Archives pour la catégorie Histoire

Boby Lapointe et le bibi-binaire

Boby Lapointe (1922 – 1972) est connu comme chanteur humoriste, le seul chanteur français jamais sous-titré en France. Pourquoi ? Pas à cause de son élocution aléatoire mais parce que l’apprécier demandait une sacrée gymnastique intellectuelle ! Voici le début d’une de ses chansons les plus faciles pour en montrer le style.

Le poisson Fa

Il était une fois
Un poisson fa.
Il aurait pu être poisson-scie,
Ou raie,
Ou sole,
Ou tout simplement poisseau d’eau,

Ou même un poisson un peu là,
Non, non, il était poisson fa :
Un poisson fa,
Voilà.

et cela continue avec toutes les notes…

Une formation mathématique

Pas étonnant diront certains car la formation de Boby Lapointe  était fortement marquée par les mathématiques. Il aurait pu faire partie de l’Oulipo, comme adepte des littératures à contraintes ! Après un bac MathElem en 1940, il suivit les cours d’une classe de MathSpé et aurait intégré SupAero s’il n’avait pas été requis par le STO (service du travail obligatoire) en Autriche, dont il s’est évadé pour vivre dans la clandestinité. Boby Lapointe était donc un matheux et on le voit dans une de ses inventions.

L’hexadécimal

Revenons aux mathématiques avant de revenir à Boby Lapointe ! Vous avez sans doute remarqué que les clefs Wifi sont formées de chiffres décimaux entrecoupés de quelques lettres, entre A et F, comme par exemple : 9A8356D713058F4569C54039A0.

Il s’agit en fait d’un nombre écrit en base seize, en hexadécimal autrement dit. Dans cette base, les chiffres sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Les cinq derniers représentent les nombres décimaux de 10 à 15. Ce système permet d’écrire les nombres binaires de façon raccourcie. Par exemple, pour écrire le nombre binaire 1 100 101 en hexadécimal, il suffit de grouper les bits par quatre : 110 0101 et de traduire ces groupes : 110 vaut 6 et 0101, 5. Ce nombre s’écrit donc 65 en base seize. De même, un milliard, qui s’écrit 11 1011 1001 1010 1100 1010 0000 0000 en binaire, s’écrit 3B 9AC A00 en hexadécimal, ce que l’on obtient en traduisant chaque groupe de quatre bits.

Signification des chiffres hexadécimaux, c’est-à-dire des chiffres du système de base 16. En plus des chiffres usuels, ce système utilise les chiffres A, B, C, D, E et F qui représentent 10, 11, 12, 13, 14 et 15.

Le système bibi-binaire

Boby Lapointe inventa une notation pour les chiffres hexadécimaux où chaque chiffre se voit attribuer un symbole et une prononciation.

Système bibi-binaire de Boby Lapointe. Chaque chiffre du système hexadécimal se voit attribuer un graphisme et une prononciation dépendant de son écriture en base deux. L’ordre de l’écriture est indiqué pour le chiffre 0.

Ainsi 2019, qui s’écrit 7E3 en hexadécimal puisque 2019 vaut         7 x 16² + 14 x 16 + 3, se dit « bidehi » en bibi-binaire et s’écrit :

Zéro est-il un nombre ?

Zéro est un symbole utile pour écrire les nombres mais est-il lui-même un nombre ? Si nous restons sur l’idée des nombres naturels, la réponse est « non ». Ils sont faits pour compter, et que signifie dénombrer l’absence ? Zéro est un être troublant. Il n’a été accueilli que tardivement dans la communauté des nombres. À son introduction, zéro était plus la marque d’une absence, pour faciliter la notation positionnelle des nombres, qu’un nombre véritable. 

