Archives pour la catégorie Mathématiques

Le salon de la culture et des jeux mathématiques 2020

Depuis l’an 2000, fin Mai, place saint Sulpice à Paris le salon de la culture et des jeux mathématiques se propose de présenter les mathématiques sous forme tout à la fois ludique et utile. Il attire ainsi chaque année de l’ordre de 20000 personnes, élèves, étudiants, professeurs, parents et passants.

Vue d’une allée du salon

Cette année 2020, la crise sanitaire a mené à son interdiction. Les organisateurs ont décidé de le dématérialiser. Il est donc ici : http://salon-math.fr/ du 28 au 31 Mai.

Comme chaque année, j’y suis responsable d’un stand dédié à la cryptologie et à la cybersécurité, celui de l’ARCSI (association des réservistes du chiffre et de la sécurité de l’information) dont je suis administrateur.

Ci-dessus, j’explique le fonctionnement d’une C-36, machine à chiffrer française de la Seconde Guerre mondiale à Cédric Villani sous l’œil bienveillant du général Jean-Louis Desvignes, président de l’ARCSI.

Nous y organisons des visio-conférences dont la liste et les horaires se trouvent en ligne de même que quelques curiosités et énigmes. Personnellement, j’en donne quatre :

28 Mai 10H-10H 30 Les correspondances personnelles chiffrées du Figaro en 1890
29 Mai 11H-11H 30 La faiblesse du chiffre de l’armée napoléonienne
30 Mai 11H-11H 30 Le chiffre de Marie-Antoinette
31 Mai 11H-11H 30 Les erreurs de cybersécurité sont avant tout humaines

Sur l’espace rencontre du salon en 2019.

Compter les grains de sable avec Archimède

Archimède (287 – 212 avant Jésus-Christ) inventa une méthode pour décrire les grands nombres dans un but purement théorique, pour montrer que le nombre de grains de sable contenus dans l’univers n’était pas infini, mais juste très grand. C’est d’ailleurs ainsi que commence l’Arénaire :

Il est des personnes, ô roi Gélon, qui pensent que le nombre des grains de sable est infini. Je ne parle point du sable qui est autour de Syracuse [mais] d’un volume de sable qui fût égal à celui de la Terre.

Pour cela, Archimède commence par évaluer le périmètre de la Terre, en voulant être sûr que la mesure réelle soit inférieure à celle qu’il donne, il multiplie donc par dix les mesures connues :

Cela posé, que le contour de la Terre soit à peu près de trois cent myriades de stades mais non plus grand. Car tu n’ignores point que d’autres ont voulu démontrer que le contour de la Terre est à peu près de trente myriades de stades.

Dans le système de numération grec, la myriade était l’unité suivant directement le millier. Elle valait donc dix mille. Le stade est une mesure que nous avons tous en tête car elle a donné la longueur de nos stades. Il mesurait donc un peu moins de 200 mètres, mais cela importe peu ici. À partir de ces données, il est possible de calculer le volume de la Terre. Archimède évalue alors que, dans un volume équivalent à une graine de pavot, il n’y a pas plus d’une myriade de grains de sable, avant de constater qu’il fallait aligner 40 graines pour obtenir la largeur d’un doigt. Archimède a alors tous les éléments pour faire son calcul. Il lui manque simplement un système de numération.

Le système de numération d’Archimède

Archimède commence par décrire le système en usage en Grèce à son époque :

On a donné des noms aux nombres jusqu’à une myriade et au-delà d’une myriade, les noms qu’on a donné aux nombres sont assez connus, puisqu’on ne fait que répéter une myriade jusqu’à dix mille myriades.

Il en fait la base de son système :

Que les nombres dont nous venons de parler et qui vont jusqu’à une myriade de myriades soient appelés nombres premiers [pas dans le sens actuel], et qu’une myriade de myriades des nombres premiers soit appelée l’unité des nombres seconds ; comptons par ces unités, et par les dizaines, les centaines, les milliers, les myriades de ces mêmes unités, jusqu’à une myriade de myriades.

