Les philosophes font-ils la cuisine ?

Un célèbre philosophe contemporain aurait affirmé : « les mathématiques ne servent à rien dans la vie quotidienne ». Pourtant, je me souviens parfaitement de ma mère me demandant : « quatre tiers de 200 grammes, ça fait combien Hervé ? ».

Des maths à la cuisine

Pourquoi cette question ? Pas pour tester ma capacités en calcul mental. Tout simplement parce que nous étions 8 à table et que ma mère utilisait une recette de cuisine donnée pour 6. Les ingrédients devaient donc être multipliés par 8/6, soit 4/3.  Vue la précision des balances, une réponse précise était 270 grammes, répondre 266,666… aurait été ridicule.

Des notions subtiles

Autrement dit, nous avons affaire ici, dans la vie quotidienne, à deux notions mathématiques subtiles : la multiplication par une fraction et la notion d’approximation. Pour répondre à la question avec toute la rigueur mathématique qu’elle exige, nous dirons donc : « certains philosophes ne font pas la cuisine ».

La forme de la tour Eiffel

Selon les écrits de Gustave Eiffel, la forme de sa tour ne doit rien au hasard, même si le résultat pourrait plaider pour un simple souci d’esthétique. Selon lui, tout a été étudié mathématiquement pour résister au vent. Plus précisément, il affirme que le moment des forces appliquées par le vent en chaque point est égal et opposé au moment du poids de la structure en ce point. Les calculs mathématiques d’Eiffel n’ayant pas été publiés, on a longtemps soupçonné les ingénieurs d’Eiffel d’avoir opéré empiriquement pour obtenir la forme de type exponentiel qu’on connaît.

La tour Eiffel vue du champ de Mars @Hervé Lehning

Reconstitution des calculs

Les calculs ont été repris en 2005 par deux mathématiciens américains, Patrick Weidman et Iosif Pinelis. En suivant les indications d’Eiffel, ils ont débouché sur une équation intégro-différentielle relativement simple … pour les spécialistes … dont la solution est bien une exponentielle.

Axes choisis par Weidman et Pinelis, f (x0) = 5 m, l’équation à résoudre est écrite en dessous.

Mais, en réalité, la tour Eiffel est composée de deux exponentielles pour tenir compte de la différence de forces du vent à la base et au sommet.

Les abeilles avaient raison et les logarithmes, tort !

Les abeilles seraient-elles mathématiciennes ? Sans doute non mais elles sont étonnantes. Le gâteau de cire qu’elles construisent pour y déposer leur miel est formé par deux couches d’alvéoles opposées par leur fond. Dès l’antiquité, on avait remarqué que les alvéoles ressemblaient à des prismes droits à base hexagonale régulière. Ce n’est qu’au XVIIIe siècle que l’on remarqua que le fond était l’assemblage de trois losanges identiques appartenant chacun à deux alvéoles opposées.

Les alvéoles des abeilles sont des prismes de base hexagonale terminés par trois losanges inclinés, un peu comme un crayon taillé.

Une mesure, une hypothèse …

En 1712, Giacomo Filippo Maraldi (1665 – 1729), un astronome de l’observatoire de Paris, mesura l’angle des losanges et trouva : 109 degrés et 28 minutes. En 1739, René-Antoine Réaumur ( 1683 – 1757) soupçonna les abeilles de construire le fond de façon à utiliser le minimum de cire possible.

Et un calcul

Samuel König

Sans lui donner l’origine de son problème, il demanda de le résoudre à Samuel König (1712 – 1757), le mathématicien allemand connu pour avoir enseigné les mathématiques à la marquise Émilie du Châtelet (1706 – 1749), traductrice de Newton en français. König traita le problème par le calcul différentiel et, en utilisant une table de logarithmes, il en déduisit la valeur de 109 degrés et 26 minutes. L’erreur des abeilles était négligeable. On s’émerveilla de cette précision.

Un naufrage

À l’époque, les marins utilisaient la même table que König pour leurs calculs. Malheureusement, il fallut un naufrage quelques années plus tard pour que l’on y découvre quelques erreurs. En 1743, Colin Mac Laurin (1698 – 1746) corrigea la valeur trouvée par König : il s’agissait bien de 109 degrés et 28 minutes. La table de logarithmes avait tort et les abeilles, raison !

 

Mouans-Sartoux et l’art concret.

