Archives pour la catégorie Mathématiques

Vendredi treize, jour de chance ou de malchance ?

Le nombre 13 est surchargé de superstitions. Quoi de pire qu’être 13 à table ? L’origine de cette idée est assez claire : elle fait référence à la Cène (voir ci-dessus sa représentation dans l’église de Curahuara de Carangas en Bolivie), c’est-à-dire au dernier repas de Jésus-Christ où il désigne celui qui devait le trahir et qui se pendra plus tard. Même si les évangiles font plutôt penser au 14 ou au 15, certains affirment que Jésus fut crucifié le vendredi 13 du mois de Nisan… qui serait ainsi un jour de malheur. Pourtant, pour d’autres, il est censé porter chance. Cependant, les statistiques sont terribles. S’il y a trois fois plus de joueurs au Loto les vendredis 13, leur chance de gagner reste rigoureusement la même. Seule la Française des Jeux profite réellement des vendredis 13.

13 mois chez les Mayas

Un raisonnement rapide pourrait faire penser qu’il existe autant de vendredis 13 que de dimanches 13 ou de lundis 13, etc. C’est une erreur. Une étude mathématique précise du calendrier grégorien permet de montrer qu’il y en a légèrement plus… ce qui réjouira sans doute les superstitieux. Le calcul est un peu laborieux, nous le reportons plus loin pour les amateurs. Pour finir sur le nombre 13, on peut remarquer que, curieusement, le calendrier sacré maya comportait 13 mois de 20 jours chacun. Cette période est à rapprocher du mode de numération maya fondé sur la base 20. L’année comportait ainsi 260 jours, ce qui ne signifie pas grand-chose d’un point de vue astronomique mais que certains rapprochent de la durée de la grossesse, qui est de 266 jours en moyenne. Parmi les nombres porte-malheur, nous citerons 17 qui l’est en Italie car XVII est l’anagramme de vixi qui signifie « j’ai vécu » en latin et donc sous-entend « je suis mort ».

Nombre de vendredis 13

Depuis la réforme grégorienne du calendrier, de 1582, les années se reproduisent identiques tous les 400 ans et non tous les 28 ans comme auparavant dans le calendrier julien. En effet, si les années ordinaires ont toujours 365 jours et les années bissextiles 366, la règle pour déterminer si une année est bissextile a été modifiée : une année l’est si son millésime est divisible par 4 sauf s’il est divisible par 100 mais pas par 400. Le nombre d’années bissextiles d’une période de 400 ans est donc de 97 (et non de 100) ce qui donne 97 x 366 + 303 x 365 = 146 097 jours… qui se trouve divisible par 7. Ainsi, le premier janvier 1600 fut un samedi, et de même 400 ans plus tard, le premier janvier 2000. L’année 2000 fut identique à l’année 1600. Il y eut un seul vendredi 13 en 1600 (en octobre) et donc de même en 2000.

En comptant le nombre de treizième du mois sur 400 ans (ce qui peut se faire à la main mais plus rapidement par ordinateur), on trouve : 687 dimanches, 685 lundis, 685 mardis, 687 mercredis, 684 jeudis, 688 vendredis et 684 samedis. Le treize du mois a donc plus de chance d’être un vendredi que tout autre jour de la semaine ! Est-ce une bonne nouvelle ?

