Archives pour la catégorie Mathématiques

La psychologie des nombres

Quelle est la différence entre 98 € et 100 € ? Mathématiquement parlant, la réponse est 2 €. Au niveau psychologique ou émotionnel, la différence est bien plus importante. Pour ne pas en être victime, la méthode est simple : arrondissez ! Si on vous dit 98 €, traduisez en 100 € et vous ne serez pas piégé. Dans l’esprit de l’acheteur, 98 € signifie 90 € plus quelques euros. Il raisonne en logique additive. Sauf pour les produits de prestige, qui doivent être chers, il vaut mieux afficher ses prix dans la dizaine inférieure. Plusieurs expériences ont été menées aux États-Unis. En particulier, l’envoi de deux catalogues identiques, l’un affichant des prix ronds comme 10 $ et l’autre des prix minorés de 1 cent, comme 9,99 $, a montré que le second catalogue apportait plus de ventes.

Le prix psychologique

De façon plus étonnante sans doute, le meilleur prix pour maximiser le profit sur un produit n’est ni le plus petit, ni le plus grand possible. Ce prix, qui peut être déterminé au moyen d’un sondage, est appelé le « prix psychologique ». En dessous de ce prix, le produit semble de qualité insuffisante à l’acheteur potentiel. Au-dessus, il paraît trop cher.

Détermination graphique du prix psychologique. La courbe du dessus représente le pourcentage d’acheteurs potentiels estimant le produit de qualité suffisante, celle du bas, le pourcentage l’estimant trop cher. Le prix psychologique correspond au point où l’écart est le plus grand.

En revanche, si vous voulez écrire un livre de conseils pour réussir, mieux vaut en proposer 31 que 29 car ce nombre sera perçu comme bien plus grand.

Les mathématiques du certificat d’études

Au courant du XVIIe siècle, les mathématiques de feu le certificat d’études étaient en place. Les ouvrages d’apprentissage du nouveau calcul foisonnaient d’exercices. Sous des dehors liés à la vie de tous les jours, leur but était d’entraîner à l’utilisation des algorithmes des opérations (addition, soustraction, multiplication et division) ainsi qu’au raisonnement mathématique.

Un exemple de Simon Stevin

Aune de tailleur.

En particulier, La pratique de l’arithmétique de Simon Stevin (1548 – 1620) contient une foule d’exercices du type :

14 aunes de drap coûtent 5 livres, 2 sous et 8 deniers, combien coûteront 25 aunes ?

Pour résoudre cet exercice, inutile de savoir ce que représente une aune, il suffit de savoir qu’une livre vaut 20 sous et un sou, 12 deniers. Le plus simple pour le résoudre est de transformer la somme donnée en deniers. Une livre vaut 20 x 12 = 240 deniers donc 5 livres, 1200. Les 14 aunes valent donc 1232 deniers. On obtient le prix d’une aune en divisant par 14, ce qui donne 88 deniers. Le prix de 25 aunes est donc égal à 25 x 88 = 2200 deniers, qu’il reste à traduire dans le système initial. En divisant 2200 par 240, on obtient 9 livres et il reste 40 deniers, ce qui fait 3 sous et 4 deniers. Finalement, les 25 aunes coûtent 9 livres, 3 sous et 4 deniers.

Intérêt du système décimal

Heureusement, l’arithmétique est devenue plus simple avec le système décimal ! Pour le montrer, voici un exemple moderne :

Nicolas achète 350 grammes de pommes pour 1 €. Derrière lui, Pimprenelle en achète 1 kilo 435. Combien va-t-elle payer ?

Voici le raisonnement canonique pour résoudre ce type de problème. Ici le terme « canon » n’a rien à voir avec l’artillerie, il signifie « règle » comme toujours en mathématiques. Si 350 grammes coûtent 1 €, 1 gramme coûte 1 / 350 € et 1435, 1435 / 350 soit 4 € 10. Nous avons appliqué ici, sans l’écrire, une règle de trois que certains nomment produit en croix. Peu importe l’appellation, l’esprit vaut mieux que la lettre. Dans les deux cas, le raisonnement sous-jacent est abstrait puisqu’il consiste à inventer une fiction : la vente d’un gramme de pommes ! Il montre que, même dans les applications les plus élémentaires, il n’existe pas de mathématiques sans abstraction, ou sans réflexion. Leur apprentissage exige application, cogitation et quantité d’exercices, comme l’escalade, le tennis ou le football.