Naissance de zéro comme nombre

Nous devons son apparition en tant que nombre au mathématicien indien Brahmagupta (598 – 668). Dans le Brahmasphutasiddhanta, ce qui signifie « l’ouverture de l’Univers », écrit entièrement en vers, il donne les règles régissant zéro, ainsi que les nombres positifs ou négatifs, en termes de dettes et de fortunes :

Une dette moins zéro est une dette. Une fortune moins zéro est une fortune. Zéro moins zéro est zéro. Une dette soustraite de zéro est une fortune. Une fortune soustraite de zéro est une dette. Le produit de zéro par une dette ou une fortune est zéro. Le produit de zéro par zéro est zéro. Le produit ou le quotient de deux fortunes est une fortune. Le produit ou le quotient de deux dettes est une fortune. Le produit ou le quotient d’une dette et d’une fortune est une dette. Le produit ou le quotient d’une fortune et d’une dette est une dette.

Chacun reconnaîtra dans ces lignes une version ancienne de la règle des signes, dont un extrait de La vie de Henry Brulard, le roman autobiographique de Stendhal (1783 – 1842) semble un écho humoristique :

Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ?

L’usage des termes mathématiques hors contexte peut donner des résultats amusants, cependant la question n’est pas là. L’important est que les règles de calcul habituelles sur les nombres soient respectées, mais revenons à Brahmagupta. Pour lui, zéro n’est pas seulement la notation d’une absence d’unité, de dizaine ou de centaine, etc., comme dans la numération de position, mais aussi un vrai nombre, sur lequel on peut compter. Il le définit d’ailleurs comme le résultat de la soustraction d’un nombre par lui-même. Il donne les bons résultats l’impliquant dans les opérations licites (addition, soustraction et multiplication) mais se trompe en estimant que 0 divisé par 0 est égal à lui-même. On peut le comprendre, la question n’est pas simple. Elle est restée obscure, même pour un grand nombre de mathématiciens jusqu’au XIXe siècle puisque, dans ses Éléments d’algèbre, Alexis Clairaut (1713 – 1765), après avoir donné les règles de calcul, est obligé d’insister sur la nuance entre le signe d’un nombre et celui d’une opération :

On demandera peut-être si on peut ajouter du négatif avec du positif, ou plutôt si on peut dire qu’on ajoute du négatif. À quoi je réponds que cette expression est exacte quand on ne confond point ajouter avec augmenter. Que deux personnes par exemple joignent leurs fortunes, quelles qu’elles soient, je dirai que c’est là ajouter leurs biens, que l’un ait des dettes et des effets réels, si les dettes surpassent les effets, il ne possédera que du négatif, et la jonction de la fortune à celle du premier diminuera le bien de celui-ci, en sorte que la somme se trouvera, ou moindre que ce que possédait le premier, ou même entièrement négative.

Ces questions de fortunes et de dettes, de Brahmagupta à Clairaut font penser que le zéro serait venu d’un problème de comptabilité patrimoniale. Au-delà des termes utilisés, rien ne permet cependant de l’affirmer.

Zéro dans les opérations

La règle d’extension des résultats à zéro n’est pas d’origine philosophique, mais calculatoire. Par exemple, à partir de la définition que donne Brahmagupta de zéro : 2 – 2 = 0, on déduit des règles habituelles de l’arithmétique :

2 + 0 = 2 + (2 – 2) = 4 – 2 = 2

ce qui peut sembler une évidence par ailleurs : quand on ajoute rien, on conserve ce que l’on a… La question est beaucoup moins évidente quand on veut multiplier par zéro. Quel sens cela a-t-il dans l’absolu ? Pour le voir, l’important est de se focaliser sur les règles de calcul, sans y chercher d’autre philosophie. La question se traite de la même manière que la précédente :

3 x 0 = 3 x (2 – 2) = 3 x 2 – 3 x 2 = 6 – 6 = 0.

Bien entendu, dans les raisonnements précédents, les nombres 2 et 3 peuvent être remplacés par n’importe quels autres, le résultat n’est pas modifié. Un nombre multiplié par zéro est donc égal à zéro. Ce résultat, qui peut sembler étrange de prime abord, est nécessaire pour la généralité des règles opératoires.