La justice aveuglée par les coïncidences

En 1999, une jeune femme, Sally Clark, fut condamnée pour le meurtre de ses deux fils, à un an d’écart. Ceux-ci semblaient être décédés de mort subite du nourrisson. L’accusation mit en avant le rapport d’un pédiatre, qui mérite d’être nommé ici, sir Roy Meadow. Selon lui, la probabilité que deux enfants d’un même couple meurent de mort subite du nourrisson était égale à 1 sur 73 millions. D’où vient ce nombre ? Des statistiques, bien sûr. Selon elles, le risque de mort subite d’un nourrisson dans un couple aisé et non-fumeur tel celui de Sally est de 1 sur 8543. On imagine facilement d’où vient ce chiffre : on a fait le rapport entre le nombre de nourrissons morts ainsi et le nombre total de nourrissons dans ce type de couple. Le raisonnement de Roy Meadow est alors similaire à celui qui permet d’affirmer que la probabilité d’obtenir deux 6 en jetant des dés est égale à 1 sur 36. Il affirme donc que, si le risque d’un mort dans un couple est de 1 sur 8543, le risque de deux morts est de 1 sur 85432… ce qui fait bien 1 sur 73 millions environ. Le pédiatre souligna que, comme il y avait 700 000 naissances par an au Royaume-Uni, cette coïncidence ne devait arriver qu’une fois par siècle. Les jurés furent convaincus et condamnèrent Sally Clark à la prison à perpétuité.

L’art de se tromper

Pourtant, les calculs du pédiatre sont grossièrement faux. La première erreur est de ne garder chez le couple Clark que les caractéristiques diminuant le risque : couple aisé et non-fumeur. En revanche, il néglige un facteur aggravant : les enfants étaient des garçons, pour lesquels le risque est double. Enfin, quand un premier enfant est décédé de la mort subite du nourrisson, le risque qu’un second meure de même est dix fois plus élevé. Autrement dit, le calcul correct aurait dû partir de la moyenne nationale, qui est de 1 / 1300 et de le multiplier par 1 / 130. Le calcul donne maintenant un risque de 1 sur 169 000, ce qui est très différent. Le pédiatre aurait dû le savoir puisqu’un ou deux cas de morts de deux enfants d’un même couple de la mort subite du nourrisson se produit chaque année au Royaume-Uni ! Ces erreurs du pédiatre sont doublées d’une erreur fondamentale du système judiciaire : s’il est normal de confier les expertises médicales à des médecins, il devrait être aussi normal de confier les expertises statistiques à des statisticiens. Le plus humble d’entre eux aurait su montrer les erreurs grossières du pédiatre.

Les gagnants du Loto ont-ils tous triché ?

Le risque estimé de morts de deux enfants d’un même couple aisé et non-fumeur de 1 sur 73 millions fait penser à la chance qu’un joueur du Loto a de remporter le gros lot, que l’on estime à 1 sur 14 millions. Prenez le dernier gagnant, disons Candide Toutlemonde. Elle avait 1 chance sur 14 millions de gagner, doit-on en déduire qu’elle a triché ? Fait a posteriori, ce raisonnement n’a aucun sens. Il en aurait eu si, une semaine avant le tirage, vous aviez dit : « Candide va remporter le gros lot ».

Le cas de Sally Clark est similaire puisque les calculs de probabilités sont faits a posteriori. Par ailleurs, le procureur et les jurés semblent avoir interprété les calculs du pédiatre en : la probabilité d’innocence de l’accusé est de 1 sur 73 millions. Pour conclure de cette façon, il aurait fallu comparer toutes les probabilités. Au Royaume-Uni, est-il plus vraisemblable qu’une femme tue son enfant que celui-ci soit victime de la mort subite du nourrisson ? Sur les 700 000 naissances annuelles, 30 sont victimes d’un homicide, soit 1 sur 23 000 contre 1 sur 1300 pour la mort subite. La probabilité d’un double homicide est donc de 1 sur 529 millions, en suivant la logique du pédiatre, celle d’une double mort subite, de 1 sur 169 000, comme nous l’avons vu plus haut. Ce simple calcul montre à quel point l’utilisation des statistiques dans cette affaire fut erronée. Sally Clark fut acquittée en appel, en 2003, mais ne se remit jamais de ses épreuves et décéda en 2007. Plusieurs autres erreurs judiciaires sont liées à une utilisation inappropriée des statistiques. Ainsi, en 1997, Shirley McKie, une enquêtrice de la police écossaise, fut accusée d’un meurtre parce que ses empreintes digitales avaient été « identifiées » sur la scène d’un crime. Les probabilités étaient contre elle en dehors de toute autre preuve. En fait, elles n’étaient que quasiment identiques à celles du véritable meurtrier, ce qui fut prouvé ultérieurement. Ici encore, la vie d’une personne fut brisée par des chiffres.

