Archives pour la catégorie Voyages

L’art du défilement, Vauban et Gaspard Monge

L’un des problèmes pour construire des fortifications à l’époque de Vauban (1633 – 1707) était  :

Comment défiler une fortification des tirs de l’ennemi ?

Le verbe « défiler » doit s’entendre ici au sens commun de « se défiler ». Comment cacher l’intérieur d’un ouvrage aux vues et aux tirs de l’agresseur ? Bien entendu, il suffit de bâtir partout des remparts assez hauts. L’ennui est que la hauteur fragilise les remparts. Le tout doit rester équilibré. Sur le terrain, les bons ingénieurs comme Vauban savaient défiler leurs ouvrages mais comment s’y prendre à partir d’un simple plan côté ?

La géométrie descriptive

Gaspard Monge (1746 – 1818) inventa la géométrie descriptive pour résoudre ce problème. De façon générale, elle permettait d’étudier certains objets de l’espace comme l’intersection de deux tores dans l’épure qui suit. Le résultat pouvait être très esthétique, comme on peut le voir dans ce cas.

Dessin se trouvant dans Objets mathématiques, Institut Henri Poincaré, livre que nous recommandons fortement.

Les déblais et remblais

Le même Monge, sans doute également motivé par la construction de fortifications, publia un Mémoire sur la théorie des déblais et des remblais où il se proposait de résoudre un problème très concret : comment déplacer des tas de sable vers un certain nombre de destinations de la manière la plus économique possible ?

Dessin explicatif du problème dans le mémoire de Monge.

Ici il s’agit de déblayer la zone de gauche pour remblayer celle de droite (ou l’inverse puisque les deux problèmes sont équivalents). Dans son mémoire, Monge étudie ce problème mais ne le résout pas dans sa généralité. Voir l’article d’Étienne Ghys dans Image des mathématiques.

Le transport optimal

Ce problème se généralise en problème du transport optimal : comment un fournisseur peut-il livrer un certain nombre de points de vente de façon à minimiser ses coûts ? Le problème de Monge a ainsi été redécouvert par Léonid Kantorovitch (1912 – 1986) qui obtint le prix Nobel d’économie en 1975 pour ses avancées sur la question en ouvrant un nouveau domaine, celui de la programmation linéaire. Plus récemment, Cédric Villani (né en 1973) a obtenu la médaille Fields en revisitant le problème du transport optimal en le rapprochant du problème de la diffusion des gaz. Cette capacité de rapprochement entre des domaines a priori différents est un marqueur des grands mathématiciens.

 

L’os d’Ishango

Au musée des sciences naturelles de Bruxelles, se trouve un os strié de nombreuses entailles, découvert dans les années 1950 à Ishango au Congo belge (devenu RDC) par Jean de Heinzelin de Braucourt (1920 – 1998). Cet os daté de 20000 ans avant notre ère n’est pas le plus ancien artefact de ce type connu, mais le nombre de ses entailles a donné un grand nombre d’hypothèses.

Compter les entailles

L’os d’Ishango est couvert de stries.

Si on sait chercher, on y trouve le nombre 60 qui, depuis les Mésopotamiens, est lié à l’astronomie, des nombres premiers comme 11, 13, 17 et 19, etc. Certains en ont déduit qu’il s’agissait d’un calendrier lunaire car 60 correspond presqu’au nombre de jours de deux lunaisons. La somme des nombres de deux colonnes se retrouvant parfois ailleurs, d’autres y voient l’ancêtre de la calculatrice. Une autre hypothèse proposée est qu’il s’agirait d’un jeu mathématique qu’aurait pratiqué l’homme d’Ishango.

Calcul des probabilités

La multiplicité des hypothèses montre que leur origine commune réside dans le calcul des probabilités : plus vous considérez de nombres, plus vous y trouverez de relations entre eux et avec d’autres. Il est cependant probable que l’os d’Ishango n’ait été destiné qu’à compter, peut-être du gibier. C’est le plus important car cela prouve que l’homme d’Ishango savait compter, même s’il n’était pas le premier.

L’hypothèse de Riemann au salar d’Uyuni

Le salar d’Uyuni est un gigantesque désert de sel sur les hauts plateaux boliviens. On y trouve un cimetière de locomotives offrant plusieurs nuances de rouilles du meilleur effet photographique.

Locomotive rouillant sur le salar d’Uyuni

Un tag étonnant

Une grande partie de ce matériel ferroviaire à l’abandon est tagué. Une inscription nous a tout de même étonné par sa composante mathématique.