La méthode permet de trouver des résultats plus étonnants. Par exemple, que vaut un nombre à la puissance zéro ? Pour répondre à cette question, se demander ce que signifie de porter un nombre à la puissance zéro est inutile, voire nuisible. A priori, 2 à la puissance 4 (par exemple) est égal à 2 multiplié 4 fois par lui-même, soit 24 = 2 x 2 x 2 x 2. De même, en remplaçant 4 par n’importe quel nombre entier supérieur à 1, donc 21 = 2. Mais que peut bien vouloir dire un nombre multiplié 0 fois par lui-même ? Se poser la question ainsi, c’est se condamner à ne pas pouvoir y répondre puisqu’elle est absurde. En fait, il faut trouver un principe d’extension. La propriété essentielle est la formule : 24+1 = 24 x 2, valable en remplaçant 4 par n’importe quel nombre. En le remplaçant par 0, nous obtenons : 20+1 = 20 x 21, ce qui donne : 2 = 20 x 2. En simplifiant par 2, nous obtenons : 20 = 1. Ce résultat est encore vrai si nous remplaçons 2 par tout nombre non nul. Ainsi, un nombre non nul porté à la puissance 0 est égal à 1, ou du moins il faut le poser comme définition si on veut que la propriété des puissances vue plus haut (24+1 = 24 x 2) soit générale.

Cette égalité (20 = 1) correspond à une idée subtile : celle de la généralité des calculs. On définit la puissance 0 pour que les règles de calcul connues sur les puissances restent vraies dans ce cas particulier. Il reste malgré tout l’ambiguïté de 0 à la puissance 0.

 

Le carré Luoshu

La première référence à un carré magique est une légende chinoise associée à la rivière Luohe, un affluent du fleuve Jaune, qui eut son heure de gloire pendant le millénaire précédant notre ère, quand la ville de Luoyang, bâtie sur ses rives, était capitale de la Chine. Ses multiples versions parlent toutes d’une tortue portant d’étranges inscriptions sur son dos.

Une tortue légendaire

Pour calmer le dieu de la rivière, à chaque inondation, les habitants d’un village menacé d’être englouti lui offraient des sacrifices en vain. Cependant, ils remarquèrent qu’à chaque fois, une tortue venait sur les lieux du sacrifice et repartait. Le dieu du fleuve n’en tenait cure jusqu’à ce qu’un jour, un enfant remarqua des formes curieuses sur le dos de l’animal.

Dos de la tortue selon la légende

Dans chaque ligne, chaque colonne et chaque diagonale, le nombre était le même. Ainsi, les villageois comprirent que le dieu du fleuve demandait quinze sacrifices, et purent l’apaiser…

Les carrés magiques

Ce carré est depuis appelé « carré Luoshu » du nom de la rivière. Il a vite conquis le Moyen-Orient puis la Grèce où il était connu de Pythagore. Il est toujours utilisé comme amulette porte-bonheur et dans des exercices divinatoires. De nos jours, ces carrés où les sommes des nombres des lignes, colonnes et diagonales sont identiques sont appelés « carrés magiques », preuve de l’antique croyance. On peut de plus ajouter une contrainte, celle de n’utiliser que les premiers nombres donc ceux de 1 à 9, dans le cas d’un carré d’ordre trois, et ceux de 1 à 16 pour ceux d’ordre quatre. Avec cette dernière contrainte, il n’existe aucun carré d’ordre deux : vous pouvez disposer les nombres de 1 à 4 comme vous le voulez, le carré formé ne sera jamais magique. De ce fait, les pythagoriciens en faisaient un symbole du chaos. Aux symétries près, le carré d’ordre trois est unique, c’est le Luoshu (voir à la fin de cet article). De nos jours, les ésotériques préfèrent l’écrire de façon à faire apparaître le nombre 618 en première ligne car ce sont les premières décimales du nombre d’or. Pour eux, il devient ainsi doublement magique.

Le carré magique d’ordre 3

Carré magique d’ordre 3 faisant apparaître les décimales du nombre d’or.

Schéma de preuve

Si les cases du carré contiennent tous les nombres de 1 à 9, la somme de toutes les cases est 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, c’est-à-dire 45. Les sommes de toutes les rangées et des diagonales sont donc égales à 45 divisé par 3, soit 15. Selon leur place, les nombres participent à 4, 3 ou 2 sommes égales à 15. En partant d’un nombre initial, comme 1, nous examinons le nombre de décompositions donnant 15 en tout. Pour 1, il en existe deux : 9 + 5 et 8 + 6. En opérant ainsi, nous obtenons le tableau :

Ce tableau permet de remplir le carré.