Dans tous ces cas, le biais dans les calculs précédents est d’évaluer une probabilité par un calcul valable pour un événement qui ne s’est pas encore produit, et de l’appliquer à un événement qui s’est déjà produit. Nous pouvons rapprocher cet argument à l’existence de la vie sur Terre. L’apparition de la vie était un événement de probabilité quasi nulle, pourtant il s’est bel et bien produit puisque vous lisez ce texte écrit par un Terrien, et que vous l’êtes vous-même sans doute. Faut-il en déduire que notre existence est le résultat d’un miracle ?

 

Les mesures du bonheur et de la richesse

Comment mesurer la richesse ou la pauvreté ? En général, on fixe des seuils. Par exemple, en France, certains économistes estiment qu’un ménage sans enfant est riche à partir de 4000 € de revenu mensuel et 400 000 € de patrimoine. D’où vient un tel calcul ? Comme pour le calcul du QI, il vient de la courbe en cloche. Ces chiffres correspondent aux 8 % les plus fortunés. Dans ce cadre, on ne peut les contester. Cependant, ils ne correspondent en rien à ce que l’on nomme réellement « les riches ». Au plus pourrait-on qualifier ces personnes d’aisées. D’autre part, faut-il comprendre qu’un euro seulement sépare le riche du non riche ? Sans doute non. Toutes les tentatives de définition de ce type se heurteront à cette absurdité. La richesse dépend sans doute de bien plus de paramètres et se laisse mal emprisonner dans un seul nombre. Il en est de même de la pauvreté. Dans ce cas, les chiffres utilisés correspondent au côté gauche de la courbe en cloche.

Le Produit Intérieur Brut

Mesurer la richesse individuelle est donc un exercice périlleux. Il semble plus simple pour un pays. On dispose alors d’un indice solide : le Produit Intérieur Brut ou PIB. Il s’agit de la mesure du revenu provenant de la production dans un pays donné. Son calcul est donc purement comptable. En divisant le PIB par le nombre d’habitants, on obtient le PIB par habitant, que l’on utilise souvent comme mesure du niveau de vie d’un pays. Cet indice est critiqué par un grand nombre d’économistes car il est exclusivement monétaire. Il ne tient pas compte notamment que, dans certains pays, on mange très bien pour quelques euros. Il ne tient pas compte non plus du travail bénévole, qui contribue pourtant au niveau de vie. Il ne tient pas compte de tout ce qui fait le sel de la vie comme le disait Robert Kennedy en mars 1968, alors qu’il était candidat à la présidence des États-Unis :

Le PIB ne tient pas compte de la santé de nos enfants, de la qualité de leur instruction, ni de la gaieté de leurs jeux. Il ne mesure pas la beauté de notre poésie ou la solidité de nos mariages. Il ne songe pas à évaluer la qualité de nos débats politiques ou l’intégrité de nos représentants. Il ne prend pas en considération notre courage, notre sagesse ou notre culture. Il ne dit rien de notre sens de la compassion ou du dévouement envers notre pays. En un mot, le PIB mesure tout, sauf ce qui fait que la vie vaut la peine d’être vécue.