La voie royale

Cela n’est pas nouveau comme le montre l’anecdote suivante, qu’elle soit vraie ou non. Selon la légende, Euclide enseigna les mathématiques au roi d’Égypte. Rapidement, celui-ci demanda un accès au savoir simplifié, par égard à sa majesté. Euclide répondit : Désolé sire, en mathématiques, il n’y a pas de voie royale. Il n’en existe toujours pas, que cela soit pour les rois ou les enfants-rois. Vouloir en inventer sous prétexte de faciliter l’apprentissage des mathématiques est voué à l’échec. L’idée ne fait qu’en interdire l’accès.

La règle à calcul, autrefois symbole de l’ingénieur

Une façon d’effectuer les additions est d’utiliser les propriétés des longueurs : deux mètres plus trois mètres font cinq mètres. Ainsi, avec deux règles graduées, on peut facilement opérer une addition.

En faisant coïncider le 0 de la règle verte avec le 2 de la règle bleue, on lit sous la graduation 5 de la verte, la somme de 2 et de 5.

L’idée sous-jacente est tellement simple qu’on ne voit pas immédiatement l’analogie sous-jacente. Elle consiste pourtant à assimiler nombre et longueur, deux notions a priori distinctes. En grec, le sens premier d’analogie est « proportion mathématique ». On passe d’une quantité à une autre par l’application d’un certain rapport. Cependant, dès l’époque de Platon, ce terme a pris le sens plus général de correspondance, de ressemblance, de similitude. En mathématiques, il est aujourd’hui utilisé à plusieurs niveaux, du concret à l’abstrait, du rigoureux à l’approximatif ou à l’heuristique, c’est-à-dire à ce qui donne des idées.

Et les multiplications …

La fonction logarithme transformant une multiplication en addition donne alors une méthode analogique pour calculer un produit. Il suffit de transformer l’échelle linéaire en échelle logarithmique. On obtient un instrument de calcul utilisé avant l’avènement des calculatrices bon marché, et autrefois symbole de l’ingénieur.

Une règle à calculs est composée de trois réglettes dont une coulisse entre les deux autres. En faisant coïncider la graduation 1 de l’une et la graduation 2 de l’autre, puis en alignant le curseur sur la graduation 5 de la première, on lit le résultat de la multiplication 2 x 5 sur la seconde.

Bien entendu, la règle à calcul permet d’effectuer également des divisions et toutes sortes de calculs plus complexes.

Le calcul analogique

De façon plus générale, l’idée du calcul analogique est de représenter les nombres par des grandeurs géométriques (longueurs, aires, volumes, angles) ou physiques (mécaniques, électriques, hydrauliques, chimiques), et d’exploiter des phénomènes géométriques ou physiques dont la modélisation mathématique est fondée sur les équations que l’on veut résoudre. En particulier, des systèmes électriques permettent de résoudre automatiquement certaines équations : celles qui les régissent. Les calculateurs analogiques ont été en usage jusqu’à ce que les ordinateurs, ou calculateurs numériques, les supplantent, c’est-à-dire jusqu’au début des années 70. Dans le domaine du calcul scientifique, numérique est ainsi devenu l’opposé d’analogique.

Mes règles à calcul

Mes premières règles à calcul ont été fabriquées en bambou, c’était alors un symbole de qualité.

Règle en bambou de la marque HEMMI de 30 cm de long
Règle en bambou de la marque HEMMI de 14 cm de long, la précision était moindre mais la règle tenait dans la poche pectorale d’une blouse.
Règle en bambou de la marque HEMMI de 10 cm de long, avec loupe.

Les suivantes sont en matière plastique comme celle-ci.

