Archives pour la catégorie Sciences

Les pesées de Leibniz et de Bachet

Voici une question autrefois pratique, qui reste aujourd’hui ludique. Elle suppose l’utilisation d’une balance de Roberval, qui fut inventée par Gilles Personier de Roberval (1602 –  1675). Nous en donnons le schéma mais, pour comprendre l’usage que l’on en fait, il suffit de savoir que les deux plateaux s’équilibrent quand les masses qui s’y trouvent sont égales.

Schéma d’une balance de Roberval. Le parallélogramme articulé aux quatre sommets (en rouge) peut pivoter autour du point marqué (en blanc) sur la figure. L’aiguille est dirigée verticalement quand les poids sur les plateaux s’équilibrent.

Pesée binaire de Leibniz

Leibniz a montré que, si on dispose d’une série de poids dont chacun est le double du précédent, on peut réaliser toutes les pesées possibles. Pour voir comment, imaginons un objet de 713 grammes à peser avec des poids de 1, 2, 4, 8, 16, 32, 64, 128, 256 et 512 grammes. L’objet étant dans un plateau, nous commençons par placer le plus gros poids possible, c’est-à-dire celui de 512 grammes dans l’autre. Nous recommençons ensuite itérativement jusqu’à l’équilibre.

Voyons les étapes de ce processus. Le déficit est de 713 – 512 = 201 grammes. Nous utilisons alors le poids de 128 grammes (le plus gros possible). Il reste 201 – 128 = 73 grammes. Après le poids de 64 grammes, il ne reste plus que 9 grammes. Nous terminons en décomposant 9 en 8 + 1. Finalement, nous avons équilibré le poids de 713 grammes avec les poids prévus. D’un point de vue arithmétique, cela s’écrit :

713 = 512 + 128 + 64 + 8 + 1.

Ce résultat correspond à l’écriture de 713 en base deux : 713 = 29 + 27 + 26 + 23 + 20 ce que l’on peut noter : 1011001001. En base dix, nous écrivons : 713 = 7.102+ 101+ 3.100. La différence apparente est que l’écriture en base deux n’implique que des additions, pas de multiplication. En fait, il n’en est rien puisque les chiffres en base deux sont seulement 0 et 1 au lieu de 0, 1, …, 9. La propriété est générale, notre démarche prouve d’ailleurs que tout nombre s’écrit en binaire.

Pesée ternaire de Bachet

À l’occasion d’une récréation mathématique, Claude Bachet de Mériziac (1581 – 1638) a montré que, à condition d’utiliser les deux plateaux, on peut peser n’importe quel objet à l’aide d’une série de poids dont chacun est le triple du précédent. Voyons comment sur l’exemple précédent et des poids de 1, 3, 9, 27, 81, 243 et 729 grammes. L’idée précédente fonctionne si on dispose de deux poids de chaque sorte. Il suffit d’écrire 713 en ternaire. On commence par retrancher deux fois 243 à 713, il reste 227. On recommence avec deux fois 81, il reste 65. On retranche alors deux fois 27, il reste 11 ce qui fait 9 plus deux fois 1. Cette suite d’opérations fournit l’écriture ternaire : 222102 ce que l’on peut écrire : 713 = 2.35 + 2.34 + 2.33 + 32 + 2.30. Pour conclure, l’idée essentielle est d’éliminer les 2 du membre de droite de cette égalité en remarquant que : 3 = 2 + 1. Plus précisément : 713 + 35 + 34 + 33 + 30 = 36 + 35 + 34 + 32 + 31 ce qui se simplifie en : 713 + 33 + 30 = 36 + 32 + 31, c’est-à-dire en : 713 + 27 + 1 = 729 + 9 + 3. Il suffit donc de disposer des poids de 27 et 1 grammes dans le plateau de gauche et de 729, 9 et 3 grammes dans celui de droite.

Jean-Henri Fabre, un précurseur

Jean-Henri Fabre est connu pour son observation des insectes. Excellent vulgarisateur, il est de ceux qui savent communiquer leurs passions. Les mathématiques en font partie.

Jean-Henri Fabre

Jean-Henri Fabre (1823 – 1915)

Bien que titulaire d’une licence de mathématiques, d’un doctorat en sciences naturelles et de plusieurs autres diplômes, Jean-Henri Fabre est un autodidacte comme il le rappelle lui-même :

Apprendre sous la direction d’un maître m’a été refusé. J’aurais tort de m’en plaindre. L’étude solitaire a sa valeur ; elle ne vous coule pas dans un moule officiel, elle vous laisse votre pleine originalité. Le fruit sauvage, s’il arrive à maturité, a une autre saveur que le produit de serre chaude ; il laisse aux lèvres qui savent l’apprécier un mélange d’amertume et de douceur dont le mérite s’accroît par le contraste.

Son côté autodidacte le rend attachant pour certains et agaçant pour d’autres. Quelques modernes lui reprochent aussi de ne pas avoir épousé les thèses de Darwin qui, en revanche, reconnaissait en lui un observateur incomparable. Il s’explique lui-même dans une de ses lettres à Darwin :

Vous vous étonnez de mon peu de goût pour les théories, si séduisantes qu’elles soient. Ce travers d’esprit, si c’en est un, tient un peu à mes longues études mathématiques qui m’ont habitué à ne reconnaître la vérité qu’à la lueur d’un irrésistible faisceau de lumière. Ne jurant par aucun maître, libre d’idées préconçues, peu enclin aux séductions des théories, je cherche avec passion la vérité, près à l’admettre quelle qu’elle soit et de quelque fait qu’elle vienne. Et comme moyen de recherche, je ne connais qu’une chose : l’expérience.