Ces nombres premiers et seconds permettent d’aller jusqu’aux milliers de billions de Nicolas Chuquet, soit jusqu’aux billiards ! (voir le tableau équivalents des nombres premiers et seconds dans le système de Nicolas Chuquet).

nombres rang noms équivalent Chuquet
premiers 1 unités unités
2 dizaines dizaines
3 centaines centaines
4 milliers milliers
5 myriades dizaines de milliers
6 dizaines de myriades centaines de milliers
7 centaines de myriades millions
8 milliers de myriades dizaines de millions
seconds 9 unités centaines de millions
10 dizaines milliards
11 centaines dizaines de milliards
12 milliers centaines de milliards
13 myriades billions
14 dizaines de myriades dizaines de billions
15 centaines de myriades centaines de billions
16 milliers de myriades billiards

Équivalents des nombres premiers et seconds dans le système de Nicolas Chuquet.

Archimède continue de même pour définir les nombres troisièmes et ainsi de suite. Il atteint les limites du système de Nicolas Chuquet, soit le nonillion, avec la centaine de myriade des nombres septièmes du premier ordre ! Il continue jusqu’aux nombres huitièmes :

Qu’une myriade de myriades des nombres seconds soit appelée l’unité des nombres troisièmes ; comptons par ces unités, et par les dizaines, les centaines, les milles, les myriades de ces mêmes unités, jusqu’à une myriade de myriades ; qu’une myriade de myriades des nombres troisièmes soit appelée l’unité des nombres quatrièmes ; qu’une myriade de myriades de nombres quatrièmes soit appelée l’unité des nombres cinquièmes, et continuons de donner des noms aux nombres suivants…

Archimède appelle « première période », les nombres qu’il a définis jusqu’aux nombres huitièmes et commence une seconde période :

Quoique cette grande quantité de nombres connus soit certainement plus que suffisante, on peut cependant aller plus loin. En effet, que les nombres dont nous venons de parler soient appelés les nombres de la première période, et que le dernier nombre de la première période soit appelé l’unité des nombres premiers de la seconde période. De plus qu’une myriade de myriades des nombres premiers de la seconde période soit appelée l’unité des nombres seconds de la seconde période…

En faisant des calculs d’ordre de grandeurs, pour l’univers, tel qu’il était vu à son époque, Archimède trouve :

il s’ensuit que le nombre des grains de sable contenus dans une sphère aussi grande que celle des étoiles fixes supposée par Aristarque, est plus petit que mille myriades des nombres huitièmes.

Cela fait beaucoup plus que l’on ne peut compter dans le système de Nicolas Chuquet d’origine, puisque ce nombre est égal à 1 suivi de 63 zéros ! Si on le prolonge par des décillions valant chacun un million de nonillions, ce nombre est égal à 1000 décillions. On peut comparer au nombre estimé d’électrons de l’univers, qui est égal à 1 suivi de 81 zéros, ce que l’on note 1081. Dans le système d’Archimède, ce nombre vaut une dizaine des nombres troisièmes de la seconde période.

Le problème de Napoléon

Le problème de Napoléon que nous voulons évoquer ici n’est pas d’ordre militaire ou climatique, comme celui qui lui fit oublier qu’il pouvait faire froid en Russie en hiver. Non, il est d’ordre mathématique, de géométrie très classique.

L’énoncé du problème

Le voici : un cercle étant donné (sans son centre), il s’agit de le trouver en utilisant seulement un compas (donc sans la fameuse règle des constructions usuelles). Pour ceux qui s’intéressent à cette question d’un autre temps, le petit dessin qui suit montre comment s’y prendre.
Ce dessin résume la construction du centre du cercle : on choisit A sur le cercle puis on construit les points B, C, … jusqu’à G qui est le centre cherché.

Un intérêt marqué pour les sciences

L’intérêt que portait Bonaparte aux sciences ne se limitait pas à ce problème dont on ne sait si la solution ci-dessus est de lui ou non. Sous son règne, les sciences étaient à l’honneur et les scientifiques aussi. Ainsi, le grand mathématicien Joseph Fourier fut aussi préfet de l’Isère. A ce titre, on lui doit la route de Grenoble à Briançon passant pas le col du Lautaret. L’appétit de Napoléon pour les sciences ne prit pas fin avec son règne puisqu’il emporta une vraie bibliothèque scientifique dans l’île de Sainte Hélène, dont le cours de mathématiques de Sylvestre-François Lacroix, qu’il annota de sa main.