Le Bonheur National Brut

Comme le sous-entend ce texte, l’exercice de quantification devient vraiment périlleux quand on veut mesurer le bonheur, et le résumer en un seul chiffre. Une telle évaluation est-elle possible ? C’est ce que veulent croire les dirigeants du Bhoutan, qui ont créé un indice ad hoc, le Bonheur National Brut. Il repose sur quatre principes fondamentaux : croissance et développement économiques, conservation et promotion de la culture bhoutanaise, sauvegarde de l’environnement et utilisation durable des ressources et bonne gouvernance responsable. Ces quatre axes sont évalués à travers 72 mesures. Les résultats sont pondérés pour obtenir un seul nombre, ce qui prête à la même critique que tous les systèmes de notation. D’autre part, certains critères peuvent sembler bien loin du bonheur de tous. Ainsi, la conservation de la culture bhoutanaise pousse à l’exclusion de l’étranger, ce qui s’est effectivement passé avec les résidents d’origine népalaise. Que dirait-on de l’application d’un tel critère en France ? D’autres calculs ont été proposés, ils mélangent, avec une pondération compliquée, économie, environnement, santé physique, santé mentale, bien-être au travail, bien-être social et santé politique. Même si certains critères peuvent être évalués de manière qui semble objective en comptant le nombre de plaintes au travail, le nombre de divorces, la quantité d’antidépresseurs consommés, etc. on peut douter du bien fondé de tels calculs. Vouloir résumer le bonheur en un seul nombre montre plutôt la fascination qu’exercent les nombres sur l’esprit de nos contemporains.

 

Le paradoxe de Simpson

En 1973, Berkeley, l’université américaine, fut poursuivie pour discrimination envers les filles. L’affaire semblait claire. Parmi les candidates, seule 35 % étaient retenues alors que 44 % des candidatures masculines l’étaient. L’étude a été précisée sur les six départements les plus importants, que nous notons ici de A à F.

Détails des admissions.

 

Ce tableau ne montre aucune discrimination envers les femmes. Au contraire, le taux d’admission des filles dans le principal département (A) est nettement supérieur à celui des garçons. L’explication vient quand on regarde le nombre de candidatures dans ces départements. Les femmes semblent avoir tendance à postuler en masse à des départements très sélectifs. Dans ceux-ci, leur taux d’admission est à peine plus faible que celui des hommes. Dans les autres, elles sont plus largement sélectionnées que les hommes. Quand on fait la moyenne globale, ce sont les départements sélectifs qui ont plus de poids, puisqu’elles y postulent en masse. Ce paradoxe a été étudié par Edward Simpson (né en 1922). On le retrouve dans de nombreux cas.

Les chiffres, des marqueurs du pouvoir ?

Les médecins de Molière asseyaient leur prestige et leur pouvoir sur quelques mots vaguement, très vaguement, latin. À l’époque, cette langue déjà morte depuis longtemps était la marque des savants et des puissants. C’était celle aussi qui expliquait le monde, aussi bien par la religion que par la science. Même si elle s’est affaiblie progressivement depuis, elle a gardé un pouvoir extraordinaire jusqu’au milieu du XXe siècle.

Puissants mais ignorants

Pourtant, feu le pouvoir du latin ne venait pas d’une connaissance de cette langue, ni des élites, ni du peuple. Tous l’ignoraient à des degrés divers mais cela faisait savant et le peuple envoûté ne pouvait répondre à un argument s’il était énoncé dans cette langue. La religion est mystère et quoi de mieux qu’une langue venue de la nuit des temps pour l’évoquer ? Le pouvoir du latin venait d’ailleurs de là. D’autres religions fonctionnent de même. Aux yeux du peuple, les caractéristiques essentielles du latin étaient d’être une langue partagée par les savants et les puissants, qui explique le monde, tout en étant incompréhensible donc incontestable par le commun des mortels.

Les chiffres, le latin de notre époque ?