Petite règle à calcul en matière plastique de la marque Graphoplex. Longueur 15 cm.La dernière ressemble à une règle à calcul mais ne possède par de réglette mobile. C’est en fait une règle de conversion entre les unités internationales (mètres, etc.) et les unités américaines (pieds, etc.).

Règle de conversions entre les unités internationales et les unités américaines en plastique Graphoplex.

 

Les maths et la matière

Toujours à la recherche d’œuvres d’art inspirées par les mathématiques, et la science en général, j’ai découvert dans une petite galerie d’art parisienne (galerie Sonia Monti, Paris VIII), quelques œuvres de François Sforza, dont l’originalité est d’allier les maths et la matière.

La formule d’Euler

Leonhard Euler (1707 – 1783) est l’auteur d’une formule déclarée « plus belle formule des mathématiques » en plusieurs occasions :

Pourquoi si belle ? La raison souvent invoquée est la réunion de cinq constantes fondamentales : les éléments neutres de l’addition (0) et de la multiplication (1), la mystérieuse racine carrée de -1 (i) et les deux nombres transcendants les plus rencontrées (e et pi). François Sforza suggère de plus une démonstration élémentaire de la formule sur son tableau.

Lidentité d’Euler par François Sforza. La photo ne reflète  pas la matière de la peinture.

Dans un autre post, j’ai célébré cette même formule dans une autre matière : le verre.

La plus belle formule des mathématiques

L’hypothèse de Riemann

La fonction zêta de Riemann est à l’honneur dans une autre toile, accompagnée de son lien avec les nombres premiers, dû à Euler.

Fonction zêta par François Sforza. Au cœur de l’hypothèse de Riemann.

L’hypothèse de Riemann se trouve de façon étonnante au salar d’Uyuni en Bolivie, taguée sur une locomotive rouillée :

L’hypothèse de Riemann au salar d’Uyuni

Pour finir, voici quelques autres peintures de François Sforza.

L’inconnue de François Sforza.
Synaptik par François Sforza. Une plongée imaginaire dans notre cerveau où des formules mathématiques remontent le long des neurones.

 

Vibration sonore par François SforzaPour en savoir plus sur l’artiste

https://sforzafrancois.portfoliobox.net

 

Les nombres premiers (définition)

A priori, les nombres premiers sont les nombres entiers naturels (1, 2, 3, 4 , 5, 6, etc.) qui ne sont divisibles que par 1 et eux-mêmes ce qui amène à éliminer dans la liste précédente les nombres composés c’est-à-dire produits de deux nombres comme 4 (2 x 2), 6 (2 x 3), etc.

1 est-il premier ?

Avec cette définition, 1 serait premier. On l’élimine pourtant en ajoutant qu’un nombre premier doit avoir deux diviseurs  distincts: 1 et lui-même. La raison est plus profonde qu’il ne peut paraître. Voyons pourquoi.

Le théorème fondamental de l’arithmétique

Si on exclut 1 de l’ensemble des nombres premiers, on peut démontrer un théorème fondamental en arithmétique :

tout nombre entier naturel supérieur à 2 est le produit d’un nombre fini de nombres premiers et ce de façon unique, à l’ordre près des facteurs.

Ainsi, 530 = 2 x 5 x 53

Pour démontrer ce théorème, l’essentiel est de montrer que tout nombre est soit premier, soit divisible par un nombre premier… ce qui est une évidence. En appliquant cette remarque de façon itérative, nous aboutissons à notre théorème.

Si on n’exclut pas 1, toute décomposition est multiple puisqu’on peut ajouter autant de facteurs 1 que l’on veut sans changer le résultat. Voila pourquoi on élimine 1 de la liste des nombres premiers.

 

 

Les âges de la vie

Avant 30 ans, on parle d’enfants puis d’adolescents et enfin de jeunes gens (femmes ou hommes) mais il n’existe pas de termes spécifiques liés précisément à l’âge.

La crise de la trentaine

Tout change à 30 ans. À trente ans et un jour, on entre dans sa 31e année. On a alors la trentaine jusqu’à 39 ans. On est également un trentenaire mais cela se dit moins.

