Archives pour la catégorie Histoire

(Henri) Quatre sur (le pont) Neuf

Prenez un mot de neuf lettres, comme « minutieux », brouillez-les, vous obtenez par exemple XNIIMTUEU. Écrivez-le dans ce nouvel ordre dans un carré 3 par 3 :

Une grille de quatre sur neuf.

Nous avons ainsi formé une grille de notre jeu quatre sur neuf. Le but est maintenant de trouver un maximum de mots français de quatre lettres contenant la lettre centrale (en bleu, ici M) en un minimum de temps. Les accents ne comptent pas, ainsi mute et muté sont considérés comme le même mot.

Si on commence par les mots dont la première lettre est M, nous trouvons rapidement : mite, mine, mixe, mute, muni, muet, meut, etc. Nous pouvons continuer en essayant de placer M dans une autre position : émut, etc.

Quelle est la meilleure stratégie possible ? Chacun la sienne sans doute mais le jeu demande manifestement des qualités de lecture d’un pavé de trois lettres sur trois. Comment voir les chemins intéressants ? Il demande aussi de considérer les digrammes selon leurs fréquences. Par exemple, ici, « en » et « un » sont fréquents donc à considérer pour gagner du temps.

Combien existe-t-il de solutions pour cette grille ? La question est ouverte et la réponse dépend du dictionnaire utilisé. Peut-on trouver une grille sans solution ? Avec une seule ? Deux, etc. ? Toutes ces questions sont ouvertes cher lecteur… et attendent vos réponses. On comprendra, par exemple, que de partir d’un mot de neuf lettres assure la présence de lettres, digrammes et trigrammes relativement fréquents… et donc augmente le nombre de solutions.

Pour vous exercer

Il est facile de créer d’autres grilles, et de même de créer un logiciel pour jouer à ce jeu en français.

On part d’une liste de mots de neuf lettres (il en existe plus de 50 000), d’un générateur de permutations aléatoires d’un ensemble à neuf éléments puis d’un dictionnaire pour vérifier les solutions trouvées. Il reste à ajouter une horloge pour augmenter le stress du joueur. Attention avant de créer ce jeu : il est hautement addictif et son abus peut provoquer de graves ennuis de santé !

Le postulat d’Euclide et la courbure de l’espace

Dans Les Eléments, Euclide pose plusieurs axiomes et définitions de la géométrie plane puis démontre un certain nombre de théorèmes. Entre les deux, il postule que, par un point donné, il passe une et une seule parallèle à une droite donnée. En apparence, il s’agit d’un théorème sans preuve. Des générations de mathématiciens ont essayé de le démontrer sans jamais y arriver. Avant d’analyser la question, il est nécessaire de revenir sur les axiomes d’Euclide.

Les axiomes d’Euclide

Il serait fastidieux de passer en revue les axiomes et les définitions de la géométrie plane d’Euclide. Pour en comprendre l’origine, il suffit de revenir au mythe de la caverne, une allégorie où Platon estime que le monde réel est rempli d’objets dont les modèles sont ailleurs, dans le monde des idées. De la même façon, les points, droites et angles d’Euclide sont les idées des points, droites et angles réels tels qu’un maçon les utilise. Qu’est-ce qu’une droite ? Pour le comprendre, faites comme le maçon. Prenez une corde et deux piquets. Plantez les deux piquets et tendez la corde. Vous réalisez ainsi le plus court chemin entre eux.

En tendant une corde entre deux piquets, on obtient une droite.

Avec la même méthode et trois piquets, vous fabriquez un triangle donc trois angles.

En tendant une corde entre trois piquets, on obtient un triangle Mesurez les angles et faites-en la somme. Comme vous connaissez déjà le résultat, vous trouverez 180°.

Une preuve sous condition

Une petite figure suffit pour démontrer ce résultat. Pour la tracer, en plus de notre corde et de nos piquets, munissons-nous d’un rapporteur capable de reporter un angle donné le long d’une droite, en un point.

Considérez un triangle ABC, prolongez le côté AB en BE et du point B, en utilisant le rapporteur, portez la droite BD de sorte que l’angle CBD soit égal à l’angle ACB (en rouge tous les deux). De même, portez la droite BD’ de façon que l’angle EBD’ soit égal à l’angle BAC (en bleu).