L’hypothèse de Riemann taguée sur une locomotive rouillant dans le salar d’Uyuni

Le tag affirme que les zéros non triviaux (i.e. entiers négatifs pairs) de la fonction dzéta de Riemann sont complexes de partie réelle égale à 1/2. Il s’agit d’une conjecture faite par Bernhard Riemann en 1859 et aujourd’hui dotée d’un prix d’un million de dollars par l’institut Clay. Rencontre étonnante !

 

Boukhara : la forteresse et l’hyperboloïde

A Boukhara, en Ouzbékistan, une étrange construction fait face à l’antique forteresse.  Ce monument, qui n’attire pas les touristes, est pourtant témoin d’un courant artistique  important du début du vingtième siècle : le constructivisme russe.

Un château d’eau

Cette tour a été construite en 1927 par Vladimir Choukhov (1853 – 1939) pour servir de château d’eau. Désaffecté à la fin des années quarante, il est alors devenu un café jusqu’à ce qu’un accident mortel en interdise cet usage. Il vient d’être racheté par des Français pour devenir un point d’observation. Un ascenseur est prévu pour y accéder.

Le château d’eau est formé de deux séries de poutrelles d’acier qui en assurent la solidité.

Un hyperboloïde de révolution

La surface utilisée par Choukhov est célèbre en mathématiques et en architecture car elle est construite avec des droites. Pour comprendre sa fabrication, le plus simple est de partir d’un cylindre,   une surface simple à construire. Pour cela, il suffit de prendre un axe, d’y monter deux roues et d’y tendre des élastiques parallèles à l’axe. On obtient l’objet suivant.

Cylindre obtenu en tendant des élastiques entre deux roues fixées sur un axe. Les élastiques ont été choisis équidistants.

Les droites représentées par les élastiques sont les génératrices du cylindre.

On fait alors tourner la roue du haut d’un certain angle dans un sens et celle du bas du même angle dans le sens opposé. On obtient une nouvelle surface également générée par des droites.

Surface obtenue en tordant le cylindre.

Il se trouve qu’en tordant le cylindre du même angle dans un sens ou dans l’autre, on obtient la même surface, qui possède ainsi deux familles de génératrices.

Cette surface a été baptisée hyperboloïde de révolution à une nappe car elle est également obtenue en faisant tourner une hyperbole sur l’un de ses axes.

Pour des raisons physiques, cette surface est utilisée pour les tours de refroidissement des centrales nucléaires ou thermiques.

L’énigme du tunnel de Samos

Dans l’île grecque de Samos, on peut visiter un tunnel qui, selon Hérodote, fut creusé au VIe siècle avant notre ère, simultanément par ses deux extrémités … et l’erreur au point de rencontre ne fut que de 60 centimètres, comme le tracé du tunnel l’atteste toujours. On ne sait pas comment son architecte, Eupalinos, en fit les plans, mais on sait qu’ils ne doivent rien au hasard. La plupart des historiens qui se sont penchés sur la question en on déduit qu’Eupalinos avait anticipé les instruments et les mathématiques inventés plusieurs siècles après sa mort. Est-ce vraisemblable ? Pourquoi les aurait-on oubliés ensuite ? De plus, pourquoi faire des hypothèses inutiles ? Il est plus raisonnable d’essayer d’imaginer des méthodes compatibles avec les mathématiques et les instruments connus de l’époque.

Un aqueduc extérieur imaginaire …

De la source captée jusqu’à l’entrée du tunnel, l’eau suit des conduites extérieures, quoique enterrées. On peut imaginer que, dans un premier temps, l’aqueduc allait ainsi jusqu’à la sortie du tunnel en suivant grossièrement les lignes de niveaux du terrain. La topographie le permet comme le montre la carte du lieu.

Les lignes de niveaux aux alentours du tunnel de Samos (entrée en A, sortie en B) montrent qu’il est possible de contourner la montagne par l’ouest (voir l’orientation sur le dessin) en restant à niveau (ligne ACB). Le trajet fait alors environ 2200 mètres (le double du trajet direct AB).