L’an zéro n’a jamais existé

Remarquez que les siècles fonctionnent différemment, ce qui prête à confusion. Ainsi, le 20e siècle a commencé en 1901 comme le 21e en 2001 et non en 2000. Pourquoi ? Tout simplement parce que zéro n’existait pas quand on inventa l’ère chrétienne… au VIe siècle après Jésus-Christ… mais revenons aux âges de la vie.

Centenaire pour l’éternité

À 40 ans, on devient un quadragénaire et on a la quarantaine. À 50 ans, un quinquagénaire et on a la cinquantaine. À 60 ans, un sexagénaire et on a la soixantaine. Ensuite, on devient successivement un septuagénaire, un octogénaire puis un nonagénaire mais on n’a la septantaine, la huitantaine ou l’octantaine puis la nonantaine que dans certaines régions. À 100 ans, les survivants sont des centenaires jusqu’à la fin de leurs jours.

Des nœuds dans l’ADN

L’ADN (ou acide désoxyribonucléique) est le support de l’hérédité. Cette molécule, présente dans chaque cellule, prend la forme d’une double hélice, qui s’enroule sur elle-même, formant ainsi un nœud.

Molécule d’ADN formant un nœud. Sa réplication demande de le dénouer. Image réalisée au moyen d’un microscope électronique.

Duplication des molécules

La duplication des informations contenues dans une molécule d’ADN se fait au moyen d’enzymes. Pour « voir » le processus, imaginez une longue fermeture éclair qu’on ouvre avant de la séparer en deux. Cela n’est possible que si le nœud peut être dénoué. Certains virus attaquent les molécules d’ADN en les coupant et en les recollant de sorte qu’ils soient impossibles à dénouer. Le type de nœud obtenu après l’attaque virale est caractéristique de chaque virus. La signature de ces virus est de nature topologique !

Par ailleurs, cette question du dénouement est au cœur de la théorie mathématique des nœuds. Certains sont faciles à dénouer, d’autres bien plus compliqués, voire impossible (voir la figure ci-dessous). À l’envers de celle des virus, la seule méthode est celle qu’Alexandre le Grand employa pour dénouer le nœud gordien : couper la corde !

Deux nœuds. Pour défaire le vert, il suffit de faire glisser la boucle de gauche. Le second requière la méthode d’Alexandre et des virus, non autorisée en théorie des nœuds.

Nœuds et mathématiques

Mathématiquement, les nœuds sont des courbes fermées de l’espace de dimension trois, que l’on représente souvent comme une courbe plane. Elle a alors des points doubles, où il faut distinguer la branche « au-dessus » de celle « en-dessous ». Si en essayant de démêler un nœud, on passe à un autre, les deux nœuds sont dits équivalents. La théorie des nœuds consiste donc à étudier si un nœud est équivalent à une courbe non nouée, comme le cercle, et plus généralement si deux nœuds sont équivalents. Pour étudier ce type de problème, on essaye d’introduire des invariants, c’est-à-dire des objets mathématiques invariants quand on passe d’un nœud à un nœud équivalent. Henri Poincaré (1854 – 1912) en a trouvé un particulièrement subtil, que l’on appelle le groupe du nœud, malheureusement son étude est délicate.

Stephen Smale (né en 1930), William Thurston (1946 – 2012) et Mikhaïl Gromov (né en 1943) réunis lors de la conférence Clay sur la résolution de la conjecture de Poincaré, en 2010.

William Thurston a découvert une réalisation concrète de ce groupe, liée à la géométrie des espaces de dimension trois, ce qui lui a valu la médaille Field en 1982, et explique son implication en biologie ainsi que celles de Stephen Smale ou de Mikhail Gromov, spécialistes de ce domaine, souvent présenté très loin de toute application.

Cercle qui roule se quarre

La quadrature du cercle consiste à construire un carré de même aire qu’un cercle donné. Si le cercle a pour rayon R, il s’agit donc de construire un carré de côté R multiplié par la racine carrée du nombre Pi. On peut donc réaliser la quadrature du cercle avec une règle graduée à la précision que l’on veut.