À Mouans-Sartoux, un étrange bâtiment cubique vert pomme, fondu dans le vert des arbres attire le regard du voyageur. Il est dédié à l’art concret …

L’espace de l’art concret à Mouans-Sartoux

Art concert et abstraction.

Rien n’est plus concret, plus réel qu’une ligne, qu’une couleur, qu’une surface. Cette phrase très platonicienne de Theo van Doesburg (alias de Christian Emil Marie Küpper, 1883 – 1931), fondateur du groupe « art concret » détrompera ceux qui interpréteraient le terme « concret » en contraire d’« abstrait ».

Pourquoi un espace de l’art concret à Mouans-Sartoux, petite commune entre Grasse et Cannes où la nature semble davantage appeler l’art figuratif ? La réponse tient en la rencontre d’un maire ouvert à l’art contemporain, et professeur de mathématiques, André Aschiéri, et d’un collectionneur et artiste, Gottfried Honegger. Ce dernier, avec sa compagne Sybil Albers, a fait donation de leur collection personnelle, en 2000 à l’État français, à laquelle se sont ajoutés des compléments importants telles que les Donations Aurèlie Nemours et Catherine & Gilbert Brownstone. Actuellement le fonds compte presque 600 œuvres. Elles sont exposées à l’Espace de l’Art Concret dans un cadre adapté.

La place des mathématiques et de l’optique

Dès la première salle, les mathématiques sont omniprésentes. Le tableau de Max Bill intitulé deux zones, claire et sombre évoquera avant tout l’irrationalité de racine de deux à l’amateur de mathématiques. En effet, il met en scène sa démonstration par Socrate dans Le Ménon de Platon.

Zwei Zonen – Dunkel und Hell (1970), Max Bill (1908 – 1994).

On trouve également des rythmes classiques, comme des toiles fondées sur des rapports entre les surfaces de diverses couleurs ou des alignements.

Far off, study for homage to the square (1958), Josef Albers (1888 – 1976).

Mais le but principal de Josef Albers dans son hommage au carré est de piéger l’œil du spectateur entre les couleurs des différents carrés si bien que le carré central, le plus pâle, semble flotter au centre de la composition. Un grand nombre de toiles sont ainsi fondées sur une sorte d’illusion d’optique qui piège l’œil entre plusieurs interprétations.

Des lignes au hasard

François Morellet utilise une technique étonnante pour créer certaines de ses œuvres : le hasard. Quand on observe ses toiles, on se demande cependant s’il n’a pas fait intervenir le hasard plusieurs fois pour choisir ensuite le plus esthétique, ce qui est presque la négation du hasard. Quelle est la probabilité pour que, parmi dix droites, quatre soient approximativement concourantes et forment un faisceau évoquant un projecteur ?

Dix lignes au hasard (1985), François Morellet (1926 – 2016).

Bien sûr, notre argument n’a pas grande valeur puisque tout événement s’étant produit était de probabilité nulle avant de se produire. On peut s’interroger mais, peu importe, seul le résultat compte et il dégage une harmonie certaine, encore liée à l’incertitude du regard entre diverses interprétations.

François Morellet a d’ailleurs inventé la théorie de la « participation du spectateur ». Le regard comme la lumière sont au centre de l’art en général et de l’art concret en particulier. Cette importance devient évidente dans ses sculptures comme cette sphère découpée suivant deux séries de plans parallèles, perpendiculaires entre eux. Chaque déplacement du spectateur, chaque variation de la lumière font apparaître un treillage différent. La photographie ci-dessous est sans doute celle qui inspirera le plus le mathématicien.

Sphère trames (1970), acier inoxydable, François Morellet.

Ellipse d’acier

David et Royden Rabinowitch, des frères jumeaux, travaillent ensemble mais signent parfois leurs œuvres indépendamment. Cela explique que vous puissiez trouver des sculptures très comparables signées de l’un ou de l’autre. L’espace de l’art concret possède l’une des sculptures signées par David. Elle inspirera le mathématicien, même s’il risque de la trouver énigmatique.

Conical plane in four masses and two scales (1979), David Rabinowitch (né en 1943).

 

Les droites tracées sur l’ellipse ci-dessus évoquent l’hexagramme mystique de Pascal. Cependant, cette interprétation est fausse : la conique ne contient que trois droites et non six. D’autre part, les points percés sur la surface sont alors bien mystérieux, comme distribués au hasard. Si les quatre masses se trouvent, où sont les deux échelles ? Le titre apparemment très précis invite le spectateur à compter, et le perd entre plusieurs interprétations.