Il suffit de lire ces trois caractéristiques pour voir que, dans notre monde occidental, la langue des chiffres a aujourd’hui remplacé le latin. Même envoûtement sans compréhension ni possibilité de contestation. Si Molière vivait de nos jours, il s’amuserait sans doute de certains débats autour de pourcentages où nul ne semble rien comprendre… et personne n’ose le dire. Prenons un exemple. Dans un pays imaginaire, un homme politique affirme : Monsieur, vous avez augmenté les impôts de 20 %, nous les rétablirons en les baissant de 20 % ! Son adversaire passera sans doute pour un extraterrestre s’il fait remarquer que cela ne correspond pas à un rétablissement mais finalement à une baisse. En effet, si on multiplie les impôts par 1,2, ce qui correspond à l’augmentation de 20 %, pour les multiplier ensuite par 0,8, ce qui correspond à la baisse de 20 %, nous les avons finalement multipliés par 1,2 x 0,8, soit 0,96… ce qui correspond à une baisse finale de 4 %. Dans un autre style, voici un discours a priori très convaincant : La part de la richesse produite détenue par les 1 % les plus riches est passée de 7 à 9 % entre 1982 et 2006. À l’inverse les bas salaires ont eux stagné et, sur 25 ans, la hausse du SMIC net réel demeure bien inférieure à celle des gains de productivité moyens. À la première lecture, il semble très précis, tout est chiffré : 1 %, 7 à 9 %, etc. À la seconde lecture, on s’aperçoit que tout est flou. Par exemple, le rédacteur a mis en parallèle, les 1 % plus riches et les bas salaires. Ces plus riches sont-ils « les plus haut salaires » ou « les plus grosses fortunes » ? Sur le fond, cela n’a guère d’importance, l’idée véhiculée est claire mais que viennent faire ces chiffres dans l’affaire ? La réponse est la même que pour les médecins de Molière. Le rédacteur de ce texte a voulu s’auréoler du prestige d’une science qui lui semble étrangère. Nous voyons sur cet exemple, que nous aimerions imaginaire, que les chiffres ont bien pris la place autrefois occupée par le latin chez ceux qui briguent le pouvoir…

La preuve par les chiffres

Certains chiffres ne font que sous-entendre. Par exemple, que penser de l’affirmation : La fortune de Bill Gates équivaut au Produit Intérieur Brut du Portugal ? Elle sous-entend que certains individus, dont Bill Gates, sont plus puissants que certains états, et non des moindres. Pourtant, que compare-t-on ici ? D’un côté, tout le patrimoine de Bill Gates, de l’autre, la richesse produite en une année au Portugal. La même confusion que la précédente ! Si l’on voulait prouver que Bill Gates est plus puissant que le Portugal, il faudrait comparer les deux patrimoines. En fait, la fortune de Bill Gates a beau être colossale pour un seul individu, c’est une goutte d’eau par rapport à celle du Portugal. On retrouve la même utilisation des chiffres dans des affirmations du style : Pour les États-Unis, la valeur des actifs des fonds de pension était en 1996 de 4 752 milliards de dollars, soit 62 % du PIB américain, celle de fonds de placement collectif de 3 539 milliards de dollars, soit 46 % du PIB, et celle des compagnies d’assurance s’établissait 3 052 milliards soit 30 % du PIB. Au total, ces fonds de pension détiennent l’équivalent de 138 % du PIB américain. Autrement dit, on confond sciemment ou non, un revenu et un patrimoine… Il est facile de produire à l’envi ce genre de preuve.

 

Fahrenheit et la peur des nombres négatifs

Sans doute pour éviter les nombres négatifs, Daniel Gabriel Fahrenheit (1686 – 1736) fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° et elle bout à 212° environ.

100° Fahrenheit correspond à la température corporelle d’un cheval sain.

L’absolu du zéro

Ces choix étranges de Fahrenheit s’expliquent par la réticence de l’époque devant les nombres négatifs. On préférait d’ailleurs parler de quantités plutôt que de nombres. Il s’agissait d’artifices de calcul pour résoudre des équations, dont on écartait ensuite les solutions négatives. Tout en étant une origine, zéro véhicule une idée d’absolu, en dessous duquel on ne peut aller, comme on le voit chez Blaise Pascal (1623 – 1662) qui, dans ses Pensées, écrit cette phrase surprenante :

Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro.