Voûtes et dômes

La voûte semble être née plate. Pour permettre une ouverture dans un mur, traditionnellement, on posait au-dessus une pierre assez longue en guise de linteau, comme dans le cas de cette porte dans les ruines de Délos en Grèce.

Une porte à Délos.

S’ils ne disposaient pas de pierres assez longues, dès l’Antiquité, les architectes ont trouvé un moyen d’y pallier en utilisant plusieurs pierres plus petites disposées de façon à ce que le poids de l’ensemble bloque le linteau. La pierre centrale, en coin dans le dispositif, est appelée la clef de voute. Il est probable que cette méthode ait été trouvée par essais et erreurs même si elle s’explique très bien par la pesanteur, en calculant le bilan des forces exercées, ce que les ingénieurs savaient faire à l’époque d’Archimède (IIIe siècle avant notre ère). Il est important que les appuis sur les côtés soient suffisamment lourds pour ne pas être déplacés par la poussée latérale exercée par le linteau.

Linteau de porte avec clef de voûte (au centre).

Pour des ouvertures plus importantes, les architectes ajoutaient simplement des colonnes ou des caryatides, qui sont des colonnes sculptées en forme de femmes (la variante masculine se nommant Atlante), ce qui donne des édifices comme l’Érechthéion sur l’Acropole d’Athènes. Ces colonnes étaient alors surmontées de linteaux comme une porte.

Colonnes et caryatides de l’Érechthéion sur l’Acropole d’Athènes.

La même idée fonctionne avec des voûtes en arc de cercle comme en construisaient les Romains, mais qu’on trouve déjà chez les Égyptiens et les Grecs, même si c’est dans des constructions utilitaires comme des entrepôts ou des canalisations. Ici encore, le poids de la voûte s’exerce sur les piliers latéraux dont la masse assure la stabilité de l’ensemble.

Voûte avec clef maintenant l’ensemble.

Ces voûtes peuvent être prolongées pour former le plafond d’une salle, elles servent aussi à construire des ponts comme les deux ponts d’Albi, le vieux datant de 1040 et le neuf de 1867.

Le pont vieux d’Albi (en premier plan) a des arches ogivales, le pont neuf (en second plan) a des arches en plein cintre.

Les dômes

Mis à part les toits plats ou en pentes et les voûtes, les Grecs eurent l’idée de toits hémisphériques, autrement dit de dômes. Le principe de la stabilité de ces structures repose sur des murs solides, calculés pour soutenir le dôme, comme pour les voûtes. Les dômes de l’Antiquité comme celui de Sainte Sophie à Constantinople (aujourd’hui Istanbul) ont des assises massives, qui permettent la stabilité du tout même si le dôme de Sainte Sophie s’écroula en 1346, suite à un séisme survenu deux ans plus tôt.

Dôme posé sur un tambour octogonal, de la cathédrale Santa Maria del Fiore à Florence, vu de son campanile.

La cathédrale Santa Maria del Fiore de Florence posa un problème plus épineux. En 1418, la cathédrale était achevée mis à part un trou béant de 45 mètres de diamètre au-dessus d’un tambour octogonal de 53 mètres de haut. D’après les plans de l’architecte initial, décédé depuis longtemps, un dôme devait reposer sur ce tambour. L’ennui est que personne ne savait ni comment le faire tenir sur une structure aussi légère, ni comment le construire sans échafaudage en bois, comme on le faisait à l’époque mais impossible ici du fait de la trop grande portée. La question fut mise au concours et Filippo Brunelleschi (1377 – 1446) le remporta avec une double structure légère, une à l’extérieur, l’autre à l’intérieur. Finalement, le tout fut monté progressivement par anneaux horizontaux et sans échafaudage, un peu comme on le fait dans certains pays d’Afrique pour des cases en forme d’ogive. Ce type de construction semble venir de l’antique Nubie, car on en trouve en haute Égypte.