Par ailleurs, Darwin l’avait chargé d’expériences sur les insectes retournant à leurs nids. Les résultats se trouvent dans l’œuvre de Fabre. De façon générale, on trouvera la plupart des écrits de Fabre sur internet.

Fabre créationniste ?

Parmi les critiques modernes faites à Jean-Henri Fabre, certains le stigmatisent comme créationniste car il ne croyait pas à la théorie de Darwin, qu’il comparait à celle de la génération spontanée. À la défense de Fabre, il faut noter que la théorie originelle de Darwin n’était pas celle qui porte son nom aujourd’hui. Il s’agissait plutôt d’une transposition de la sélection des espèces domestiques, pratiquée depuis longtemps par les éleveurs, en une sélection naturelle sous l’effet de modifications du milieu. Autrement dit, il lui manquait l’explication qui viendra avec la découverte des gênes, par Gregor Mendel au début du XXe siècle. La théorie de l’évolution telle que nous la connaissons est postérieure de vingt ans à la mort de Fabre ! Comment peut-on lui reprocher de ne pas l’avoir reconnue ?

Mais l’essentiel n’est pas là, il est dans deux choses, sans parler de l’inélégance d’attaquer les morts, qui ne peuvent se défendre. Premièrement, il faut savoir ne pas se tromper d’adversaires. Les obscurantistes que sont les créationnistes ne sont pas les disciples de Jean-Henri Fabre. Ils sont dans des religions qui refusent la science, et malheureusement pas la violence. Deuxièmement, de Jean-Henri Fabre retenons plutôt l’exceptionnel talent de vulgarisateur. Pour finir sur une note poétique et liée à la question de l’évolution, voici l’un de ses commentaires sur la parade nuptiale des scorpions languedociens : La colombe a, dit-on, inventé le baiser. Je lui connais un précurseur : c’est le scorpion.

Parade amoureuse de scorpions languedociens. Dans un cas sur deux au moins, le mâle (à droite) finira dévoré par la femelle (à gauche), ce qui atténue l’impression romantique donnée par Fabre.

Jean-Henri Fabre a réussi à me faire regarder les scorpions autrement, c’est pourquoi je me souviens de cette remarque. Aujourd’hui, elle me fait m’interroger : selon la théorie créationniste, parler de précurseur d’une espèce a-t-il un sens ?

Descriptions et mathématiques chez Fabre

Dans ses souvenirs entomologiques, Jean-Henri Fabre dépeint les mœurs des insectes de manière vivante, en les ramenant souvent aux nôtres. Il décrit ainsi le carabe doré en nous emmenant d’abord visiter les abattoirs de Chicago pour comparer ensuite leur efficacité à celles des carabes dont on saisit mieux ainsi la férocité comme la voracité.

Le carabe doré, qui sera l’occasion d’une digression sur les mœurs humaines pour Jean-Henri Fabre.

Il conclut alors sur nos origines et notre avenir, avec l’abolition de l’esclavage et l’instruction des femmes, les deux voies du progrès moral selon lui. Cette façon de généraliser sera parfois critiquée plus tard, comme peu scientifique. Il est vrai que, par moments, Fabre concluait un peu vite. Par exemple, voici comment il décrit la toile d’une araignée, l’épeire :

Nous reconnaîtrons d’abord que les rayons sont équidistants ; ils forment de l’un à l’autre des angles sensiblement égaux […] les divers tours de spire […] avec les deux rayons qui les limitent, forment d’un côté un angle obtus et de l’autre un angle aigu […] d’un secteur à l’autre, ces mêmes angles, l’obtus comme l’aigu, ne changent pas de valeur, autant que peuvent en juger les scrupules du regard seul.

Fabre reconnaît alors une propriété caractéristique de la spirale logarithmique et en conclut que la toile de l’épeire épouse cette forme, ce qui est rapide surtout quand la mesure a été faite à l’œil. Ceci dit, cela n’enlève rien à la qualité de son travail, et il n’en reste pas moins que, du fait de sa construction, la toile prend une forme de spirale.

Scarabée sacré en train de confectionner une boule.

De même, c’est de manière très mathématique qu’il explique la forme de poire que le scarabée sacré donne à la bouse dans laquelle il dépose son œuf : une sphère pour minimiser la surface externe afin de réduire la dessiccation, qui rendrait la bouse immangeable pour la larve, coiffée d’une sorte de cylindre contenant l’œuf, qui se trouve ainsi dans un endroit plus aéré.

 

Les lois de Mendel et le principe de Hardy

Gregor Mendel (1822 – 1884) est connu pour avoir posé les premières lois de la génétique. Elles sont de nature si mathématique que Godfrey Hardy, le grand mathématicien britannique du début XXe siècle, connu pour sa critique des mathématiques appliquées, les a prolongées. Imaginons qu’une fleur vienne en deux couleurs : blanche et noire, jamais grise ou autre et que ces deux variétés puissent s’hybrider, c’est-à-dire se mélanger. Imaginons que deux parents à fleurs blanches donnent toujours des enfants à fleurs blanches, alors que les parents à fleurs noires peuvent donner des blanches comme des noires.

Né Johann Mendel en 1822, Mendel prendra le prénom de Gregor à son entrée au monastère de Brunn (Tchéquie), en Autriche à l’époque. Il y trouva un milieu intellectuel stimulant et put y installer un jardin expérimental, où il fit ses recherches sur l’hybridation. En 1866, il devint supérieur de son couvent, ce qui mit fin à ses recherches en botanique. Il se consacra alors à l’administration du monastère ainsi qu’à des recherches en météorologie, pour lesquelles il fut reconnu par ses contemporains … davantage que pour ses apports à la génétique.