Cette idée a perduré jusqu’au XIXe siècle, Lazare Carnot (1753 – 1823) écrivait encore :

Pour obtenir réellement une quantité négative isolée, il faudrait retrancher une quantité effective de zéro, ôter quelque chose de rien : opération impossible. Comment donc concevoir une quantité négative isolée ?

La solution de Cauchy

La question semble cependant résolue avec Augustin Louis Cauchy (1789 – 1857) qui, dans son Cours d’analyse de l’Ecole royale polytechnique définit les nombres relatifs comme une partie numérique précédée d’un signe + ou – :

Le signe + ou – placé devant un nombre en modifiera la signification, à-peu-près comme un adjectif modifie celle du substantif.

Conversion entre degrés Celsius et degrés Fahrenheit

Les variations étant linéaires dans les deux cas, la relation est affine, c’est-à-dire de la forme : TF = a TC + b. Les deux coïncidences donnent les relations : b = 32 et 100 a + b = 212 d’où : a = 1,8 et b = 32. Nous en déduisons la formule : TF = 1,8 TC + 32. Ainsi la température de 37° Celsius donne : 1,8 x 37 + 32 = 98,6° Fahrenheit.

La psychologie des nombres

Quelle est la différence entre 98 € et 100 € ? Mathématiquement parlant, la réponse est 2 €. Au niveau psychologique ou émotionnel, la différence est bien plus importante. Pour ne pas en être victime, la méthode est simple : arrondissez ! Si on vous dit 98 €, traduisez en 100 € et vous ne serez pas piégé. Dans l’esprit de l’acheteur, 98 € signifie 90 € plus quelques euros. Il raisonne en logique additive. Sauf pour les produits de prestige, qui doivent être chers, il vaut mieux afficher ses prix dans la dizaine inférieure. Plusieurs expériences ont été menées aux États-Unis. En particulier, l’envoi de deux catalogues identiques, l’un affichant des prix ronds comme 10 $ et l’autre des prix minorés de 1 cent, comme 9,99 $, a montré que le second catalogue apportait plus de ventes.

Le prix psychologique

De façon plus étonnante sans doute, le meilleur prix pour maximiser le profit sur un produit n’est ni le plus petit, ni le plus grand possible. Ce prix, qui peut être déterminé au moyen d’un sondage, est appelé le « prix psychologique ». En dessous de ce prix, le produit semble de qualité insuffisante à l’acheteur potentiel. Au-dessus, il paraît trop cher.

Détermination graphique du prix psychologique. La courbe du dessus représente le pourcentage d’acheteurs potentiels estimant le produit de qualité suffisante, celle du bas, le pourcentage l’estimant trop cher. Le prix psychologique correspond au point où l’écart est le plus grand.

En revanche, si vous voulez écrire un livre de conseils pour réussir, mieux vaut en proposer 31 que 29 car ce nombre sera perçu comme bien plus grand.

Les mathématiques du certificat d’études

Au courant du XVIIe siècle, les mathématiques de feu le certificat d’études étaient en place. Les ouvrages d’apprentissage du nouveau calcul foisonnaient d’exercices. Sous des dehors liés à la vie de tous les jours, leur but était d’entraîner à l’utilisation des algorithmes des opérations (addition, soustraction, multiplication et division) ainsi qu’au raisonnement mathématique.

Un exemple de Simon Stevin

Aune de tailleur.

En particulier, La pratique de l’arithmétique de Simon Stevin (1548 – 1620) contient une foule d’exercices du type :

14 aunes de drap coûtent 5 livres, 2 sous et 8 deniers, combien coûteront 25 aunes ?