Des règles qui changent tout

Quand le problème est apparu dans l’Antiquité, il n’était pas question d’approximations, la règle était que la construction devait être exacte. Il en existe plusieurs. L’une d’entre elle demande de faire rouler un cercle sur une droite. La voici sous forme de tableau :

Le cercle part de la position à gauche (en rouge) pour arriver à celle de droite (en jaune) ce qui permet de définir le carré de droite, de même aire que le cercle initial.

En utilisant uniquement le théorème de Pythagore, on démontre que le carré est de côté racine de Pi, ce qui prouve que le carré et le cercle ont même aire (voir à la fin pour une démonstration).

Cette utilisation d’un procédé mécanique (faire rouler le cercle) ne convenait pas aux anciens, il fallait construire le carré à la règle (non graduée) et au compas. Dans ces conditions, le problème devient impossible, ce qui n’a été prouvé qu’au XIX-ième siècle en démontrant que le nombre Pi est transcendant c’est-à-dire qu’il n’est pas solution d’une équation algébrique à coefficients entiers.

De façon étonnante, un problème purement géométrique et très conditionné par des visions antiques a eu des conséquences importantes en algèbre et en analyse.

Un peu de géométrie

La figure essentielle est la suivante :

Il s’agit de montrer que HC a pour longueur la racine carrée de Pi.

En appliquant le théorème de Pythagore dans les trois triangles rectangles HBC, HC et ABC, on obtient :

HC² + 1 = BC², HC²+ Pi² = AC² et BC² + AC² = (Pi + 1)²

En faisant la somme des deux premières expressions puis un peu d’algèbre, il vient que HC² est égal à Pi ce qu’il fallait démontrer.

Une lampe pour une idée lumineuse

Cette quadrature du cercle, dont l’auteur initial nous est inconnu, m’a inspiré la lampe suivant :

Cercle qui roule se quarre par Hervé Lehning.

Les pesées de Leibniz et de Bachet

Voici une question autrefois pratique, qui reste aujourd’hui ludique. Elle suppose l’utilisation d’une balance de Roberval, qui fut inventée par Gilles Personier de Roberval (1602 –  1675). Nous en donnons le schéma mais, pour comprendre l’usage que l’on en fait, il suffit de savoir que les deux plateaux s’équilibrent quand les masses qui s’y trouvent sont égales.

Schéma d’une balance de Roberval. Le parallélogramme articulé aux quatre sommets (en rouge) peut pivoter autour du point marqué (en blanc) sur la figure. L’aiguille est dirigée verticalement quand les poids sur les plateaux s’équilibrent.

Pesée binaire de Leibniz

Leibniz a montré que, si on dispose d’une série de poids dont chacun est le double du précédent, on peut réaliser toutes les pesées possibles. Pour voir comment, imaginons un objet de 713 grammes à peser avec des poids de 1, 2, 4, 8, 16, 32, 64, 128, 256 et 512 grammes. L’objet étant dans un plateau, nous commençons par placer le plus gros poids possible, c’est-à-dire celui de 512 grammes dans l’autre. Nous recommençons ensuite itérativement jusqu’à l’équilibre.

Voyons les étapes de ce processus. Le déficit est de 713 – 512 = 201 grammes. Nous utilisons alors le poids de 128 grammes (le plus gros possible). Il reste 201 – 128 = 73 grammes. Après le poids de 64 grammes, il ne reste plus que 9 grammes. Nous terminons en décomposant 9 en 8 + 1. Finalement, nous avons équilibré le poids de 713 grammes avec les poids prévus. D’un point de vue arithmétique, cela s’écrit :

713 = 512 + 128 + 64 + 8 + 1.

Ce résultat correspond à l’écriture de 713 en base deux : 713 = 29 + 27 + 26 + 23 + 20 ce que l’on peut noter : 1011001001. En base dix, nous écrivons : 713 = 7.102+ 101+ 3.100. La différence apparente est que l’écriture en base deux n’implique que des additions, pas de multiplication. En fait, il n’en est rien puisque les chiffres en base deux sont seulement 0 et 1 au lieu de 0, 1, …, 9. La propriété est générale, notre démarche prouve d’ailleurs que tout nombre s’écrit en binaire.