Un lemming ne se suicide jamais !

Selon la légende, le lemming – un petit rongeur ressemblant à un hamster, vivant dans les régions nordiques comme la Suède, le Canada et le Groenland – est d’un altruisme tel qu’il se suicide en masse pour le bien de sa communauté quand celle-ci devient trop nombreuse. Même si l’idée de suicides d’animaux est étonnante, l’évolution de la population lemming suit effectivement une courbe étrange.

Évolution de la population de lemmings, on note un cycle de quatre ans. Le rapport entre les minima et maxima est de 1 à 1000, ce qui peut faire penser à une extinction des lemmings.

Un film « documentaire »

Cette courbe se recopie elle-même tous les quatre ans mais, quand la population lemming est à son minimum, on peut penser à une extinction car le rapport entre minimum et maximum est de 1 à 1000 environ. En fait, il n’en est rien et ils reviennent toujours avec une périodicité de quatre ans, et ceci dans toutes les contrées où ils vivent. En 1958, dans White Wilderness, les studios Walt Disney ont présenté des vagues de lemmings se précipitant dans la mer du haut d’une falaise. Bien entendu, il s’agissait d’un trucage cinématographique. Un examen attentif du film montre d’ailleurs que l’on ne voit jamais plus de 12 lemmings simultanément à l’écran. S’il n’en est pas à l’origine, ce film « documentaire » a sans doute conforté la fable selon laquelle le lemming se suicide en masse quand la population de sa communauté devient trop importante pour la région où il habite.

Un modèle mathématique

Un labbe en train de dévorer un bébé manchot. @ Hervé Lehning

En fait, ces fluctuations peuvent s’expliquer par la présence d’un prédateur exclusivement dévoué au lemming, l’hermine. Ce petit rongeur en a d’autres, comme les renards, les labbes et les harfangs, mais ceux-ci mangent ce qu’ils trouvent le plus facilement alors que l’hermine ne chasse que le lemming. Elle provoque ainsi sa quasi extinction … et donc la sienne en conséquence, ce qui laisse aux survivants la chance de reconstituer le peuple lemming et à l’histoire de recommencer éternellement. Cette façon, somme toute littéraire, de présenter le phénomène permet de comprendre son côté qualitatif. Un modèle mathématique précise son côté quantitatif. Nous en proposons une version très rudimentaire, car il ne tient pas compte des saisons, même s’il suffit cependant à vérifier le phénomène.

Une hermine.

Admettons qu’en l’absence de prédateurs, la population des lemmings croisse hebdomadairement avec un taux dépendant de la natalité et de la mortalité naturelles. La présence de l’hermine change la donne, et ce taux doit être minoré d’une valeur proportionnelle au nombre d’hermines. Autrement dit, un nouveau coefficient rentre en jeu, qui correspond à la prédation. Pour fixer les idées, si le taux de croissance naturelle des lemmings est égal à 1,05 et le taux de prédation égal à 0,0001, une population de 1000 hermines donne un taux de croissance de la population lemming égal à son taux naturel 1,05 moins la prédation, soit 0,0001 multiplié par 1000. Le taux total est donc égal à 1,04. Si la population lemming est de 40000 individus, elle est de 40000 multiplié par 1,04 la semaine suivante, soit 41600 individus.

Pendant ce temps, la population d’hermines évolue aussi du fait de son taux de croissance naturel qui doit être majoré d’une valeur proportionnelle au nombre de lemmings. Si le taux de croissance naturel est de 0,97 et le taux dû à l’alimentation (c’est-à-dire à la prédation) est de 0,000001, le taux de croissance des hermines est de 0,97 plus 40000 multiplié par 0,000001, soit 1,01. La population d’hermines la semaine suivante est donc égale à 1000 multiplié par 1,01 soit 1010.

Gestion des animaux dans les parcs naturels

Les mêmes calculs peuvent être repris la semaine suivante et les quatre paramètres ajustés pour correspondre à la réalité constatée sur le terrain, ce que nous avons fait d’ailleurs. Les valeurs ci-dessus donnent bien une périodicité de quatre années environ. Ces formules sont générales et valables pour d’autres couples proies / prédateurs. Elles servent pour la gestion des animaux dans les parcs naturels. Par exemple, si on constate un risque de fort accroissement du nombre de prédateurs, la direction du parc peut décider d’autoriser la chasse d’un certain nombre d’animaux pour éviter un cycle d’évolution des populations chaotique.