Construction d’une case obus sans échafaudage (architecture Mousgoum).

Le cercle de Conway

John Horton Conway, né le 26 décembre 1937 et mort lors de la pandémie de Coronavirus le 11  avril 2020, est l’un des mathématiciens les plus originaux du XX° siècle. Il est particulièrement connu pour sa création du jeu de la vie, qui est déjà l’objet d’un article de ce blog.

Un cercle dans un triangle

En pleine époque des maths modernes, le malicieux Conway a découvert une propriété du triangle qui aurait pu l’être par Euclide, trois siècles avant notre ère.

Soit ABC un triangle, ab et c les longueurs des côtés BC, CA et AB. On prolonge les côtés comme indiqué sur la figure, on obtient ainsi six points notés de petits ronds sur la figure. Conway a découvert que ces six points appartenaient à un même cercle, appelé depuis cercle de Conway du triangle ABC en son honneur.

Analyse : centre du cercle de Conway

En supposant que ce cercle existe, on démontre en considérant les couples de points venant du même sommet que son centre appartient à chacune des bissectrices du triangle ABC. Il s’agit donc du centre du cercle inscrit I.

Synthèse : cercle de Conway

On considère les bissectrices PP’, QQ’ et RR’ du triangle ABC et le cercle de centre I passant par l’un des points verts. On démontre de proche en proche qu’il passe par tous les points verts puisque les droites PP’, QQ’ et RR’ sont les médiatrices des couples de points verts contigus.

La chiralité des cochons et des escargots

Les coquilles des escargots sont des spirales qui peuvent croître de manière dextre ou senestre. En fait, ils sont presque tous dextres. Seuls un sur dix mille est senestre dans l’espèce des petits gris mais il existe des espèces où c’est le contraire.

Un petit gris. Si on place sa tête à gauche, sa coquille s’enroule dans le sens trigonométrique.

Les tire-bouchons usuels, c’est-à-dire pour droitiers, sont dextres, les tire-bouchons pour gauchers sont senestres.

Un tire-bouchon dextre.

Les queues de cochons

De même la queue en tire-bouchon des cochons peut être dextre ou senestre. Dans ce cas, il se trouve qu’il y a autant de cochons dextres que de cochons senestres. Le sexe des cochons mâles a la même propriété. Ces différences entre dextre et senestre se retrouvent au niveau des molécules, ce qui a parfois des conséquences sur leurs propriétés.

Le pangolin en boule

Pour échapper à ses prédateurs, le pangolin (oui, le mammifère impliqué dans l’origine du Covid-19) se roule en boule, ce qui le rend vulnérable aux braconniers.

Pangolin en boule

D’où la question : existe-t-il deux sortes de pangolins selon l’orientation de la boule ?

Loi des petits nombres vs loi des grands nombres

Dans leurs calculs, les statisticiens utilisent la loi des grands nombres. La française des jeux n’opère pas autrement pour gagner de l’argent ! Le hasard n’intervient que pour les joueurs, pas pour elle ! Les compagnies d’assurance agissent de même. Si elles assurent cent mille voitures, elles savent d’avance combien auront d’accidents et quel en sera le coût. La prime d’assurance est calculée en fonction de ce risque qui n’en est plus un dès que l’on applique la loi des grands nombres ! Si 5% des automobilistes ont un accident chaque année, vous ne pouvez prévoir si vous en aurez un. En revanche, votre compagnie d’assurance sait que, sur ses cent mille assurés, cinq mille auront un accident.

La loi des petits nombres

Les particuliers ne raisonnent pas ainsi. Si un événement malheureux mais peu probable se produit deux fois de suite à une année d’intervalle, ils se diront que jamais deux sans trois et prévoiront un troisième pour l’année suivante. A l’inverse, plusieurs années sans accident leur feront croire que plus rien ne peut leur arriver. Autrement dit, ils utilisent une loi des petits nombres et non la loi des grands nombres. Bien entendu, il ne s’agit pas de mathématique mais de psychologie !