Pour résoudre cet exercice, inutile de savoir ce que représente une aune, il suffit de savoir qu’une livre vaut 20 sous et un sou, 12 deniers. Le plus simple pour le résoudre est de transformer la somme donnée en deniers. Une livre vaut 20 x 12 = 240 deniers donc 5 livres, 1200. Les 14 aunes valent donc 1232 deniers. On obtient le prix d’une aune en divisant par 14, ce qui donne 88 deniers. Le prix de 25 aunes est donc égal à 25 x 88 = 2200 deniers, qu’il reste à traduire dans le système initial. En divisant 2200 par 240, on obtient 9 livres et il reste 40 deniers, ce qui fait 3 sous et 4 deniers. Finalement, les 25 aunes coûtent 9 livres, 3 sous et 4 deniers.

Intérêt du système décimal

Heureusement, l’arithmétique est devenue plus simple avec le système décimal ! Pour le montrer, voici un exemple moderne :

Nicolas achète 350 grammes de pommes pour 1 €. Derrière lui, Pimprenelle en achète 1 kilo 435. Combien va-t-elle payer ?

Voici le raisonnement canonique pour résoudre ce type de problème. Ici le terme « canon » n’a rien à voir avec l’artillerie, il signifie « règle » comme toujours en mathématiques. Si 350 grammes coûtent 1 €, 1 gramme coûte 1 / 350 € et 1435, 1435 / 350 soit 4 € 10. Nous avons appliqué ici, sans l’écrire, une règle de trois que certains nomment produit en croix. Peu importe l’appellation, l’esprit vaut mieux que la lettre. Dans les deux cas, le raisonnement sous-jacent est abstrait puisqu’il consiste à inventer une fiction : la vente d’un gramme de pommes ! Il montre que, même dans les applications les plus élémentaires, il n’existe pas de mathématiques sans abstraction, ou sans réflexion. Leur apprentissage exige application, cogitation et quantité d’exercices, comme l’escalade, le tennis ou le football.

La voie royale

Cela n’est pas nouveau comme le montre l’anecdote suivante, qu’elle soit vraie ou non. Selon la légende, Euclide enseigna les mathématiques au roi d’Égypte. Rapidement, celui-ci demanda un accès au savoir simplifié, par égard à sa majesté. Euclide répondit : Désolé sire, en mathématiques, il n’y a pas de voie royale. Il n’en existe toujours pas, que cela soit pour les rois ou les enfants-rois. Vouloir en inventer sous prétexte de faciliter l’apprentissage des mathématiques est voué à l’échec. L’idée ne fait qu’en interdire l’accès.

La règle à calcul, autrefois symbole de l’ingénieur

Une façon d’effectuer les additions est d’utiliser les propriétés des longueurs : deux mètres plus trois mètres font cinq mètres. Ainsi, avec deux règles graduées, on peut facilement opérer une addition.

En faisant coïncider le 0 de la règle verte avec le 2 de la règle bleue, on lit sous la graduation 5 de la verte, la somme de 2 et de 5.

L’idée sous-jacente est tellement simple qu’on ne voit pas immédiatement l’analogie sous-jacente. Elle consiste pourtant à assimiler nombre et longueur, deux notions a priori distinctes. En grec, le sens premier d’analogie est « proportion mathématique ». On passe d’une quantité à une autre par l’application d’un certain rapport. Cependant, dès l’époque de Platon, ce terme a pris le sens plus général de correspondance, de ressemblance, de similitude. En mathématiques, il est aujourd’hui utilisé à plusieurs niveaux, du concret à l’abstrait, du rigoureux à l’approximatif ou à l’heuristique, c’est-à-dire à ce qui donne des idées.

Et les multiplications …

La fonction logarithme transformant une multiplication en addition donne alors une méthode analogique pour calculer un produit. Il suffit de transformer l’échelle linéaire en échelle logarithmique. On obtient un instrument de calcul utilisé avant l’avènement des calculatrices bon marché, et autrefois symbole de l’ingénieur.