En B, on reporte les angles en rouge et en bleu, on obtient deux droites BD et BD’. D’après le postulat d’Euclide, ces droites sont confondues. Les angles du triangle ABC se retrouvent donc en B et forment un angle plat c’est-à-dire 180°.

Les droites BD et BD’ sont parallèles à la droite AC (les angles rouges et jaunes sont alternes internes). Elles sont donc identiques puisque, d’un point, on ne peut tracer qu’une parallèle à une droite donnée. Les trois angles du triangle ABC se reportent ainsi en B pour former un angle plat, c’est-à-dire 180°. Nous avons ainsi démontré que la somme des angles d’un triangle est égale à 180° … si le postulat d’Euclide est vrai.

L’idée qui dépostule

Quand on dessine la figure précédente sur une feuille de papier, les droites BD et BD’ sont confondues. Coupons le papier le long de la demi-droite BD et déplaçons BD’ sur BD, la feuille se courbe. Elle devient comme un sommet de montagne et la somme des angles du triangle, supérieure à 180°. Au contraire, en écartant BD’ de BD, la feuille se courbe dans l’autre sens. Elle devient comme un col de montagne et la somme des angles du triangle, inférieure à 180°.

Triangle sur la sphère

Pour développer cette idée, reprenons les axiomes d’Euclide sans le postulat en nous plaçant avec nos piquets, notre corde, notre rapporteur et nos définitions sur une sphère. Le plus court chemin entre deux points est obtenu en suivant l’arc de grand cercle entre eux.

Ligne droite sur une sphère.

Sur une sphère, deux grands cercles se coupent toujours. Autrement dit, deux droites ne sont jamais parallèles ! Le postulat d’Euclide y est faux et notre démonstration lumineuse aussi. Dans ce cas, les deux droites BD et BD’ ne se recoupent pas, l’angle DBD’ n’est pas nul. La somme des angles du triangle est donc supérieure à 180°. Pour vous en convaincre davantage, prenez un globe terrestre miniature, deux points sur l’équateur et dessinez le triangle formé avec l’un des pôles. La somme de ses angles est égale à 180° plus l’angle au pôle, elle est donc strictement supérieure à 180°.

Triangle sur une sphère. En mesurant ses angles, on montre que leur somme est supérieure à 180°.

Triangle sur une selle de cheval

Si nous nous plaçons sur une surface différente comme un col de montagne ou une selle de cheval, la somme des angles d’un triangle devient inférieure à 180°. Sur la figure de notre démonstration, les droites BD et BD’ se couvrent.

Un triangle sur une selle de cheval.

Les surfaces comme les plans, les cylindres ou les cônes où la somme des angles d’un triangle est égale à 180° sont dites de courbure nulle, celles comme la sphère ou les ellipsoïdes où la somme des angles est supérieure à 180°, de courbure positive et celles comme la selle de cheval où la somme des angles est inférieure à 180°, de courbure négative. Ces surfaces ne sont pas des plans euclidiens.

Aire d’un cercle

De même, grâce à un piquet et une corde, sur toute surface, nous pouvons tracer un cercle de rayon R. Si la courbure de la surface est nulle, son aire est égale à p R2. Si elle positive, elle est inférieure, sinon elle est supérieure.

Courbure d’un espace

Notre vision en trois dimensions nous permet d’admettre facilement ces résultats. Imaginons des êtres plats « collés » sur une surface de dimension deux pour lesquels, elle serait l’univers entier. Incapable d’en sortir, il ne verrait pas sa courbure. Il pourrait cependant tracer un triangle, mesurer ses angles et déterminer ainsi si son univers a une courbure positive, négative ou nulle.

De même, un extraterrestre vivant et voyant dans un monde en dimension quatre pourrait « voir » la courbure de notre univers. Nous y sommes trop englués pour cela. Le même phénomène existe pourtant et nous pouvons le tester : il suffit de mesurer le volume d’une sphère ou la somme des angles d’un triangle. Jusqu’à présent, les mesures effectuées font penser que notre univers est de courbure quasiment nulle.