Les rubans de Pascal

Blaise Pascal (1623 – 1662) a inventé une méthode ingénieuse pour calculer le reste d’une division (sans l’effectuer) et donc de tester la divisibilité d’un nombre par un autre, que nous nommerons n dans la suite de cet article.

Une suite de restes

Pascal considère la suite des restes des puissances de 10 par n en commençant par 0, pour n = 7, cela donne :

puissances 0 1 2 3 4 5 6 7 8 9 10 11 12 13
restes 1 3 2 6 4 5 1 3 2 6 4 5 1 3

 

En effet, le reste de 1 est 1, celui de 10 est 3, celui de 100 est 2 (puisque 100 = 14 x 7 + 2), etc. La suite des restes est périodique. Ce résultat n’est pas lié au nombre 7, il est général. Cette suite est appelée le ruban de Pascal associé au nombre 7.

Calcul du reste d’une division

A partir de ce ruban, pour calculer le reste de la division par 7 d’un nombre comme 348, on écrit les décimales de 348 dans l’ordre inverse en dessous du début du ruban :

ruban 1 3 2
nombre 8 4 3
calculs 8 12=5 6 8+5+6=5

 

On effectue d’abord les multiplications en colonnes de 1 par 8, 3 par 4 et 2 par 3. On retranche autant de fois 7 que possible, donc 12 est remplacé par 5. On additionne alors les résultats obtenus et on retranche à nouveau autant de fois 7 que possible, on trouve 5 qui est le reste de la division de 348 par 7.

Pourquoi ? Cela vient des règles de calcul sur les nombres modulo 7 (c’est-à-dire en ne gardant à chaque étape que le reste dans la division par 7). On part de 348 = 3.102 + 4.101 + 8.100. En remplaçant, les puissances de 10 par leurs restes, on obtient 348 = 3.2 + 4.3 + 8.1 mod 7. On effectue les multiplications et les additions en retranchant 7 autant de fois qu’on peut et on a montré le bien fondé de l’algorithme utilisé ainsi que sa généralité.

On peut ainsi calculer très rapidement le reste des divisions de très grands nombres, comme celui de 56 218 491 par 7.

ruban 1 3 2 6 4 5 1 3
nombre 1 9 4 8 1 2 6 5
calculs 1 27=6 8=1 48=6 4 10=3 6 15=1 0

On trouve rapidement que le reste est égal à 0 donc que 56 218 491 est divisible par 7. Le test de divisibilité par 7 est donc de même nature que le test de divisibilité par 9 : au lieu de faire la somme des chiffres, on en fait une combinaison linéaire dont les coefficients sont ceux du ruban de Pascal. Il en est de même pour tous les nombres.

Divers rubans

Pour utiliser cette technique, il est bon de disposer d’un certain nombre de rubans. Voici ceux des nombres premiers inférieurs à 20 où on s’est arrêté à la partie périodique :

 

Nb
2 1 0
3 1 1
5 1 0
7 1 3 2 6 4 5 1
11 1 10 1
13 1 10 9 12 3 4 1
17 1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1
19 1 10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1

 

On peut ainsi facilement déterminer le reste d’un nombre comme 521 365 941 dans la division par 19.

1 10 5 12 6 3 11 15 17
1 4 9 5 6 3 1 2 5
1 40=2 45=7 60=3 36=17 9 11 30=11 85=9 1+2+7+3+17+9+11+11+9=13

Le reste de 521 365 941 dans la division par 19 est donc 13.

 

Le code des luthiers et la loi de Benford

Les registres d’un grand luthier parisien du XIX° siècle, Gand & Bernardel, se trouvant de nos jours au musée de la musique, montrent d’étonnantes parties chiffrées.

La ligne de registre ci-dessus concerne la vente d’un violon au prix de 8000 F. Dans la première partie figure le prix de 10000 F, sans doute le prix demandé par le luthier avant négociation. Entre parenthèses après ce prix figure quatre lettres : (exzx) puis ensuite ohxz. Le nombre de lettres incite à penser que l’un des deux représente le prix d’achat du luthier et l’autre le prix de réserve en dessous duquel il ne faut pas descendre. Ces indications ont alors un rôle évident : permettre la négociation du prix sans erreur de la prt du vendeur et sans donner le prix de réserve à l’acheteur. Il est alors logique de penser que le prix de réserve est entre parenthèses et que l’autre est le prix d’achat.

