. A priori, 2 à la puissance 4 (par exemple) est égal à 2 multiplié 4 fois par lui-même, soit 24 = 2 x 2 x 2 x 2. De même, en remplaçant 4 par n’importe quel nombre entier supérieur à 1, donc 21 = 2. Mais que peut bien vouloir dire un nombre multiplié 0 fois par lui-même ? Se poser la question ainsi, c’est se condamner à ne pas pouvoir y répondre puisqu’elle est absurde. En fait, il faut trouver un principe d’extension. La propriété essentielle est la formule : 24+1 = 24 x 2, valable en remplaçant 4 par n’importe quel nombre. En le remplaçant par 0, nous obtenons : 20+1 = 20 x 21, ce qui donne : 2 = 20 x 2. En simplifiant par 2, nous obtenons : 20 = 1. Ce résultat est encore vrai si nous remplaçons 2 par tout nombre non nul. Ainsi, un nombre non nul porté à la puissance 0 est égal à 1, ou du moins il faut le poser comme définition si on veut que la propriété des puissances vue plus haut (24+1 = 24 x 2) soit générale.

Cette égalité (20 = 1) correspond à une idée subtile : celle de la généralité des calculs. On définit la puissance 0 pour que les règles de calcul connues sur les puissances restent vraies dans ce cas particulier. Il reste malgré tout l’ambiguïté de 0 à la puissance 0.

 

Cours de crypto à Hanoï

Souvenir d’un séjour à Hanoï où j’ai enseigné l’art du décryptement à quelques étudiants et beaucoup appris sur les services du chiffre du Viêt-Minh pendant la guerre d’Indochine (1946-1954) puis du Viêt-Cong pendant la guerre du Vietnam (1955-1975))

Erreurs cryptographiques des deux camps

Au début de la première guerre d’Indochine, le Viêt Minh utilisa un chiffre de Vigenère, c’est-à-dire une substitution alphabétique à décalage variable dépendant d’une clef (qui est un mot). Par exemple, avec la clef abc, il consiste à ne pas décaler la première lettre du message, décaler d’un cran la seconde de deux crans la seconde et ainsi de suite si bien que “chiffrer” se chiffre en “cikfgtes”.

Le Viêt-Minh appliquait cette méthode de façon particulièrement erronée : la clef, toujours de longueur cinq, était accolée en tête du message ce qui contrevenait lourdement au principe de Kerckhoffs selon lequel la solidité d’un chiffre ne devait pas dépendre du secret de la méthode mais seulement de celui de sa clef.

Document vietnamien montrant un message envoyé avec sa clef TINHA en tête !

Malgré cette faiblesse du chiffre vietnamien, le conflit cryptographique avec l’armée française, déséquilibré au temps de la reconquête en 1946, quand les meilleurs cryptologues de l’armée étaient sur place, fut plutôt équilibré de ce point de vue ensuite. L’armée était pourtant sensée disposer de machines à chiffrer de la Seconde Guerre mondiale comme la C-36 au niveau tactique et la B-211 au niveau stratégique qui auraient dû être indécryptables par le Viêt Minh. Cependant, d’après les archives vietnamiennes, bien des messages français étaient envoyés chiffrés par un Vigenère doté d’une clef trop courte, ou juste camouflés voire même en clair. Les techniques de camouflage consistaient ici à remplacer quelques termes, comme « convoi » ou « tank » par d’autres d’apparence anodine comme « omelette » ou « œufs brouillés ». Cette méthode n’a guère d’espoir de permettre de garder le secret d’un grand nombre de messages. L’ennemi aura vite compris ce que recouvrent ces termes étranges dans un contexte militaire.

Persistance des erreurs

Lors de la guerre du Vietnam qui suivit la défaite française, les Américains ne firent guère mieux et en vinrent aussi à des méthodes de camouflage, persuadés que le Viêt Cong ne serait jamais capable de comprendre leur jargon en temps réel. La NSA (National Security Agency) avait pourtant conçu Nestor, un système chiffrant la voix de bonne qualité … mais qui avait au moins deux défauts : son élément (KY-38) réservé à l’infanterie était lourd (24,5 kg) et, de plus, Nestor ne supportait pas la chaleur humide des forêts tropicales du sud Viêt Nam. De nombreuses unités préféraient emporter plus de munitions plutôt que cet engin peu fiable et lourd. Ceci explique l’absence de chiffrement sérieux et l’équilibre des forces entre le petit Viêt Cong et le géant américain dans la bataille des ondes.

Soldat américain portant une KY-38, partie “portable” su système Nestor.

 

Le TVI à la Grande Ruine

Pour monter sur un sommet à 3712 mètres d’altitude, comme la Grande Ruine dans le massif de Ecrins (image mise en avant @Hervé Lehning), en partant d’un refuge situé à 3169 mètres d’altitude (le refuge Adèle Planchard), il est nécessaire de passer par toutes les altitudes intermédiaires.