La mathématique de l’hybridation

Gregor Mendel a étudié ces lois de l’hybridation en pollinisant artificiellement des pois, qui se présentent sous deux formes facilement discernables. Nous ne décrirons pas ses expériences en détail. Son premier résultat est d’ordre statistique. En croisant une fleur noire et une fleur blanche, à la première génération, on obtient des fleurs blanches et, à la seconde, trois quarts de fleurs blanches et un quart de fleurs noires.

Deux premières générations d’un croisement blanche / noire.

Pour le mathématicien, une explication logique est de penser que le gène de la couleur des fleurs se divise en deux moitiés, ses deux allèles : blanc et noir. A priori, il existe donc quatre combinaisons possibles de ces deux allèles : blanc / blanc, blanc / noir, noir / blanc et noir / noir. Cette propriété est cachée car seuls les porteurs du gène blanc / blanc ont des fleurs blanches, tous les autres ont des fleurs noires. C’est pourquoi on parle de caractère dominant pour la couleur noire, et de caractère récessif pour la couleur blanche. Cette domination est cependant très relative car les combinaisons se faisant de façon équiprobable, à la seconde génération, nous trouvons une fois sur quatre la combinaison blanc / blanc, donc des fleurs blanches.

Cette théorie de Mendel ne fut pas comprise en son temps. Les biologistes pensaient que les caractères dominants devaient forcément augmenter dans la population, ce que les calculs précédents nient. Plus étrangement encore, on ne vit pas immédiatement le lien avec la théorie de l’évolution de Darwin, pourtant contemporaine de celle de Mendel.

Le principe de Hardy

À l’opposé de Mendel, qui était prêtre, Godfrey Hardy était un athée convaincu. Son athéisme comprenait cependant une étrange part d’autodérision, si on en croît l’anecdote suivante. La peur d’un naufrage lui fit écrire à un collègue pour lui annoncer qu’il avait démontré l’hypothèse de Riemann. Il aurait ensuite justifié son envoi en disant que Dieu, qu’il tenait pour son ennemi intime, n’allait pas le laisser mourir et laisser croire ainsi qu’un tel impie avait réussi à démontrer cette conjecture, encore ouverte de nos jours. Il est tout aussi étrange qu’un mathématicien pur aussi convaincu ait publié un article de biologie. Il le serait encore davantage si, un jour, il était plus connu pour son apport à la génétique que pour ses théorèmes mathématiques. Le moteur de recherche Google laisse penser que ce jour viendra puisque « théorème Hardy » donne 56 700 résultats alors que « principe Hardy » en donne 4 450 000. Godfrey Hardy y verrait sans doute une revanche de son ennemi.

Si les mathématiques appliquées ont pu un jour être vues comme « impures » par certains mathématiciens « purs », ce fut le cas de Godfrey Hardy. On s’étonnera alors de voir son nom mêlé à une question de biologie. C’est pourquoi il s’excusa presque de s’immiscer dans ce domaine. En 1908, au cours d’un dîner, on lui demanda s’il était possible de déterminer mathématiquement la proportion d’allèles dominants permettant l’évolution dans une population. Hardy étant un mathématicien pur, sa réponse réclama quelques hypothèses. Tout d’abord, la population devait être de grande taille, sans migration, estimée infinie, les individus s’y croiseraient aléatoirement mais les générations seraient séparées. Enfin, il n’y aurait ni mutation, ni sélection. Tout ceci assure la rigueur du raisonnement suivant.

Considérons un gène à deux allèles A et a possédant les fréquences p et q = 1 – p  dans une certaine génération. Quelles sont les fréquences à la génération suivante ?

Pour le déterminer, comptons d’abord les fréquences des diverses combinaisons à la génération suivante : AA, Aa et aa. Il s’agit d’une question élémentaire de probabilité. Pour qu’un individu soit AA, il doit avoir reçu l’allèle A de ses deux parents, supposés aléatoires d’après l’hypothèse de Hardy. La fréquence de chacun étant égale à p, la probabilité est égale à p2. De même, celle de aa est q2. Pour Aa, deux cas sont possibles puisque cela peut provenir d’un A de la mère et d’un a du père, comme du contraire. On obtient donc 2 pq.

Si la population totale de cette nouvelle génération est égale à N, le nombre d’allèles y est égal à 2N. L’allèle A se trouve deux fois dans AA et une fois dans Aa, son nombre est donc égal à 2 p2 N + 2 pq N. Sa fréquence est ainsi égale à p2 + pq = p (p + q) = p puisque p + q = 1. Il en est de même de l’allèle a. Autrement dit, sous les hypothèses énoncées plus haut, la fréquence des allèles ne se modifie pas d’une génération à l’autre.

Ainsi, les relations de dominance entre allèles n’influent pas sur leurs fréquences. Autrement dit, l’évolution est impossible sous les hypothèses de Hardy … il faut tenir compte des mutations.

 

La spirale logarithmique, une courbe zoologique ?

La même courbe se retrouve-t-elle dans les galaxies, certains mollusques et les toiles d’araignées ? Enquête sur la spirale logarithmique.

La spirale d’Archimède

Imaginez ! Une droite tourne à vitesse angulaire constante autour d’un point O. Si, partant de O, un point M parcourt cette droite à vitesse constante, on obtient une spirale d’Archimède. On démontre facilement que les spires y sont régulièrement espacées.