La loi de Benford

Le musée de la musique a demandé l’aide d’un cryptologue, en la personne de Pierrick Gaudry, pour casser le code utilisé. Pour ce faire, il a examiné les lettres se trouvant en tête des codes en pensant que, comme toutes données comptables, elle suivait la loi de Benford . Cette loi donne les fréquences d’apparition des chiffres en tête d’un nombre :

Chiffre 1 2 3 4 5 6 7 8 9
Fréquence en % 30 18 12 10 8 7 6 5 4

(voir une discussion de cette loi dans Toutes les mathématiques du monde, page386)

En utilisant les fréquences d’apparition des lettres dans les codes, on trouve que h représente 1 et a représente 2. Des tâtonnements  donnent le reste et la clef est lumineuse pour un marchand de violons puisqu’il s’agit du mot harmonieux :

h a r m o n i e u x
1 2 3 4 5 6 7 8 9 0

 

Dans les différents registres, on trouve également le code z. Des additions montrent qu’il vaut 0, comme x. Le fait de coder 0 de deux façons différentes s’expliquent car le 0 se trouve souvent dans les prix.

Ainsi, dans le cas de la ligne de registre citée plus haut, ohxz signifie 5100 F, ce qui correspond bien à un prix d’achat vraisemblable puisque le prix de vente final a été de 8000 F. Le prix de réserve exzx était de 8000 F aussi ce qui prouve que l’acheteur a bien négocié.

 

 

 

Vendredi treize, jour de chance ou de malchance ?

Le nombre 13 est surchargé de superstitions. Quoi de pire qu’être 13 à table ? L’origine de cette idée est assez claire : elle fait référence à la Cène (voir ci-dessus sa représentation dans l’église de Curahuara de Carangas en Bolivie), c’est-à-dire au dernier repas de Jésus-Christ où il désigne celui qui devait le trahir et qui se pendra plus tard. Même si les évangiles font plutôt penser au 14 ou au 15, certains affirment que Jésus fut crucifié le vendredi 13 du mois de Nisan… qui serait ainsi un jour de malheur. Pourtant, pour d’autres, il est censé porter chance. Cependant, les statistiques sont terribles. S’il y a trois fois plus de joueurs au Loto les vendredis 13, leur chance de gagner reste rigoureusement la même. Seule la Française des Jeux profite réellement des vendredis 13.

13 mois chez les Mayas

Un raisonnement rapide pourrait faire penser qu’il existe autant de vendredis 13 que de dimanches 13 ou de lundis 13, etc. C’est une erreur. Une étude mathématique précise du calendrier grégorien permet de montrer qu’il y en a légèrement plus… ce qui réjouira sans doute les superstitieux. Le calcul est un peu laborieux, nous le reportons plus loin pour les amateurs. Pour finir sur le nombre 13, on peut remarquer que, curieusement, le calendrier sacré maya comportait 13 mois de 20 jours chacun. Cette période est à rapprocher du mode de numération maya fondé sur la base 20. L’année comportait ainsi 260 jours, ce qui ne signifie pas grand-chose d’un point de vue astronomique mais que certains rapprochent de la durée de la grossesse, qui est de 266 jours en moyenne. Parmi les nombres porte-malheur, nous citerons 17 qui l’est en Italie car XVII est l’anagramme de vixi qui signifie « j’ai vécu » en latin et donc sous-entend « je suis mort ».

