Quelle est la taille de la Française moyenne ?

Vous lisez dans la presse que la Française moyenne mesure 1 mètre 63. Si vous rencontrez une Française, quelle est la probabilité qu’elle ait cette taille ?

Moyenne et répartition

En l’absence d’informations supplémentaires, impossible de répondre à cette question. Pour cela, il faut connaître la répartition de la taille des Françaises. De plus, la question est mal formulée : la Française moyenne est un mythe … il est préférable de parler de la taille moyenne des Françaises. En fait, elles se répartissent en 25 % de petites (1 mètre 54 en moyenne), 50 % de moyennes (1 mètre 63 en moyenne) et 25 % de grandes (1 mètre 72 en moyenne). La répartition exacte suit une courbe en forme de cloche comme c’est le cas généralement quand on étudie une population homogène sous un certain critère.

Courbe de répartition de la taille des Françaises. Peu ont la taille moyenne !

Cette courbe ne suffit pas non plus pour répondre à la question, même si elle donne l’idée que la probabilité qu’une femme donnée mesure 1 mètre 63 se situe entre 10 et 20 %. Les données statistiques sont donc à analyser avec prudence.

Boukhara : la forteresse et l’hyperboloïde

A Boukhara, en Ouzbékistan, une étrange construction fait face à l’antique forteresse.  Ce monument, qui n’attire pas les touristes, est pourtant témoin d’un courant artistique  important du début du vingtième siècle : le constructivisme russe.

Un château d’eau

Cette tour a été construite en 1927 par Vladimir Choukhov (1853 – 1939) pour servir de château d’eau. Désaffecté à la fin des années quarante, il est alors devenu un café jusqu’à ce qu’un accident mortel en interdise cet usage. Il vient d’être racheté par des Français pour devenir un point d’observation. Un ascenseur est prévu pour y accéder.

Le château d’eau est formé de deux séries de poutrelles d’acier qui en assurent la solidité.

Un hyperboloïde de révolution

La surface utilisée par Choukhov est célèbre en mathématiques et en architecture car elle est construite avec des droites. Pour comprendre sa fabrication, le plus simple est de partir d’un cylindre,   une surface simple à construire. Pour cela, il suffit de prendre un axe, d’y monter deux roues et d’y tendre des élastiques parallèles à l’axe. On obtient l’objet suivant.

Cylindre obtenu en tendant des élastiques entre deux roues fixées sur un axe. Les élastiques ont été choisis équidistants.

Les droites représentées par les élastiques sont les génératrices du cylindre.

On fait alors tourner la roue du haut d’un certain angle dans un sens et celle du bas du même angle dans le sens opposé. On obtient une nouvelle surface également générée par des droites.

Surface obtenue en tordant le cylindre.

Il se trouve qu’en tordant le cylindre du même angle dans un sens ou dans l’autre, on obtient la même surface, qui possède ainsi deux familles de génératrices.

Cette surface a été baptisée hyperboloïde de révolution à une nappe car elle est également obtenue en faisant tourner une hyperbole sur l’un de ses axes.

Pour des raisons physiques, cette surface est utilisée pour les tours de refroidissement des centrales nucléaires ou thermiques.

Les valeurs de π

En 1897, une résolution établissant que π = 4 fut proposée au vote des représentants de l’état de l’Indiana (États-Unis d’Amérique). Avant de sourire, le mathématicien se posera une question : pour quelle notion de distance ?

Qu’est-ce que π ?

Archimède a répondu à cette question voici fort longtemps. Il s’agit du rapport entre la circonférence d’un cercle et son diamètre. Qu’est-ce qu’un cercle ? L’ensemble des points du plan à égale distance d’un point donné. Qu’est-ce que la distance ? Ici, nous ne pouvons que marquer une pause dans nos réponses toutes faites. Plusieurs distances sont envisageables !

Distance à vol d’oiseau

En mathématiques, la distance la plus utilisée est qualifiée d’euclidienne. Dans la vie courante, on parle souvent de distance à vol d’oiseau. La distance d’un point A à un point B est la longueur du vecteur V qui mène de A à B. En tenant compte du théorème de Pythagore, elle s’exprime sous la forme :

| V |2 = x2 + y2.

Les cercles associés à cette distance ont la forme ronde usuelle. Le nombre π a la valeur connue, 3,14 à 0,01 près.

Distance Manhattan

Même pour un oiseau, la distance euclidienne correspond à une certaine vision du monde, où le vol est possible dans toutes les directions. À Manhattan, même pour voler, mieux vaut suivre les avenues, qui forment un maillage rectangulaire. La longueur d’un vecteur s’y exprime sous la forme :

| V | = | x | + | y |.

La distance Manhattan correspond au plus court chemin, si l’on marche le long des rues d’une ville au plan rectangulaire (comme Manhattan)

Le cercle unité a alors la forme d’un losange, sa circonférence est égale à 8 donc, pour cette distance, π = 4.

On retrouve la valeur 4 pour une autre distance (appelée distance infinie), celle donnant comme longueur à V, la plus grande des valeurs absolues de ses coordonnées. Les cercles ont alors une forme de carré.

Les « cercles » de même centre et de même rayon pour les trois distances.

Le décret de l’Indiana : humour ou sottise ?

Nous avons trouvé deux fois 4 et une seule fois 3,14. On pourrait en conclure que π = 4 est la valeur la plus raisonnable à retenir. Quand les rues des villes se coupent à angle droit, la distance Manhattan est la plus pertinente. Est-ce pour cette raison qu’une loi visant à adopter la valeur π = 4 fut proposée au vote de l’assemblée générale de l’état de l’Indiana ? Vous pouvez en juger vous-même en allant lire le texte plein d’humour de ce projet de loi sur l’Internet (utilisez un moteur de recherche pour en trouver une copie). Nous laisserons de toutes façons la question aux amateurs d’histoire (s).

Autres distances

Les trois distances utilisées se généralisent en utilisant un nombre p ³ 1 quelconque. Plus précisément, on pose :

| V |p = | x | p + | y | p.

La distance euclidienne correspond au cas : p = 2, la distance Manhattan au cas : p = 1. On démontre, par un passage à la limite, que la distance infinie correspond bien au cas : p = ∞.

Pour chacune de ces distances, nous obtenons une valeur de π, que nous notons πp. Comment en calculer une valeur approchée ? Tout simplement en procédant comme dans le cas de la distance euclidienne, c’est-à-dire en remplaçant le cercle par des polygones réguliers ayant un grand nombre de côtés. Si nous effectuons ces calculs pour p variant de 1 à 2 avec une précision de 0,001, nous obtenons le tableau :

 

p 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0
πp 4,000 3,757 3,573 3,434 3,333 3,260 3,209 3,176 3,155 3,145 3,142

 

Ainsi, πp semble décroissant de 1 à 2. Le phénomène inverse se produit de 2 à l’infini. On est amené à plusieurs conjectures :

1) π est la valeur minimale des πp,

2) πp prend toutes les valeurs entre π et 4,

3) πp = πq si 1/p + 1/q = 1.

On démontre que les trois sont exactes, en utilisant des raisonnements de calcul intégral dépassant le cadre de cet article.

Pour ces calculs, voir sur mon site.