Spirale d’Archimède. Elle est engendrée par un point mobile M partant d’un point O, à vitesse constante sur une droite tournant à vitesse angulaire constante autour de O.

La spirale logarithmique

Si, toujours partant de O, le point M parcourt la droite à une vitesse proportionnelle à la longueur OM, il dessine une autre courbe, appelée spirale logarithmique depuis Pierre Varignon (1654 – 1722) mais étudiée auparavant par René Descartes (1596 – 1650) avant d’être choisie par Jacques Bernoulli (1654 – 1705) pour orner sa tombe. Malheureusement, le sculpteur ignorait cette courbe et grava une spirale d’Archimède.

 

Spirale logarithmique. Elle est engendrée par un point mobile M partant d’un point O, à vitesse proportionnelle à OM sur une droite tournant à vitesse angulaire constante autour de O.

Au lieu d’être régulièrement espacées, les spires suivent une progression géométrique de raison constante. Autre propriété de la spirale : elle coupe le rayon OM suivant un angle constant.

Inscription sur la tombe de Jacques Bernoulli, avec la spirale en bas.
Sur cet agrandissement, on voit que le sculpteur a gravé une spirale d’Archimède et non une spirale logarithmique. L’inscription latine « eadem mutata resurgo » signifie « déplacée, je réapparais à l’identique ».

Le développement du nautile

Le nautile est un mollusque marin dont la coquille est en forme de spirale. L’espace entre les spires étant triplé à chaque enroulement, elle évoque une spirale logarithmique. Pour examiner si cette forme est fortuite ou non, il est nécessaire d’en comprendre la provenance.

Coupe d’un nautile faisant apparaître une forme de spirale logarithmique.

La coquille du nautile est divisée en chambres closes, l’animal n’occupant que la dernière. Les autres sont remplies d’un mélange de liquide et de gaz, toutes communiquent entre elles au moyen d’un siphon.

Nautile vivant. L’animal n’occupe que la dernière chambre. Il se déplace d’avant en arrière en expulsant de l’eau du côté de sa bouche.

Ces chambres correspondent à l’évolution progressive du mollusque. Quand il grossit, ne pouvant agrandir la chambre où il se trouve, il en crée une autre dans son prolongement, un peu plus grosse mais semblable.

Pour montrer que cette idée mène effectivement à une spirale logarithmique, prenons comme modèle de la coquille une suite de triangles rectangles d’angle au sommet constant égal à 30°. Le rapport entre un triangle et son suivant est de 115 % (l’inverse du cosinus de 30° soit 2  divisé par racine de 3 pour être précis), ce qui correspond bien à une spirale logarithmique. L’idée correspond à un accroissement progressif de la taille de l’animal. Il n’est pas besoin d’imaginer de plans compliqués inscrits dans les gènes du nautile pour cela, juste une façon de croître.

Suite de triangles rectangles formant une (approximation de) spirale logarithmique.

La spirale logarithmique se retrouve pour les mêmes raisons dans d’autres animaux, comme la planorbe, un escargot marin très utilisé dans les aquariums car il se nourrit d’algues et de plantes à la limite du pourrissement.

Une coquille de planorbe en forme de spirale logarithmique.

Les toiles d’araignées

La toile d’araignée est avant tout un piège destiné à attraper des insectes. Certaines espèces tissent des toiles où il est bien difficile de reconnaître la moindre régularité.

Il n’est pas facile de reconnaître la moindre courbe mathématique dans cette toile d’araignée. En revanche, sans le soleil en contre jour, il est difficile de la détecter.

Les espèces les plus communes en France, les épeires, fabriquent cependant des toiles en forme de spirales. Après avoir bâti un cadre entre quelques branches, l’araignée tisse un réseau régulier de segments rectilignes partant tous d’un même point. Un fois ce travail fini, elle forme une spirale en les reliant. Le célèbre entomologiste Jean-Henri Fabre (1823 – 1915) a voulu y reconnaître une spirale logarithmique, tout en remarquant que l’action de la pesanteur transformait chaque segment en chaînette, la forme que prend naturellement un fil pesant comme les câbles électriques ou les chaînes que l’on porte autour du cou.

Cette toile d’épeire laisse plus penser à une spirale d’Archimède qu’à une spirale logarithmique. On y remarque également les segments transformés en chaînette sous l’effet de la pesanteur.

L’os d’Ishango

Au musée des sciences naturelles de Bruxelles, se trouve un os strié de nombreuses entailles, découvert dans les années 1950 à Ishango au Congo belge (devenu RDC) par Jean de Heinzelin de Braucourt (1920 – 1998). Cet os daté de 20000 ans avant notre ère n’est pas le plus ancien artefact de ce type connu, mais le nombre de ses entailles a donné un grand nombre d’hypothèses.

Compter les entailles

L’os d’Ishango est couvert de stries.

Si on sait chercher, on y trouve le nombre 60 qui, depuis les Mésopotamiens, est lié à l’astronomie, des nombres premiers comme 11, 13, 17 et 19, etc. Certains en ont déduit qu’il s’agissait d’un calendrier lunaire car 60 correspond presqu’au nombre de jours de deux lunaisons. La somme des nombres de deux colonnes se retrouvant parfois ailleurs, d’autres y voient l’ancêtre de la calculatrice. Une autre hypothèse proposée est qu’il s’agirait d’un jeu mathématique qu’aurait pratiqué l’homme d’Ishango.