Une question de psychologie

Pour un mathématicien, cette loi des petits nombres peut passer pour un canular. C’est pourtant de manière tout à fait scientifique et en utilisant correctement la loi des grands nombres que Daniel Kahneman l’a mise en évidence. Plus précisément, il a étudié expérimentalement le comportement moyen des américains devant l’assurance ! Il apparaît que plusieurs années sans accident pousse la moyenne des américains à résilier ses contrats d’assurance ! Pour cette étude, ce professeur de psychologie à Princeton a obtenu le Prix Nobel d’économie en 2002.

Il semblerait que certains états appliquent cette loi des petits  nombres et suppriment des équipements de précaution, comme des masques de protection, quand ils se sont révélés inutiles plusieurs années de suite. D’autres, dans l’affolement, feront des tests de médicaments sur des petits nombres pour en déduire avoir trouvé le traitement miracle.

(Henri) Quatre sur (le pont) Neuf

Prenez un mot de neuf lettres, comme « minutieux », brouillez-les, vous obtenez par exemple XNIIMTUEU. Écrivez-le dans ce nouvel ordre dans un carré 3 par 3 :

Une grille de quatre sur neuf.

Nous avons ainsi formé une grille de notre jeu quatre sur neuf. Le but est maintenant de trouver un maximum de mots français de quatre lettres contenant la lettre centrale (en bleu, ici M) en un minimum de temps. Les accents ne comptent pas, ainsi mute et muté sont considérés comme le même mot.

Si on commence par les mots dont la première lettre est M, nous trouvons rapidement : mite, mine, mixe, mute, muni, muet, meut, etc. Nous pouvons continuer en essayant de placer M dans une autre position : émut, etc.

Quelle est la meilleure stratégie possible ? Chacun la sienne sans doute mais le jeu demande manifestement des qualités de lecture d’un pavé de trois lettres sur trois. Comment voir les chemins intéressants ? Il demande aussi de considérer les digrammes selon leurs fréquences. Par exemple, ici, « en » et « un » sont fréquents donc à considérer pour gagner du temps.

Combien existe-t-il de solutions pour cette grille ? La question est ouverte et la réponse dépend du dictionnaire utilisé. Peut-on trouver une grille sans solution ? Avec une seule ? Deux, etc. ? Toutes ces questions sont ouvertes cher lecteur… et attendent vos réponses. On comprendra, par exemple, que de partir d’un mot de neuf lettres assure la présence de lettres, digrammes et trigrammes relativement fréquents… et donc augmente le nombre de solutions.

Pour vous exercer

Il est facile de créer d’autres grilles, et de même de créer un logiciel pour jouer à ce jeu en français.

On part d’une liste de mots de neuf lettres (il en existe plus de 50 000), d’un générateur de permutations aléatoires d’un ensemble à neuf éléments puis d’un dictionnaire pour vérifier les solutions trouvées. Il reste à ajouter une horloge pour augmenter le stress du joueur. Attention avant de créer ce jeu : il est hautement addictif et son abus peut provoquer de graves ennuis de santé !

Le jeu de la vie et celui des épidémies

Le jeu de la vie, inventé en 1970 par John Conway, n’est pas vraiment un jeu. Ce terme est cependant moins rébarbatif que celui d’automate cellulaire, qui est pourtant plus exact. Il trouve ses origines dans des travaux conduits par John von Neumann dans les années 1940. Nous garderons la métaphore du jeu pour en parler, même si certains trouveront le terme mal adapté quand il s’agit de maladies potentiellement mortelles. L’essentiel est d’aider la compréhension. Voyons quelles en sont les règles.

Les règles du jeu de la vie

Pour jouer, prenez un damier et des pions. Les cases sont considérées comme des cellules ; elles peuvent être mortes ou vivantes. On utilise les pions pour matérialiser les cellules vivantes. Au début du jeu, on place des pions sur n’importe quelle case. On joue ensuite par étapes selon les règles suivantes :

— une cellule morte entourée de trois cellules vivantes ressuscite, sinon elle reste morte ;

— une cellule vivante reste en vie si elle a deux ou trois voisines vivantes, sinon elle meurt.