…qui aide à trouver la sortie

Cette hypothèse est difficile à soutenir car aucun vestige d’un tel ouvrage ne nous est parvenu. De plus, le tunnel est quasiment horizontal, seul le canal qui le longe a une déclivité de six mètres sur un peu plus d’un kilomètre. Cette hypothèse d’un aqueduc extérieur donne cependant une première approche du problème, naturelle pour un constructeur d’aqueduc. Pour déterminer l’entrée et la sortie, il s’agit de se déplacer à l’horizontale au flanc de la montagne, pour rejoindre un point duquel l’aqueduc peut continuer. Des preuves archéologiques montrent que les Samiens disposaient d’instruments pour déterminer l’horizontale. Le principe en est simple. Il s’agissait de longues gouttières en terre cuite dans lesquelles on versait de l’eau. L’horizontale était obtenue quand l’eau ne s’écoulait pas. De même, ils utilisaient des fils à plomb, ce qui permettait de déterminer la verticale. On peut imaginer suivre l’horizontale ainsi en plantant des pieux dont les sommets restent au même niveau. Si le niveau mesure 2 mètres de long, et que l’incertitude est inférieure à 1 millimètre pour chaque pieu, nous obtenons une incertitude totale de 1,10 mètres. L’erreur effective à la jonction des deux branches du tunnel étant de 60 centimètres, l’utilisation de cette méthode est vraisemblable. Cependant, elle exige de planter 1100 pieux. On peut la simplifier de ce point de vue en utilisant des visées oculaires permettant d’espacer les pieux.

Pour cela, on plante deux pieux à 10 mètres l’un de l’autre, dont les sommets sont à l’horizontale et on les aligne avec un pieu à cent mètres environ, tenu par un assistant. Ceci permet de passer à un total d’une cinquantaine de pieux (deux tous les 100 mètres environ).

Visée pour maintenir l’horizontale. Les pieux A et B sont alignés grâce à un niveau à eau. Si l’erreur entre les deux est limitée à 2 millimètres, celle entre A et C sera limitée à 2 centimètres. La capacité de l’œil humain rend insensible l’erreur due à l’acuité visuelle.

L’œil humain a une capacité de résolution de 0,5 minute environ (1 / 120 degré). Avec un viseur, sur cent mètres, nous pouvons espérer une incertitude inférieure à 2 centimètres. Sur une distance de 2 200 mètres, cela donne une incertitude totale de 44 centimètres, ce qui est compatible avec l’erreur effective de 60 centimètres.

La direction de la sortie

La deuxième extrémité trouvée, comment déterminer la direction dans laquelle le tunnel doit être percé ? Une idée simple tient à la topographie du terrain. Il s’en faut de peu que l’on ne puisse voir les deux extrémités du tunnel du haut de l’Acropole. Dans ce cas, il aurait suffi d’y disposer trois pieux alignés et, par approximations successives de les aligner à des pieux plantés aux extrémités du tunnel à construire. L’opération est semblable à la précédente, sans mise à niveau.

Si le sommet S est visible des extrémités A et B, il suffit d’aligner cinq pieux, trois en S, un en A et un en B pour déterminer la direction AB. Cette opération peut être faite par essais successifs.

En fait, la topographie du terrain ne permet pas cette solution. On peut malgré tout l’appliquer, soit en surélevant le sommet au moyen d’une tour de dix mètres environ, soit en plantant des pieux intermédiaires. Une station supplémentaire, éventuellement légèrement surélevée, suffit pour réaliser un alignement visible de proche en proche.

En disposant des relais (comme I) entre les extrémités A et B et le sommet, il est possible de réaliser un alignement de pieux entre A et B. On vérifie cet alignement comme précédemment, de proche en proche.

Ceci fait, les deux pieux à chaque extrémité donnent la direction à suivre. Il est facile de la conserver ensuite. Cependant, pour être sûr de se rencontrer, le mieux est d’obliquer légèrement un peu avant le milieu des travaux car, dans un plan, deux droites non parallèles se rencontrent toujours. L’une des branches du tunnel effectivement construit par Eupalinos présente des portions en zigzag montrant qu’il n’était pas certain de ses mesures et voulait éviter de manquer le deuxième tronçon qui, lui, reste rectiligne.

Le problème de la longueur du tunnel est accessoire. Même s’il est utile de la connaître pour savoir quand obliquer pour être sûr de la rencontre, il suffit d’en avoir une approximation grossière. Une fois le tunnel construit, on peut la calculer de façon plus précise et en déduire la pente à donner au canal. Finalement, sa profondeur varie de 3 à 9 mètres pour assurer un flux constant.