Calcul des probabilités

La multiplicité des hypothèses montre que leur origine commune réside dans le calcul des probabilités : plus vous considérez de nombres, plus vous y trouverez de relations entre eux et avec d’autres. Il est cependant probable que l’os d’Ishango n’ait été destiné qu’à compter, peut-être du gibier. C’est le plus important car cela prouve que l’homme d’Ishango savait compter, même s’il n’était pas le premier.

Le déclin de l’art de chiffrer sous Napoléon Ier

Sous l’impulsion de la dynastie Rossignol, la cryptographie française a connu une première apogée aux XVIIe et XVIIIe siècles.

La régression de la Révolution et de l’Empire

L’excellence française en matière de cryptographie se perdit à la Révolution. Une des raisons pour cela est sans doute la dissolution du cabinet noir, ce qui était une des doléances importantes de 1789. Une expertise qui se transmettait de génération en génération semble alors s’être perdue. En particulier, la faiblesse de ne chiffrer que les parties qu’on veut garder secrètes devint presque systématique dans l’armée révolutionnaire et dans l’armée impériale qui lui succéda. On y distinguait deux types de chiffres, les petits et les grands, même s’il ne serait pas exagéré de dire qu’ils étaient tous rendus petits par leurs utilisateurs, comme cela ressort des papiers de George Scovell , le décrypteur du général britannique Wellington au Portugal et en Espagne.

George Scovell (1774 – 1861)

Comme ils le feront ensuite au cours des deux guerres mondiales, les Britanniques systématisèrent l’interception et le décryptement des messages en créant, sous les ordres de Scovell, un corps d’éclaireurs chargé, en plus de la mission habituelle de guider l’armée, de porter les messages, d’intercepter ceux de l’ennemis et de les décrypter. Bien entendu, ces éclaireurs étaient choisis pour leur connaissance du français, de l’espagnol et de l’anglais, en plus de leurs qualités proprement militaires. En ce qui concerne l’interception, les éclaireurs de Scovell furent aidés par la guérilla qui rendit les routes peu sûres pour l’armée française, si elle ne se déplaçait pas en nombre. Les petits chiffres pouvaient être de simples substitutions alphabétiques.

Un exemple lors de la campagne d’Allemagne en 1813

Les dépêches de la Grande Armée étaient envoyées en plusieurs exemplaires. L’ennemi récupérait souvent plusieurs exemplaires du même message ce qui aurait pu ne pas être grave s’ils avaient tous étaient chiffrés de façon identique. La reproduction se faisait apparemment à partir de l’original non chiffré ce qui donne, par exemple, ces deux exemplaires chiffrés différemment de la même dépêche du Maréchal Berthier en septembre 1813, un mois avant la bataille de Leipzig.

Dépêche chiffrée

Péterswald, ce 17 septembre 1813,

Monsieur le Maréchal,

L’empereur ordonne que 175. 138. 167. 164. 90. 138. 167. 152. 169. 145. 53. 166. 117. 137. 103. 157. 176. 152. 167. 134. 37. 37. 117. 174. 169. 106. 171. 15. 117. 15. 132. 6. 175. 176. 126. 48. 164. 153. 126. 32. 50. 175. 176. 126. 25. 68. 94. 105. 122. 171. 115. 176. 15. 164. 118.169. 166. 35. 138. 169. 81. 136. 20. 173. 138. 53. 171. 107. 87. 82. 131.. 15. 52. 134. 81. 94. 137. 90. 138. 169. 106. 51. 169. 116. 168. 115. 175. 176. 126. 137. 148. 115. 6. 119. 156. 90. 3. 176. 177. 146. 146.52.169. 82. 131. 169. 107. 92. 126. 52. 167. 23. 53. 35. 138. 6. 61. 167. 52. 106. 171. 39. 53. 50. 52. 6. 72. 167. 177. 169. 117. 167. 137. 22. 145. 171. 115. 167.68.154. 107. 94. 138. 164. 126. 115. 176. 16. 115. 167. 20. 176. 131. 67. 126. 6. 145. 175. 138. 167. 126. 115. 23. 126. 68. 23. 159. 92. 53. 93. 81. 94. 137. 22. 6. 90. 35. 138. 169.81. 174. 169. 119.53. 115.15.

Le Prince Vice-Connétable, Major Général,

Berthier

Dépêche partiellement chiffrée

Péterswald, ce 17 septembre 1813,

Monsieur le Maréchal,

L’empereur ordonne que vous vous portiez le plus tôt possible 167. 138. 169. 106. 171. 15. 117 avec son infanterie, sa cavalerie et son artillerie, en ne laissant 15. 164. 138. 169. 176. 166. 35. 138. 169. 81 que ce que Sa Majesté a désigné pour 106. 78. Son principal but sera de rester 107. 87. 176. 169. 53. 52. 167. 52. 35. 138. 6. 85. 82. 52. 106. 171. 171. 15. 117 et de chasser 117. 107. 156. 169. 145. 171. 115. 167. 68 qui manœuvrent dans 20. 176. 131. 75. Vous pouvez vous rendre en droite ligne 156. 169. 40. 35. 138. 169. 81. 167. 138. 169. 87. 53. 91.

Le Prince Vice-Connétable, Major Général,

Berthier

Conséquences

Grâce à cette maladresse, si les deux messages sont interceptés, l’ennemi peut commencer à les décrypter. Par exemple, la première phrase « L’empereur ordonne que vous vous portiez le plus tôt possible » appelle en suite « sur une ville ou un lieu. Il est vraisemblable que 167 signifie S, 138, U et 169, R. De même, « en ne laissant » appelle « à » donc 15 signifie probablement A. En reportant ceci dans le texte, on découvre à la fin de la dépêche :

« Vous pouvez vous rendre en droite ligne 169. R. 40. 35. UR. 81. S U R 87. 53. A. » ce qui signifie vraisemblablement : Vous pouvez vous rendre en droite ligne par telle ville (40. 35. UR. 81.) sur telle autre (87. 53. A). Le nom de la première ville, qui est allemande, finit sans doute par « burg » donc 35 signifie B et 81, G.