Une règle à calculs est composée de trois réglettes dont une coulisse entre les deux autres. En faisant coïncider la graduation 1 de l’une et la graduation 2 de l’autre, puis en alignant le curseur sur la graduation 5 de la première, on lit le résultat de la multiplication 2 x 5 sur la seconde.

Bien entendu, la règle à calcul permet d’effectuer également des divisions et toutes sortes de calculs plus complexes.

Le calcul analogique

De façon plus générale, l’idée du calcul analogique est de représenter les nombres par des grandeurs géométriques (longueurs, aires, volumes, angles) ou physiques (mécaniques, électriques, hydrauliques, chimiques), et d’exploiter des phénomènes géométriques ou physiques dont la modélisation mathématique est fondée sur les équations que l’on veut résoudre. En particulier, des systèmes électriques permettent de résoudre automatiquement certaines équations : celles qui les régissent. Les calculateurs analogiques ont été en usage jusqu’à ce que les ordinateurs, ou calculateurs numériques, les supplantent, c’est-à-dire jusqu’au début des années 70. Dans le domaine du calcul scientifique, numérique est ainsi devenu l’opposé d’analogique.

Mes règles à calcul

Mes premières règles à calcul ont été fabriquées en bambou, c’était alors un symbole de qualité.

Règle en bambou de la marque HEMMI de 30 cm de long
Règle en bambou de la marque HEMMI de 14 cm de long, la précision était moindre mais la règle tenait dans la poche pectorale d’une blouse.
Règle en bambou de la marque HEMMI de 10 cm de long, avec loupe.

Les suivantes sont en matière plastique comme celle-ci.

Petite règle à calcul en matière plastique de la marque Graphoplex. Longueur 15 cm.La dernière ressemble à une règle à calcul mais ne possède par de réglette mobile. C’est en fait une règle de conversion entre les unités internationales (mètres, etc.) et les unités américaines (pieds, etc.).

Règle de conversions entre les unités internationales et les unités américaines en plastique Graphoplex.

 

Les maths et la matière

Toujours à la recherche d’œuvres d’art inspirées par les mathématiques, et la science en général, j’ai découvert dans une petite galerie d’art parisienne (galerie Sonia Monti, Paris VIII), quelques œuvres de François Sforza, dont l’originalité est d’allier les maths et la matière.

La formule d’Euler

Leonhard Euler (1707 – 1783) est l’auteur d’une formule déclarée « plus belle formule des mathématiques » en plusieurs occasions :

Pourquoi si belle ? La raison souvent invoquée est la réunion de cinq constantes fondamentales : les éléments neutres de l’addition (0) et de la multiplication (1), la mystérieuse racine carrée de -1 (i) et les deux nombres transcendants les plus rencontrées (e et pi). François Sforza suggère de plus une démonstration élémentaire de la formule sur son tableau.

Lidentité d’Euler par François Sforza. La photo ne reflète  pas la matière de la peinture.

Dans un autre post, j’ai célébré cette même formule dans une autre matière : le verre.

La plus belle formule des mathématiques

L’hypothèse de Riemann

La fonction zêta de Riemann est à l’honneur dans une autre toile, accompagnée de son lien avec les nombres premiers, dû à Euler.

Fonction zêta par François Sforza. Au cœur de l’hypothèse de Riemann.

L’hypothèse de Riemann se trouve de façon étonnante au salar d’Uyuni en Bolivie, taguée sur une locomotive rouillée :

L’hypothèse de Riemann au salar d’Uyuni

Pour finir, voici quelques autres peintures de François Sforza.

L’inconnue de François Sforza.
Synaptik par François Sforza. Une plongée imaginaire dans notre cerveau où des formules mathématiques remontent le long des neurones.

 

Vibration sonore par François SforzaPour en savoir plus sur l’artiste

https://sforzafrancois.portfoliobox.net