Pesée ternaire de Bachet

À l’occasion d’une récréation mathématique, Claude Bachet de Mériziac (1581 – 1638) a montré que, à condition d’utiliser les deux plateaux, on peut peser n’importe quel objet à l’aide d’une série de poids dont chacun est le triple du précédent. Voyons comment sur l’exemple précédent et des poids de 1, 3, 9, 27, 81, 243 et 729 grammes. L’idée précédente fonctionne si on dispose de deux poids de chaque sorte. Il suffit d’écrire 713 en ternaire. On commence par retrancher deux fois 243 à 713, il reste 227. On recommence avec deux fois 81, il reste 65. On retranche alors deux fois 27, il reste 11 ce qui fait 9 plus deux fois 1. Cette suite d’opérations fournit l’écriture ternaire : 222102 ce que l’on peut écrire : 713 = 2.35 + 2.34 + 2.33 + 32 + 2.30. Pour conclure, l’idée essentielle est d’éliminer les 2 du membre de droite de cette égalité en remarquant que : 3 = 2 + 1. Plus précisément : 713 + 35 + 34 + 33 + 30 = 36 + 35 + 34 + 32 + 31 ce qui se simplifie en : 713 + 33 + 30 = 36 + 32 + 31, c’est-à-dire en : 713 + 27 + 1 = 729 + 9 + 3. Il suffit donc de disposer des poids de 27 et 1 grammes dans le plateau de gauche et de 729, 9 et 3 grammes dans celui de droite.

L’art du défilement, Vauban et Gaspard Monge

L’un des problèmes pour construire des fortifications à l’époque de Vauban (1633 – 1707) était  :

Comment défiler une fortification des tirs de l’ennemi ?

Le verbe « défiler » doit s’entendre ici au sens commun de « se défiler ». Comment cacher l’intérieur d’un ouvrage aux vues et aux tirs de l’agresseur ? Bien entendu, il suffit de bâtir partout des remparts assez hauts. L’ennui est que la hauteur fragilise les remparts. Le tout doit rester équilibré. Sur le terrain, les bons ingénieurs comme Vauban savaient défiler leurs ouvrages mais comment s’y prendre à partir d’un simple plan côté ?

La géométrie descriptive

Gaspard Monge (1746 – 1818) inventa la géométrie descriptive pour résoudre ce problème. De façon générale, elle permettait d’étudier certains objets de l’espace comme l’intersection de deux tores dans l’épure qui suit. Le résultat pouvait être très esthétique, comme on peut le voir dans ce cas.

Dessin se trouvant dans Objets mathématiques, Institut Henri Poincaré, livre que nous recommandons fortement.

Les déblais et remblais

Le même Monge, sans doute également motivé par la construction de fortifications, publia un Mémoire sur la théorie des déblais et des remblais où il se proposait de résoudre un problème très concret : comment déplacer des tas de sable vers un certain nombre de destinations de la manière la plus économique possible ?

Dessin explicatif du problème dans le mémoire de Monge.

Ici il s’agit de déblayer la zone de gauche pour remblayer celle de droite (ou l’inverse puisque les deux problèmes sont équivalents). Dans son mémoire, Monge étudie ce problème mais ne le résout pas dans sa généralité. Voir l’article d’Étienne Ghys dans Image des mathématiques.

Le transport optimal

Ce problème se généralise en problème du transport optimal : comment un fournisseur peut-il livrer un certain nombre de points de vente de façon à minimiser ses coûts ? Le problème de Monge a ainsi été redécouvert par Léonid Kantorovitch (1912 – 1986) qui obtint le prix Nobel d’économie en 1975 pour ses avancées sur la question en ouvrant un nouveau domaine, celui de la programmation linéaire. Plus récemment, Cédric Villani (né en 1973) a obtenu la médaille Fields en revisitant le problème du transport optimal en le rapprochant du problème de la diffusion des gaz. Cette capacité de rapprochement entre des domaines a priori différents est un marqueur des grands mathématiciens.