La partie entièrement chiffrée commence alors à se dévoiler. Par exemple, le « vous vous » a été chiffré en 175. U. S. 164. 90. U. S. donc 175 signifie VO, 164, V et 90, O. Ces équivalences permettent de progresser au point que l’avant dernière ville se dévoile, il s’agit de Coburg. Une carte d’Allemagne nous permet alors de penser que la dernière ville, dont le nom finit par A, est Iéna. En continuant ainsi, on finit par découvrir la dépêche de Berthier :

L’empereur ordonne que vous vous portiez le plus tôt possible sur la Saale, avec son infanterie, sa cavalerie et son artillerie, en ne laissant à Wurtzburg que ce que sa Majesté a désigné pour la garnison. Son principal but sera de rester maître des débouchés de la Saale et de chasser les partisans ennemis qui manœuvrent dans cette direction. Vous pouvez vous rendre en droite ligne par Coburg sur Iéna.

Généralité de l’erreur

Cette erreur de chiffrer de deux façons différentes la même dépêche se retrouve à d’autres époques. Ainsi, la machine de Lorenz utilisée par les Allemands pour les dépêches entre le quartier général à Berlin et les armées fut décryptée suite à une erreur de procédure de ce type. Même si les méthodes ont changées, les leçons du passé restent valables.

 

Comment peut-on chiffrer avec une courbe ?

Vous avez peut-être entendu d’une méthode de cryptographie utilisant des courbes, des courbes elliptiques plus précisément. Mais comment peut-on chiffrer, c’est-à-dire transformer un message clair en un message caché, avec une courbe ?

Les courbes elliptiques

Les courbes en question sont les courbes elliptiques, c’est-à-dire des courbes d’équation y2 = x3 + a x + ba et b sont des nombres, par exemple y2 = x3 – 2 x + 1 ce qui peut se dessiner. On obtient la figure suivante.

La courbe est l’ensemble des points M de coordonnées x et y vérifiant l’équation ci-dessus, c’est-à-dire y2 = x3 – 2 x + 1.

Le rapport avec les ellipses, qui sont des cercles « aplatis » sur l’un de leur diamètre, est indirect puisqu’il concerne le calcul de leurs longueurs. Nous n’insisterons pas sur ce point car il n’a aucun rapport avec la cryptographie. L’intérêt est qu’on peut définir des opérations transformant les points de cette courbe en un autre. On s’approche de l’idée de chiffrement … sans encore l’avoir atteinte toutefois.

Loi de groupe sur une courbe elliptique

L’avantage des courbes elliptiques est qu’on peut y définir une loi. La figure suivante montre comment, à deux points P et Q de la courbe, on associe un point que l’on note P + Q.

Dans le cas général, on trace la droite PQ. Elle coupe la courbe en un point R, P + Q est le symétrique de R par rapport à l’axe des abscisses. Si P = Q, PQ est la tangente en P à la courbe. Pour que cette définition fonctionne dans tous les cas, nous devons adjoindre à la courbe un point à l’infini, que nous notons 0. Si PQ est verticale, P + Q = 0.

On montre que cette loi + a les propriétés habituelles de l’addition des nombres, soit l’associativité, la commutativité, l’existence d’un point neutre (le point à l’infini) et d’un symétrique pour tout point (le symétrique par rapport à l’axe des abscisses justement).

Remarque : on trouvera les détails des calculs sur mon site : ici

Chiffrement

Pour chiffrer, on ne considère pas les courbes elliptiques sur le corps des nombres réels mais sur un corps fini comme Z / N où N est un nombre premier. La courbe a alors un nombre fini de points. L’idée de départ est qu’un texte peut être transformé en une suite de points de la courbe. Cela revient à écrire dans un alphabet ayant autant de signes que la courbe a de points. Notons que le problème sous-jacent n’a rien de simple mais, théoriquement, le chiffrement consiste alors à transformer un point de la courbe. La clef secrète est constituée d’un point P de la courbe et d’un nombre entier, comme 3 par exemple. On calcule ensuite P ’ = 3 P. La clef publique est alors le couple de points (P, P ’). Pour crypter un point M, le chiffreur choisit un entier, 23 par exemple, et transmet le couple (U, V) défini par : U = 23 P et V = M + 23 P ’. La connaissance du premier nombre, ici 3, suffit pour retrouver M car M = V – 3 U.