Nombre de vendredis 13

Depuis la réforme grégorienne du calendrier, de 1582, les années se reproduisent identiques tous les 400 ans et non tous les 28 ans comme auparavant dans le calendrier julien. En effet, si les années ordinaires ont toujours 365 jours et les années bissextiles 366, la règle pour déterminer si une année est bissextile a été modifiée : une année l’est si son millésime est divisible par 4 sauf s’il est divisible par 100 mais pas par 400. Le nombre d’années bissextiles d’une période de 400 ans est donc de 97 (et non de 100) ce qui donne 97 x 366 + 303 x 365 = 146 097 jours… qui se trouve divisible par 7. Ainsi, le premier janvier 1600 fut un samedi, et de même 400 ans plus tard, le premier janvier 2000. L’année 2000 fut identique à l’année 1600. Il y eut un seul vendredi 13 en 1600 (en octobre) et donc de même en 2000.

En comptant le nombre de treizième du mois sur 400 ans (ce qui peut se faire à la main mais plus rapidement par ordinateur), on trouve : 687 dimanches, 685 lundis, 685 mardis, 687 mercredis, 684 jeudis, 688 vendredis et 684 samedis. Le treize du mois a donc plus de chance d’être un vendredi que tout autre jour de la semaine ! Est-ce une bonne nouvelle ?

Fahrenheit et la peur des nombres négatifs

Sans doute pour éviter les nombres négatifs, Daniel Gabriel Fahrenheit (1686 – 1736) fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° et elle bout à 212° environ.

100° Fahrenheit correspond à la température corporelle d’un cheval sain.

L’absolu du zéro

Ces choix étranges de Fahrenheit s’expliquent par la réticence de l’époque devant les nombres négatifs. On préférait d’ailleurs parler de quantités plutôt que de nombres. Il s’agissait d’artifices de calcul pour résoudre des équations, dont on écartait ensuite les solutions négatives. Tout en étant une origine, zéro véhicule une idée d’absolu, en dessous duquel on ne peut aller, comme on le voit chez Blaise Pascal (1623 – 1662) qui, dans ses Pensées, écrit cette phrase surprenante :

Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro.

Cette idée a perduré jusqu’au XIXe siècle, Lazare Carnot (1753 – 1823) écrivait encore :

Pour obtenir réellement une quantité négative isolée, il faudrait retrancher une quantité effective de zéro, ôter quelque chose de rien : opération impossible. Comment donc concevoir une quantité négative isolée ?

La solution de Cauchy

La question semble cependant résolue avec Augustin Louis Cauchy (1789 – 1857) qui, dans son Cours d’analyse de l’Ecole royale polytechnique définit les nombres relatifs comme une partie numérique précédée d’un signe + ou – :

Le signe + ou – placé devant un nombre en modifiera la signification, à-peu-près comme un adjectif modifie celle du substantif.

Conversion entre degrés Celsius et degrés Fahrenheit

Les variations étant linéaires dans les deux cas, la relation est affine, c’est-à-dire de la forme : TF = a TC + b. Les deux coïncidences donnent les relations : b = 32 et 100 a + b = 212 d’où : a = 1,8 et b = 32. Nous en déduisons la formule : TF = 1,8 TC + 32. Ainsi la température de 37° Celsius donne : 1,8 x 37 + 32 = 98,6° Fahrenheit.

Les mathématiques du certificat d’études

Au courant du XVIIe siècle, les mathématiques de feu le certificat d’études étaient en place. Les ouvrages d’apprentissage du nouveau calcul foisonnaient d’exercices. Sous des dehors liés à la vie de tous les jours, leur but était d’entraîner à l’utilisation des algorithmes des opérations (addition, soustraction, multiplication et division) ainsi qu’au raisonnement mathématique.

Un exemple de Simon Stevin

Aune de tailleur.

En particulier, La pratique de l’arithmétique de Simon Stevin (1548 – 1620) contient une foule d’exercices du type :

14 aunes de drap coûtent 5 livres, 2 sous et 8 deniers, combien coûteront 25 aunes ?

Pour résoudre cet exercice, inutile de savoir ce que représente une aune, il suffit de savoir qu’une livre vaut 20 sous et un sou, 12 deniers. Le plus simple pour le résoudre est de transformer la somme donnée en deniers. Une livre vaut 20 x 12 = 240 deniers donc 5 livres, 1200. Les 14 aunes valent donc 1232 deniers. On obtient le prix d’une aune en divisant par 14, ce qui donne 88 deniers. Le prix de 25 aunes est donc égal à 25 x 88 = 2200 deniers, qu’il reste à traduire dans le système initial. En divisant 2200 par 240, on obtient 9 livres et il reste 40 deniers, ce qui fait 3 sous et 4 deniers. Finalement, les 25 aunes coûtent 9 livres, 3 sous et 4 deniers.