Bien que l’évolution du jeu soit complètement déterminée par la disposition initiale des cellules, on n’en assiste pas moins à quelques situations qui peuvent paraître surprenantes. Ainsi, en alignant tout simplement trois cellules vivantes les unes à côté des autres, on obtient une situation où les trois cellules se reproduisent, alignées horizontalement puis verticalement et ainsi de suite.

Lorsque trois cellules vivantes sont contiguës, on assiste à une oscillation entre trois cellules en ligne et trois en colonne.

Le jeu des épidémies

 

Ce jeu est loin d’être un simple amusement : il s’agit d’un exemple de ce que l’on nomme « automate cellulaire », particulièrement utile pour modéliser les processus d’expansion des épidémies comme des épizooties. En préalable à ce type d’application, il est nécessaire d’étendre le damier à l’infini. Au départ, toutes les cellules sont saines. On place une cellule infectée puis on « joue » avec la règle probabiliste suivante :

— les cellules voisines de la cellule infectée sont infectées au coup suivant avec la probabilité ;

— la cellule meurt ou est immunisée le coup suivant.

Comment les cellules infectées (en rouge) se multiplient-elles au détriment des cellules saines (en vert) ? Dans cet exemple, la probabilité qu’une cellule voisine d’une cellule infectée soit infectée à son tour est de 25 %. Les cellules mortes ou immunisées sont représentées en bleu.

La question qui intéresse autant les épidémiologistes que le grand public est donc : « Pour quelles valeurs de p, la maladie se propage-t-elle au monde entier ? »

Un modèle probabiliste

Le modèle est ici « probabiliste », et donc on ne peut prédire à l’avance ce qui va se produire dans un cas particulier. Pour avoir une idée rapide de l’évolution moyenne du système, le mieux est de procéder à une simulation. Pour cela, on « joue » selon les règles énoncées ci-dessus en utilisant un générateur de nombres pseudo-aléatoires et on comptabilise le nombre de cellules infectées. En jouant cent fois de suite et en faisant la moyenne des résultats, on obtient une mesure de l’expansion moyenne de l’épidémie.

Taux critique

En dessous d’un certain taux de contamination p, l’épidémie ne s’étend pas. En revanche, au dessus de ce taux, elle envahit le monde entier. Dans le cadre de notre modèle simplifié, le taux critique se situe entre 30 % et 40 %. Une maladie ne devient épidémique que si ce taux est dépassé. Comment ce modèle peut-il être adapté pour bien modéliser différents types d’épidémies ou d’épizooties ? Tout d’abord, on peut modifier le voisinage de chaque cellule, composé ici de huit cellules — les spécialistes parlent de voisinage de Moore, du nom d’Edward Moore, l’un des fondateurs de la théorie des automates. On utilise souvent un voisinage plus simple, dit de von Neumann, constitué des quatre cellules partageant un côté avec la cellule considérée. Avec ce nouveau modèle, le taux critique pour lequel une maladie devient épidémique se situe aux alentours de 60 %. On peut également améliorer le modèle en tenant compte du temps pendant lequel une cellule infectée est contagieuse puis du taux de mortalité et d’immunité ainsi que du temps d’immunité. On arrive ainsi à retrouver la façon dont se sont propagées des épidémies comme la peste dans l’Europe médiévale. Une première vague a tué le tiers de la population en se propageant à partir d’un épicentre situé dans un port, suivie de plusieurs répliques plus faibles, toutes partant du même point. Ces répliques correspondent à la fin de certaines immunités.

La confrontation avec les données épidémiologiques a permis de montrer que ce type de modèles a une certaine pertinence pour toutes les maladies qui se propagent par contact direct : grippe, tuberculose, coronavirus ou même sida. En revanche, il ne fonctionne plus lorsque la maladie se propage via un agent infectieux, comme dans le cas du paludisme ou du chikungunya.

Géométrie des contagions

Comment considérer maintenant la notion de « cellule voisine » dès que l’on évoque les réseaux de transports aériens, maritimes ou terrestres ? Dans le cas d’une épidémie de grippe humaine, l’aéroport de Paris est voisin de celui de Hong-Kong. Dans le cas d’une épizootie de grippe aviaire, deux élevages fréquentant le même marché aux bestiaux sont voisins. On doit de plus tenir compte des migrations naturelles des oiseaux sauvages. Dans tous ces cas, on retrouve la notion de réseaux.