Logarithme discret

Pour retrouver le nombre choisi, 3 dans notre exemple, connaissant P et P ’, il suffit de savoir résoudre l’équation : P ’ = 3 P. L’utilisation du verbe « suffir » ne doit pas tromper. Cela ne signifie absolument pas que cela soit facile mais que, si vous savez le faire, vous savez décrypter. Le nombre 3 est alors appelé un logarithme discret ce qui n’est guère intuitif si on utilise la notation additive ci-dessus. Avec une notation multiplicative de l’opération de groupe, cela devient plus habituel puisque l’équation s’écrit alors : P ’ = P3. Dans l’ensemble des nombres usuels, 3 correspondrait au logarithme de base P de P ’ d’où le nom dans le cadre d’un groupe fini. À l’heure actuelle, ce problème est considéré comme très difficile. On estime qu’une clef de 200 bits pour les courbes elliptiques est plus sûre qu’une clef de 1024 bits pour la méthode R.S.A. Comme les calculs sur les courbes elliptiques ne sont pas compliqués à réaliser, c’est un gros avantage pour les cartes à puces où on dispose de peu de puissance, et où la taille de la clef influe beaucoup sur les performances. Les inconvénients sont de deux ordres. D’une part, la théorie des fonctions elliptiques est complexe et relativement récente. Il n’est pas exclu que l’on puisse contourner le problème du logarithme discret. D’autre part, la technologie de cryptographie par courbe elliptique a fait l’objet du dépôt de nombreux brevets à travers le monde. Cela pourrait rendre son utilisation coûteuse !

L’hypothèse de Riemann au salar d’Uyuni

Le salar d’Uyuni est un gigantesque désert de sel sur les hauts plateaux boliviens. On y trouve un cimetière de locomotives offrant plusieurs nuances de rouilles du meilleur effet photographique.

Locomotive rouillant sur le salar d’Uyuni

Un tag étonnant

Une grande partie de ce matériel ferroviaire à l’abandon est tagué. Une inscription nous a tout de même étonné par sa composante mathématique.

L’hypothèse de Riemann taguée sur une locomotive rouillant dans le salar d’Uyuni

Le tag affirme que les zéros non triviaux (i.e. entiers négatifs pairs) de la fonction dzéta de Riemann sont complexes de partie réelle égale à 1/2. Il s’agit d’une conjecture faite par Bernhard Riemann en 1859 et aujourd’hui dotée d’un prix d’un million de dollars par l’institut Clay. Rencontre étonnante !

 

Les vols d’étourneaux

Les étourneaux, et d’autres oiseaux se comportent souvent comme une unité filant parfois dans une direction précise pour s’en détourner soudain. Les mouvements des bancs de poisson sont similaires. D’où viennent ces comportements ?

Un vol d’étourneaux

La défense contre les prédateurs

La raison essentielle de ces regroupements est la défense contre les prédateurs. Par exemple, quand les étourneaux sont effrayés, ils s’élèvent, se rassemblent et volent en formant la masse la plus compacte possible. Un rapace évite de fondre sur ce groupe de crainte de se blesser. Il cherche plutôt à sélectionner des retardataires ou des oiseaux affaiblis.

La nuée vire et tourne de telle sorte qu’il est difficile de prévoir ses mouvements, qui semblent aléatoires. De nos jours, les zoologistes sont persuadés que ce ballet ne doit rien à la présence d’un mystérieux chef d’orchestre ou à un esprit surnaturel du groupe. Dans les années 1980, Wayne Potts, professeur à l’université d’Utah, a filmé des nuées de bécasseaux pour s’apercevoir que n’importe quel individu pouvait initier un mouvement du groupe, qui se propageait ensuite très rapidement par ondes rayonnant autour de l’initiateur, et cela dans tous les sens. De plus, ces ondes se propagent bien plus rapidement que la vitesse de réaction normale d’un individu isolé peut le laisser penser. En revanche, les mouvements des oiseaux séparés du groupe ne l’influencent pas. Ils sont les cibles privilégiées des prédateurs, donc ne sont pas suivis. Cette règle a l’avantage d’accélérer la réponse du groupe à une attaque.

Un modèle mathématique

D’après l’étude de Wayne Potts, chaque oiseau réagit à ce qui l’entoure, et uniquement à cela. Son comportement peut donc être modélisé : chacun ne réagit qu’à ses voisins. En 1986, un informaticien, Craig Reynolds, précisa des règles qui simulent le comportement des nuées d’oiseaux comme celui des bancs de poissons. Il a nommé « boids » ces oiseaux virtuels (un mot à faible distance linguistique de « birds »). On peut trouver des animations sur internet utilisant son modèle (chercher Boids avec votre moteur de recherche préféré). Les trois règles sont toutes de nature locale, chaque oiseau ne réagit qu’aux mouvements de ses voisins.

Séparation

Si un oiseau est trop proche de ses voisins, il s’en écarte pour éviter les collisions.

Alignement

Alignement dans la direction du vol des oiseaux qui l’entourent.

Cohésion

Cohésion pour aller vers la position moyenne des oiseaux qui l’entourent.

Si vous voulez programmer une simulation de vol d’étourneaux, il vous reste à définir plusieurs paramètres : rayon du cercle de voisinage (en gris clair sur les figures), vitesses, accélération utilisée pour rejoindre la position idéale définie par les trois règles. Ces principes ont été utilisés pour la première fois dans Le retour de Batman en 1992, pour générer des vols de chauves-souris.

Le modèle peut être amélioré en limitant le voisinage à un secteur de cercle, correspondant à la vision de l’oiseau, à la considération d’obstacles que l’oiseau évitera et également aux prédateurs éventuels.

 

L’énigme du tunnel de Samos

Dans l’île grecque de Samos, on peut visiter un tunnel qui, selon Hérodote, fut creusé au VIe siècle avant notre ère, simultanément par ses deux extrémités … et l’erreur au point de rencontre ne fut que de 60 centimètres, comme le tracé du tunnel l’atteste toujours. On ne sait pas comment son architecte, Eupalinos, en fit les plans, mais on sait qu’ils ne doivent rien au hasard. La plupart des historiens qui se sont penchés sur la question en on déduit qu’Eupalinos avait anticipé les instruments et les mathématiques inventés plusieurs siècles après sa mort. Est-ce vraisemblable ? Pourquoi les aurait-on oubliés ensuite ? De plus, pourquoi faire des hypothèses inutiles ? Il est plus raisonnable d’essayer d’imaginer des méthodes compatibles avec les mathématiques et les instruments connus de l’époque.