Intérêt du système décimal

Heureusement, l’arithmétique est devenue plus simple avec le système décimal ! Pour le montrer, voici un exemple moderne :

Nicolas achète 350 grammes de pommes pour 1 €. Derrière lui, Pimprenelle en achète 1 kilo 435. Combien va-t-elle payer ?

Voici le raisonnement canonique pour résoudre ce type de problème. Ici le terme « canon » n’a rien à voir avec l’artillerie, il signifie « règle » comme toujours en mathématiques. Si 350 grammes coûtent 1 €, 1 gramme coûte 1 / 350 € et 1435, 1435 / 350 soit 4 € 10. Nous avons appliqué ici, sans l’écrire, une règle de trois que certains nomment produit en croix. Peu importe l’appellation, l’esprit vaut mieux que la lettre. Dans les deux cas, le raisonnement sous-jacent est abstrait puisqu’il consiste à inventer une fiction : la vente d’un gramme de pommes ! Il montre que, même dans les applications les plus élémentaires, il n’existe pas de mathématiques sans abstraction, ou sans réflexion. Leur apprentissage exige application, cogitation et quantité d’exercices, comme l’escalade, le tennis ou le football.

La voie royale

Cela n’est pas nouveau comme le montre l’anecdote suivante, qu’elle soit vraie ou non. Selon la légende, Euclide enseigna les mathématiques au roi d’Égypte. Rapidement, celui-ci demanda un accès au savoir simplifié, par égard à sa majesté. Euclide répondit : Désolé sire, en mathématiques, il n’y a pas de voie royale. Il n’en existe toujours pas, que cela soit pour les rois ou les enfants-rois. Vouloir en inventer sous prétexte de faciliter l’apprentissage des mathématiques est voué à l’échec. L’idée ne fait qu’en interdire l’accès.

La règle à calcul, autrefois symbole de l’ingénieur

Une façon d’effectuer les additions est d’utiliser les propriétés des longueurs : deux mètres plus trois mètres font cinq mètres. Ainsi, avec deux règles graduées, on peut facilement opérer une addition.

En faisant coïncider le 0 de la règle verte avec le 2 de la règle bleue, on lit sous la graduation 5 de la verte, la somme de 2 et de 5.

L’idée sous-jacente est tellement simple qu’on ne voit pas immédiatement l’analogie sous-jacente. Elle consiste pourtant à assimiler nombre et longueur, deux notions a priori distinctes. En grec, le sens premier d’analogie est « proportion mathématique ». On passe d’une quantité à une autre par l’application d’un certain rapport. Cependant, dès l’époque de Platon, ce terme a pris le sens plus général de correspondance, de ressemblance, de similitude. En mathématiques, il est aujourd’hui utilisé à plusieurs niveaux, du concret à l’abstrait, du rigoureux à l’approximatif ou à l’heuristique, c’est-à-dire à ce qui donne des idées.

Et les multiplications …

La fonction logarithme transformant une multiplication en addition donne alors une méthode analogique pour calculer un produit. Il suffit de transformer l’échelle linéaire en échelle logarithmique. On obtient un instrument de calcul utilisé avant l’avènement des calculatrices bon marché, et autrefois symbole de l’ingénieur.

Une règle à calculs est composée de trois réglettes dont une coulisse entre les deux autres. En faisant coïncider la graduation 1 de l’une et la graduation 2 de l’autre, puis en alignant le curseur sur la graduation 5 de la première, on lit le résultat de la multiplication 2 x 5 sur la seconde.

Bien entendu, la règle à calcul permet d’effectuer également des divisions et toutes sortes de calculs plus complexes.