En modifiant le modèle du jeu, on peut passer du cas où chaque cellule représente un individu à celui où elle représente un domaine où les individus sont en relation constante : un élevage de volaille dans le cas de la grippe aviaire, une ville dans le cas de la tuberculose, du sida ou de la grippe humaine. Ces domaines sont reliés entre eux pour former un réseau. Dans chaque cellule, la modélisation suit une autre logique, celle du modèle « SIR » dû à William Kermack et Anderson Mac Kendrick en 1927 (voir l’article correspondant sur ce blog). Ce modèle compartimente la population en trois classes : S, la classe des individus susceptibles d’attraper la maladie, I, celle de ceux qui en sont infectés (et contagieuses) et R, ceux qui en sont guéris (et immunisés) ou décédés.

Seuil de propagation

On considère l’évolution de ces trois classes dans le temps en fonction de deux taux mesurables expérimentalement. Le premier (a) est le taux de contagion de la maladie pour un infecté, c’est-à-dire la probabilité pour qu’un individu susceptible attrape la maladie après contact avec un individu infecté. Le second taux (b) mesure le passage de l’état I à l’état R.

Après un laps de temps t, on compte a I S t infectés supplémentaires et R augmente de b t. La variation du nombre d’infectés est donc égale à a S – b multiplié par I t. La condition pour que la maladie se propage (et donc donne lieu à une épidémie) est que le nombre de malades infectés augmente, c’est-à-dire que : a S – b > 0. Le quotient b / a a donc valeur de seuil. Si le nombre de sujets susceptibles est strictement inférieur à ce seuil, la maladie ne s’étend pas. Sinon, elle donne lieu à une épidémie (ou à une épizootie).

D’une façon qui peut paraître paradoxale, l’apparition d’une épidémie ne dépend donc pas du nombre de personnes infectées mais du nombre de personnes susceptibles d’attraper la maladie ! Cette remarque justifie à elle seule les politiques de vaccination, même avec un vaccin peu efficace.

Le postulat d’Euclide et la courbure de l’espace

Dans Les Eléments, Euclide pose plusieurs axiomes et définitions de la géométrie plane puis démontre un certain nombre de théorèmes. Entre les deux, il postule que, par un point donné, il passe une et une seule parallèle à une droite donnée. En apparence, il s’agit d’un théorème sans preuve. Des générations de mathématiciens ont essayé de le démontrer sans jamais y arriver. Avant d’analyser la question, il est nécessaire de revenir sur les axiomes d’Euclide.

Les axiomes d’Euclide

Il serait fastidieux de passer en revue les axiomes et les définitions de la géométrie plane d’Euclide. Pour en comprendre l’origine, il suffit de revenir au mythe de la caverne, une allégorie où Platon estime que le monde réel est rempli d’objets dont les modèles sont ailleurs, dans le monde des idées. De la même façon, les points, droites et angles d’Euclide sont les idées des points, droites et angles réels tels qu’un maçon les utilise. Qu’est-ce qu’une droite ? Pour le comprendre, faites comme le maçon. Prenez une corde et deux piquets. Plantez les deux piquets et tendez la corde. Vous réalisez ainsi le plus court chemin entre eux.

En tendant une corde entre deux piquets, on obtient une droite.

Avec la même méthode et trois piquets, vous fabriquez un triangle donc trois angles.

En tendant une corde entre trois piquets, on obtient un triangle Mesurez les angles et faites-en la somme. Comme vous connaissez déjà le résultat, vous trouverez 180°.

Une preuve sous condition

Une petite figure suffit pour démontrer ce résultat. Pour la tracer, en plus de notre corde et de nos piquets, munissons-nous d’un rapporteur capable de reporter un angle donné le long d’une droite, en un point.

Considérez un triangle ABC, prolongez le côté AB en BE et du point B, en utilisant le rapporteur, portez la droite BD de sorte que l’angle CBD soit égal à l’angle ACB (en rouge tous les deux). De même, portez la droite BD’ de façon que l’angle EBD’ soit égal à l’angle BAC (en bleu).