Un aqueduc extérieur imaginaire …

De la source captée jusqu’à l’entrée du tunnel, l’eau suit des conduites extérieures, quoique enterrées. On peut imaginer que, dans un premier temps, l’aqueduc allait ainsi jusqu’à la sortie du tunnel en suivant grossièrement les lignes de niveaux du terrain. La topographie le permet comme le montre la carte du lieu.

Les lignes de niveaux aux alentours du tunnel de Samos (entrée en A, sortie en B) montrent qu’il est possible de contourner la montagne par l’ouest (voir l’orientation sur le dessin) en restant à niveau (ligne ACB). Le trajet fait alors environ 2200 mètres (le double du trajet direct AB).

…qui aide à trouver la sortie

Cette hypothèse est difficile à soutenir car aucun vestige d’un tel ouvrage ne nous est parvenu. De plus, le tunnel est quasiment horizontal, seul le canal qui le longe a une déclivité de six mètres sur un peu plus d’un kilomètre. Cette hypothèse d’un aqueduc extérieur donne cependant une première approche du problème, naturelle pour un constructeur d’aqueduc. Pour déterminer l’entrée et la sortie, il s’agit de se déplacer à l’horizontale au flanc de la montagne, pour rejoindre un point duquel l’aqueduc peut continuer. Des preuves archéologiques montrent que les Samiens disposaient d’instruments pour déterminer l’horizontale. Le principe en est simple. Il s’agissait de longues gouttières en terre cuite dans lesquelles on versait de l’eau. L’horizontale était obtenue quand l’eau ne s’écoulait pas. De même, ils utilisaient des fils à plomb, ce qui permettait de déterminer la verticale. On peut imaginer suivre l’horizontale ainsi en plantant des pieux dont les sommets restent au même niveau. Si le niveau mesure 2 mètres de long, et que l’incertitude est inférieure à 1 millimètre pour chaque pieu, nous obtenons une incertitude totale de 1,10 mètres. L’erreur effective à la jonction des deux branches du tunnel étant de 60 centimètres, l’utilisation de cette méthode est vraisemblable. Cependant, elle exige de planter 1100 pieux. On peut la simplifier de ce point de vue en utilisant des visées oculaires permettant d’espacer les pieux.

Pour cela, on plante deux pieux à 10 mètres l’un de l’autre, dont les sommets sont à l’horizontale et on les aligne avec un pieu à cent mètres environ, tenu par un assistant. Ceci permet de passer à un total d’une cinquantaine de pieux (deux tous les 100 mètres environ).

Visée pour maintenir l’horizontale. Les pieux A et B sont alignés grâce à un niveau à eau. Si l’erreur entre les deux est limitée à 2 millimètres, celle entre A et C sera limitée à 2 centimètres. La capacité de l’œil humain rend insensible l’erreur due à l’acuité visuelle.

L’œil humain a une capacité de résolution de 0,5 minute environ (1 / 120 degré). Avec un viseur, sur cent mètres, nous pouvons espérer une incertitude inférieure à 2 centimètres. Sur une distance de 2 200 mètres, cela donne une incertitude totale de 44 centimètres, ce qui est compatible avec l’erreur effective de 60 centimètres.

La direction de la sortie

La deuxième extrémité trouvée, comment déterminer la direction dans laquelle le tunnel doit être percé ? Une idée simple tient à la topographie du terrain. Il s’en faut de peu que l’on ne puisse voir les deux extrémités du tunnel du haut de l’Acropole. Dans ce cas, il aurait suffi d’y disposer trois pieux alignés et, par approximations successives de les aligner à des pieux plantés aux extrémités du tunnel à construire. L’opération est semblable à la précédente, sans mise à niveau.

Si le sommet S est visible des extrémités A et B, il suffit d’aligner cinq pieux, trois en S, un en A et un en B pour déterminer la direction AB. Cette opération peut être faite par essais successifs.

En fait, la topographie du terrain ne permet pas cette solution. On peut malgré tout l’appliquer, soit en surélevant le sommet au moyen d’une tour de dix mètres environ, soit en plantant des pieux intermédiaires. Une station supplémentaire, éventuellement légèrement surélevée, suffit pour réaliser un alignement visible de proche en proche.

En disposant des relais (comme I) entre les extrémités A et B et le sommet, il est possible de réaliser un alignement de pieux entre A et B. On vérifie cet alignement comme précédemment, de proche en proche.

Ceci fait, les deux pieux à chaque extrémité donnent la direction à suivre. Il est facile de la conserver ensuite. Cependant, pour être sûr de se rencontrer, le mieux est d’obliquer légèrement un peu avant le milieu des travaux car, dans un plan, deux droites non parallèles se rencontrent toujours. L’une des branches du tunnel effectivement construit par Eupalinos présente des portions en zigzag montrant qu’il n’était pas certain de ses mesures et voulait éviter de manquer le deuxième tronçon qui, lui, reste rectiligne.

Le problème de la longueur du tunnel est accessoire. Même s’il est utile de la connaître pour savoir quand obliquer pour être sûr de la rencontre, il suffit d’en avoir une approximation grossière. Une fois le tunnel construit, on peut la calculer de façon plus précise et en déduire la pente à donner au canal. Finalement, sa profondeur varie de 3 à 9 mètres pour assurer un flux constant.