Le calcul analogique

De façon plus générale, l’idée du calcul analogique est de représenter les nombres par des grandeurs géométriques (longueurs, aires, volumes, angles) ou physiques (mécaniques, électriques, hydrauliques, chimiques), et d’exploiter des phénomènes géométriques ou physiques dont la modélisation mathématique est fondée sur les équations que l’on veut résoudre. En particulier, des systèmes électriques permettent de résoudre automatiquement certaines équations : celles qui les régissent. Les calculateurs analogiques ont été en usage jusqu’à ce que les ordinateurs, ou calculateurs numériques, les supplantent, c’est-à-dire jusqu’au début des années 70. Dans le domaine du calcul scientifique, numérique est ainsi devenu l’opposé d’analogique.

Mes règles à calcul

Mes premières règles à calcul ont été fabriquées en bambou, c’était alors un symbole de qualité.

Règle en bambou de la marque HEMMI de 30 cm de long
Règle en bambou de la marque HEMMI de 14 cm de long, la précision était moindre mais la règle tenait dans la poche pectorale d’une blouse.
Règle en bambou de la marque HEMMI de 10 cm de long, avec loupe.

Les suivantes sont en matière plastique comme celle-ci.

Petite règle à calcul en matière plastique de la marque Graphoplex. Longueur 15 cm.La dernière ressemble à une règle à calcul mais ne possède par de réglette mobile. C’est en fait une règle de conversion entre les unités internationales (mètres, etc.) et les unités américaines (pieds, etc.).

Règle de conversions entre les unités internationales et les unités américaines en plastique Graphoplex.

 

Des nœuds dans l’ADN

L’ADN (ou acide désoxyribonucléique) est le support de l’hérédité. Cette molécule, présente dans chaque cellule, prend la forme d’une double hélice, qui s’enroule sur elle-même, formant ainsi un nœud.

Molécule d’ADN formant un nœud. Sa réplication demande de le dénouer. Image réalisée au moyen d’un microscope électronique.

Duplication des molécules

La duplication des informations contenues dans une molécule d’ADN se fait au moyen d’enzymes. Pour « voir » le processus, imaginez une longue fermeture éclair qu’on ouvre avant de la séparer en deux. Cela n’est possible que si le nœud peut être dénoué. Certains virus attaquent les molécules d’ADN en les coupant et en les recollant de sorte qu’ils soient impossibles à dénouer. Le type de nœud obtenu après l’attaque virale est caractéristique de chaque virus. La signature de ces virus est de nature topologique !

Par ailleurs, cette question du dénouement est au cœur de la théorie mathématique des nœuds. Certains sont faciles à dénouer, d’autres bien plus compliqués, voire impossible (voir la figure ci-dessous). À l’envers de celle des virus, la seule méthode est celle qu’Alexandre le Grand employa pour dénouer le nœud gordien : couper la corde !

Deux nœuds. Pour défaire le vert, il suffit de faire glisser la boucle de gauche. Le second requière la méthode d’Alexandre et des virus, non autorisée en théorie des nœuds.

Nœuds et mathématiques

Mathématiquement, les nœuds sont des courbes fermées de l’espace de dimension trois, que l’on représente souvent comme une courbe plane. Elle a alors des points doubles, où il faut distinguer la branche « au-dessus » de celle « en-dessous ». Si en essayant de démêler un nœud, on passe à un autre, les deux nœuds sont dits équivalents. La théorie des nœuds consiste donc à étudier si un nœud est équivalent à une courbe non nouée, comme le cercle, et plus généralement si deux nœuds sont équivalents. Pour étudier ce type de problème, on essaye d’introduire des invariants, c’est-à-dire des objets mathématiques invariants quand on passe d’un nœud à un nœud équivalent. Henri Poincaré (1854 – 1912) en a trouvé un particulièrement subtil, que l’on appelle le groupe du nœud, malheureusement son étude est délicate.

Stephen Smale (né en 1930), William Thurston (1946 – 2012) et Mikhaïl Gromov (né en 1943) réunis lors de la conférence Clay sur la résolution de la conjecture de Poincaré, en 2010.

William Thurston a découvert une réalisation concrète de ce groupe, liée à la géométrie des espaces de dimension trois, ce qui lui a valu la médaille Field en 1982, et explique son implication en biologie ainsi que celles de Stephen Smale ou de Mikhail Gromov, spécialistes de ce domaine, souvent présenté très loin de toute application.