En B, on reporte les angles en rouge et en bleu, on obtient deux droites BD et BD’. D’après le postulat d’Euclide, ces droites sont confondues. Les angles du triangle ABC se retrouvent donc en B et forment un angle plat c’est-à-dire 180°.

Les droites BD et BD’ sont parallèles à la droite AC (les angles rouges et jaunes sont alternes internes). Elles sont donc identiques puisque, d’un point, on ne peut tracer qu’une parallèle à une droite donnée. Les trois angles du triangle ABC se reportent ainsi en B pour former un angle plat, c’est-à-dire 180°. Nous avons ainsi démontré que la somme des angles d’un triangle est égale à 180° … si le postulat d’Euclide est vrai.

L’idée qui dépostule

Quand on dessine la figure précédente sur une feuille de papier, les droites BD et BD’ sont confondues. Coupons le papier le long de la demi-droite BD et déplaçons BD’ sur BD, la feuille se courbe. Elle devient comme un sommet de montagne et la somme des angles du triangle, supérieure à 180°. Au contraire, en écartant BD’ de BD, la feuille se courbe dans l’autre sens. Elle devient comme un col de montagne et la somme des angles du triangle, inférieure à 180°.

Triangle sur la sphère

Pour développer cette idée, reprenons les axiomes d’Euclide sans le postulat en nous plaçant avec nos piquets, notre corde, notre rapporteur et nos définitions sur une sphère. Le plus court chemin entre deux points est obtenu en suivant l’arc de grand cercle entre eux.

Ligne droite sur une sphère.

Sur une sphère, deux grands cercles se coupent toujours. Autrement dit, deux droites ne sont jamais parallèles ! Le postulat d’Euclide y est faux et notre démonstration lumineuse aussi. Dans ce cas, les deux droites BD et BD’ ne se recoupent pas, l’angle DBD’ n’est pas nul. La somme des angles du triangle est donc supérieure à 180°. Pour vous en convaincre davantage, prenez un globe terrestre miniature, deux points sur l’équateur et dessinez le triangle formé avec l’un des pôles. La somme de ses angles est égale à 180° plus l’angle au pôle, elle est donc strictement supérieure à 180°.

Triangle sur une sphère. En mesurant ses angles, on montre que leur somme est supérieure à 180°.

Triangle sur une selle de cheval

Si nous nous plaçons sur une surface différente comme un col de montagne ou une selle de cheval, la somme des angles d’un triangle devient inférieure à 180°. Sur la figure de notre démonstration, les droites BD et BD’ se couvrent.

Un triangle sur une selle de cheval.

Les surfaces comme les plans, les cylindres ou les cônes où la somme des angles d’un triangle est égale à 180° sont dites de courbure nulle, celles comme la sphère ou les ellipsoïdes où la somme des angles est supérieure à 180°, de courbure positive et celles comme la selle de cheval où la somme des angles est inférieure à 180°, de courbure négative. Ces surfaces ne sont pas des plans euclidiens.

Aire d’un cercle

De même, grâce à un piquet et une corde, sur toute surface, nous pouvons tracer un cercle de rayon R. Si la courbure de la surface est nulle, son aire est égale à p R2. Si elle positive, elle est inférieure, sinon elle est supérieure.

Courbure d’un espace

Notre vision en trois dimensions nous permet d’admettre facilement ces résultats. Imaginons des êtres plats « collés » sur une surface de dimension deux pour lesquels, elle serait l’univers entier. Incapable d’en sortir, il ne verrait pas sa courbure. Il pourrait cependant tracer un triangle, mesurer ses angles et déterminer ainsi si son univers a une courbure positive, négative ou nulle.

De même, un extraterrestre vivant et voyant dans un monde en dimension quatre pourrait « voir » la courbure de notre univers. Nous y sommes trop englués pour cela. Le même phénomène existe pourtant et nous pouvons le tester : il suffit de mesurer le volume d’une sphère ou la somme des angles d’un triangle. Jusqu’à présent, les mesures effectuées font penser que notre univers est de courbure quasiment nulle.