Quelque soit la voie prise pour monter au sommet, nous passerons au moins une fois à chaque altitude entre le point de départ et celui d’arrivée. La photo représente un sommet proche de l’Everest, dans l’Himalaya. @Hervé Lehning

Le Théorème des Valeurs Intermédiaires (ou TVI)

Ce résultat de bon sens correspond à un théorème de mathématiques concernant les fonctions continues sur un intervalle réel à valeurs réelles. La plupart des fonctions qu’on rencontre en mathématiques sont continues sauf, éventuellement, en quelques points exceptionnels, appelés pour cela points de discontinuité. Physiquement, dans la pratique, ces points correspondent souvent à des sauts.

Exemple de discontinuité : en un point x, les limites à droite et à gauche  diffèrent de la valeur en x. Dans ce cas, la fonction présente un saut en x.

Le théorème des valeurs intermédiaires peut s’illustrer ainsi :

Si f est une fonction continue sur [a, b] et m est une valeur entre f (a) et f (b), il existe x tel que f (x) = m.
Ce théorème est donc un théorème existentiel: il affirme l’existence d’un nombre sans permettre pour autant de le calculer.

Utilité

L’utilité pratique  essentielle de ce théorème est de montrer l’existence de racines d’équations : si une fonction continue change de signe entre deux points a et b, elle s’annule entre ces deux points.

On en déduit, par exemple, qu’une fonction continue sur un segment [a, b] à valeurs dans lui-même admet au moins un point fixe, c’est-à-dire un point x tel que f (x) = x. Pour le démontrer, il suffit de remarquer que la fonction g définie par (x) = f  (x)  –  x change de signe entre a et b.

Vendredi treize, jour de chance ou de malchance ?

Le nombre 13 est surchargé de superstitions. Quoi de pire qu’être 13 à table ? L’origine de cette idée est assez claire : elle fait référence à la Cène (voir ci-dessus sa représentation dans l’église de Curahuara de Carangas en Bolivie), c’est-à-dire au dernier repas de Jésus-Christ où il désigne celui qui devait le trahir et qui se pendra plus tard. Même si les évangiles font plutôt penser au 14 ou au 15, certains affirment que Jésus fut crucifié le vendredi 13 du mois de Nisan… qui serait ainsi un jour de malheur. Pourtant, pour d’autres, il est censé porter chance. Cependant, les statistiques sont terribles. S’il y a trois fois plus de joueurs au Loto les vendredis 13, leur chance de gagner reste rigoureusement la même. Seule la Française des Jeux profite réellement des vendredis 13.

13 mois chez les Mayas

Un raisonnement rapide pourrait faire penser qu’il existe autant de vendredis 13 que de dimanches 13 ou de lundis 13, etc. C’est une erreur. Une étude mathématique précise du calendrier grégorien permet de montrer qu’il y en a légèrement plus… ce qui réjouira sans doute les superstitieux. Le calcul est un peu laborieux, nous le reportons plus loin pour les amateurs. Pour finir sur le nombre 13, on peut remarquer que, curieusement, le calendrier sacré maya comportait 13 mois de 20 jours chacun. Cette période est à rapprocher du mode de numération maya fondé sur la base 20. L’année comportait ainsi 260 jours, ce qui ne signifie pas grand-chose d’un point de vue astronomique mais que certains rapprochent de la durée de la grossesse, qui est de 266 jours en moyenne. Parmi les nombres porte-malheur, nous citerons 17 qui l’est en Italie car XVII est l’anagramme de vixi qui signifie « j’ai vécu » en latin et donc sous-entend « je suis mort ».

Nombre de vendredis 13

Depuis la réforme grégorienne du calendrier, de 1582, les années se reproduisent identiques tous les 400 ans et non tous les 28 ans comme auparavant dans le calendrier julien. En effet, si les années ordinaires ont toujours 365 jours et les années bissextiles 366, la règle pour déterminer si une année est bissextile a été modifiée : une année l’est si son millésime est divisible par 4 sauf s’il est divisible par 100 mais pas par 400. Le nombre d’années bissextiles d’une période de 400 ans est donc de 97 (et non de 100) ce qui donne 97 x 366 + 303 x 365 = 146 097 jours… qui se trouve divisible par 7. Ainsi, le premier janvier 1600 fut un samedi, et de même 400 ans plus tard, le premier janvier 2000. L’année 2000 fut identique à l’année 1600. Il y eut un seul vendredi 13 en 1600 (en octobre) et donc de même en 2000.

En comptant le nombre de treizième du mois sur 400 ans (ce qui peut se faire à la main mais plus rapidement par ordinateur), on trouve : 687 dimanches, 685 lundis, 685 mardis, 687 mercredis, 684 jeudis, 688 vendredis et 684 samedis. Le treize du mois a donc plus de chance d’être un vendredi que tout autre jour de la semaine ! Est-ce une bonne nouvelle ?