Le tipi optimal

Penchons-nous sur la forme des tipis des indiens d’Amérique. Il s’agit d’un cône dont la hauteur vaut environ 75 % du diamètre de la base. Des calculs montrent que cette forme minimise la toile à utiliser pour un volume donné, comme les abeilles économisent la cire pour créer leurs alvéoles. Est-ce un hasard ? Difficile de répondre à la question car d’autres paramètres comme la solidité de l’ensemble entrent en jeu. Peu importe, ces problèmes d’optimisation se retrouvent souvent dans la nature comme dans la vie pratique.

Un tipi.

Analyse mathématique

Analysons celui-ci mathématiquement. Un tipi est une tente conique caractérisée par le rayon de sa base, R, et par sa hauteur, que nous notons proportionnellement à R, k R, car le problème tient essentiellement à ce rapport k. La capacité du tipi est égale à son volume et la surface de toile, à son aire latérale.

Le tipi est un cône caractérisé par le rayon de sa base R et par sa hauteur k R.

Le volume est égal à Pi / 3 multiplié par le carré du rayon R et par la hauteur k R. Imposer un volume de 10 mètres cube (par exemple) lie le rapport k au rayon R. L’aire latérale dépend alors uniquement de ce rapport. Cette dépendance se traduit par une courbe en forme de J à l’envers. Nous y constatons un minimum de l’aire pour une valeur de k de l’ordre de 1,4, autrement dit pour une hauteur 40 % supérieure au rayon de la base. De façon plus précise, le calcul différentiel montre que ce minimum est atteint pour k égal à la racine carrée de 2, ce qui fait 1,414 à 0,001 près.

Variation de l’aire latérale en fonction du rapport entre la hauteur et le rayon. Le calcul montre que le minimum est atteint quand k est égal à la racine de 2, soit 1,414 à 0,001 près.

À volume égal, l’aire latérale du tipi est donc minimale pour un rapport proche de 1,4. La courbe montre de plus que la variation de l’aire latérale est faible autour de ce rapport, ce qui explique que, dans la pratique, il oscille autour de 1,4.

Des plantes et des maths

Les plantes ont un rapport étonnant avec les mathématiques, hasard ou nécessité ? Je vous laisse juger.

Suite de Fibonacci

Léonard de Pise, dit Fibonacci, a créé sa suite comme un simple exercice d’arithmétique :

Un homme met un couple de lapins dans un lieu isolé de tous les côtés par un mur. Combien de couples obtient-on en un an si chaque couple engendre tous les mois un nouveau couple à compter du troisième mois de son existence ? 

Le calcul est simple, la suite donne : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc. Chaque nombre est la somme des deux qui le précèdent.Cette règle a fasciné au-delà de l’exercice. De plus, on la retrouve souvent dans la nature. En voici quelques exemples.

1, 2, 3, fleurs dans le désert du Namib (Namibie).                     © Hervé Lehning

Cette suite se retrouve plus souvent dans le décompte des pétales des fleurs. La seule façon de les compter est malheureusement de les effeuiller …

Saurez-vous trouver le nombre de Fibonacci derrière ces pétales de griffes de sorcière (littoral du sud de la France) ? © Hervé Lehning

La géométrie, des rosaces à la sphère

Après l’arithmétique, nous trouvons la géométrie avec des rotations surprenantes et des développements en sphère.

Rotation naturelle dans une plante succulente. La règle de formation des feuilles implique que celles-ci se déduisent l’une de l’autre par rotation. Littoral du sud de la France.     © Hervé Lehning
Cette plante sauvage des Alpes se développe naturellement en sphère. Parc des Écrins                © Hervé Lehning

Intersection d’un cercle et d’une droite dans la toundra

Cercle et droite sur une plante de la toundra. Groenland      © Hervé Lehning

Cette plante de la toundra groenlandaise présente deux formes géométriques simples : un cercle et une droite. Le cercle est naturel. Il correspond au développement de la plante dans toutes les directions à partir d’une graine, mais pourquoi a-t-elle dépéri d’un seul côté d’une droite ?

Une sangaku célèbre, de Hidetoshi Fukagawa

Les sangakus japonaises sont de petits chefs d’œuvres aussi bien au niveau du raisonnement mathématique que de l’esthétique. Jean Constant, par exemple, s’en est fait une spécialité (voir l’image mise en avant). La sangaku suivante a été découverte par Hidetoshi Fukagawa.

Les deux triangles (rouge et vert) inscrits dans le carré jaune sont équilatéraux, quel est le rapport entre les rayons des cercles bleus ?

Rayon d’un cercle inscrit

Les deux cercles sont inscrits dans deux triangles. Un théorème permet d’en calculer les rayons en fonction de leurs aires et de leurs périmètres. Plus précisément, le rayon du cercle inscrit dans un triangle est égal à deux fois la surface du triangle divisé par son périmètre, ce résultat est mis en évidence par un dessin : l’aire du triangle se décompose en  trois triangles de même hauteur, le rayon du cercle inscrit. L’aire de chacun de ces triangles est donc égale au rayon du cercle inscrit multiplié par la longueur du côté opposé divisée par deux. En faisant la somme, le périmètre du triangle s’introduit naturellement .

Plan d’attaque du problème

Pour calculer les rayons des deux cercles, il s’agit donc de calculer un certain nombre de longueurs de segments de la figure. L’idée pour les calculer vient si nous en oublions une partie. En utilisant les angles de 60° et de 45° en évidence, nous trouvons que les triangles rouges ont les mêmes angles et sont donc semblables.

Grâce aux rapports de similitude et au théorème de Pythagore, les mesures de longueurs apparaissent progressivement, une d’entre elles (AC) ayant été choisie comme unité. Le dessin est utile pour suivre le raisonnement. Nous en déduisons progressivement les diverses longueurs importantes. Elles sont notées sur le dessin ci-dessous.

On en déduit les valeurs des deux rayons :

Un calcul algébrique

Un calcul algébrique permet de montrer que R = 2 r. Pour cette dernière étape, aucune visualisation n’est nécessaire et nous pouvons l’exécuter avec un logiciel de calcul formel. Ce dernier calcul nous entraîne vers les extensions algébriques, nous nous arrêterons à leur porte.

L’éventail de la geisha

Dans certaines sangakus, les auteurs ont clairement privilégié l’esthétique.

Par exemple, dans celui en forme d’éventail ouvert aux deux tiers ci-dessus, il s’agit de trouver le rapport entre les rayons des cercles verts et rouges. Ici encore, l’essentiel est d’introduire les bons points, qui ne sont pas directement visibles. On trouve :

 

Quels poids portent-ils ?

Sur les chemins de l’Himalaya, jusqu’à 5000 mètres d’altitude, on rencontre sans cesse des porteurs et porteuses, parfois des enfants, surmontés de charges impressionnantes. Comment évaluer leurs poids ?

Compter les canettes

L’évaluation est relativement simple pour les porteurs de caisses de bière : on compte le nombre de canettes. le poids de chacune est facile à évaluer, un peu plus d’un tiers de kilo. Vingt paquets de dix donnent un fardeau de 70 kilogrammes … à porter sur des milliers de mètres de dénivelée !

Hotte d’un colporteur de l’Himalaya. Elle pèse environ 70 kg.                             © Hervé Lehning

Evaluer des volumes et des densités

Quel poids porte cette petite fille de 13 ans rencontrée sur le chemin de son village ?

Fillette de 13 ans, surmontée d’un imposant chargement, en route pour Phortse (400 mètres plus haut).             © Hervé Lehning

Elle y transporte des feuilles, que l’on utilise pour transformer le produit des toilettes en compost. La charge correspond malgré tout aux bottes de foin ordinaires qui, pressées, pèsent environ 20 kilogrammes. Malgré le côté impressionnant de sa charge, il est peu probable que cette jeune fille transporte plus de 10 à 15 kilogrammes sur son dos. Cela reste important pour une enfant dont la croissance n’est manifestement terminée, mais reste comparable aux poids des cartables de certains de nos collégiens.

Une buse de fonte

Buse en fonte sur le chemin de Namché Bazar. © Hervé Lehning

Autrement plus impressionnante est la buse en fonte que transporte cet homme en route vers Namché Bazar. Elle est destinée à créer une conduite forcée, pour servir à une micro usine hydro électrique. Le progrès vient ici à dos d’homme. Quel est le poids de cette buse ? Il est relativement facile d’évaluer le volume de fonte. La longueur est de 2,5 mètre environ, le diamètre 30 centimètres et l’épaisseur 1 centimètre. En mètres cubes, le volume est donc égal à :

2,5 x (0,152 – 0,142) x 3,14

soit 0,018 m3. La fonte ayant une densité de 7,4 tonnes au m3, nous en déduisons un poids de 130 kilogrammes environ. Même si nous admettons une erreur de 20 % dans notre évaluation, nous aboutissons à un poids supérieur à 100 kilogrammes, ce qui est impressionnant.