Magie et mathématique

Certaines croyances magiques restent attachées aux mathématiques. L’exemple le plus simple est celui du nombre treize qui porte chance … ou malchance selon les personnes. On évite ainsi, même chez certains mathématiciens, d’être treize à table. Cette croyance est extra-mathématique. Elle vient du dernier repas du Christ avec ses apôtres et non pas d’une propriété mathématique du nombre treize. Il en est de même de la plupart des nombres considérés comme magiques ou sacrés, comme sept par exemple. Nous n’insisterons pas sur cette question, et pas davantage sur la numérologie ou sur l’arithmancie qui prétendent prévoir l’avenir au travers de quelques additions. Leurs relations aux mathématiques sont les mêmes que celle de l’astrologie à l’astronomie. Même si certains mathématiciens furent numérologues comme certains astronomes furent astrologues jusqu’à l’époque de Kepler (XVIIe siècle), aujourd’hui, il est difficilement imaginable qu’un mathématicien ou un astronome pratique ce type de pseudosciences.

Les nombres parfaits

Plus étonnants que ces nombres auxquels on attribue un pouvoir surnaturel, d’autres sont considérés comme magiques pour des raisons internes aux mathématiques. Parmi les plus étudiés sont les nombres parfaits dont parle déjà Euclide au IIIe siècle avant notre ère dans ses Éléments. Par définition, les nombres parfaits sont les nombres égaux à la somme de leurs diviseurs autres qu’eux-mêmes. Par exemple, 6 est parfait puisque ses diviseurs stricts sont 1, 2 et 3 dont la somme est égale à 6. La traduction littérale du terme grec utilisé par Euclide pour désigner les nombres parfaits est nombre à qui il ne manque rien ce qui permet de mieux comprendre les définitions de nombre abondant et de nombre déficient : nombre dont la somme des diviseurs est supérieure (respectivement inférieure) au nombre donné. Ainsi 12 est abondant, 3, 4 et 5 sont déficients.

Quand Dieu est contraint à la perfection …

Saint Augustin (354 – 430) d’après un tableau de la Renaissance

Cela pourrait être une simple curiosité et peu importe le nom utilisé mais, dans l’Antiquité, la perfection de ces nombres était bien vue comme telle. Ainsi, dans La cité de Dieu, on peut lire sous la plume d’Augustin d’Hippone (354 – 430) une vision mystique de cette perfection : Ainsi, nous ne devons pas dire que le nombre six est parfait, parce que Dieu a achevé tous ses ouvrages en six jours : loin de là, Dieu a achevé tous ses ouvrages en six jours parce que le nombre six est parfait ; supprimez le monde, ce nombre resterait également parfait ; mais s’il n’était pas parfait, le monde, qui reproduit les mêmes rapports, n’aurait plus la même perfection.

On trouve des idées voisines dans Arithmetica d’un philosophe néo-pythagoricien comme Nicomaque de Gérase (Ier siècle de notre ère), pourtant véritable mathématicien puisqu’il découvrit le quatrième nombre parfait : Il arrive que, de même que le beau et le parfait sont rares et se comptent aisément, tandis que le laid et le mauvais sont prolifiques, les nombres excédents et déficients sont en très grand nombre et en grand désordre ; leur découverte manque de toute logique. Au contraire, les nombres parfaits se comptent facilement et se succèdent dans un ordre convenable ; on n’en trouve qu’un seul parmi les unités, 6, un seul dans les dizaines, 28, un troisième assez loin dans les centaines, 496 ; quant au quatrième, dans le domaine des mille, il est voisin de dix mille, c’est 8128. Ils ont un caractère commun, c’est de se terminer par un 6 ou par un 8, et ils sont tous invariablement pairs.

Des conjectures à la pelle

À l’heure actuelle, le dernier point évoqué par Nicomaque de Gérase reste une conjecture. Personne n’a encore réussi à prouver qu’il n’existait pas de nombres parfaits impairs, même si le fait que personne n’en ait jamais trouvé un seul milite dans ce sens. De même, l’existence d’une infinité de nombres parfaits pairs est une conjecture. Les quatre premiers sont connus depuis l’Antiquité : 6, 28, 496 et 8128 et, à l’heure actuelle, nous n’en connaissons que 49 ! Les plus grands n’ont été découverts que récemment et ont plusieurs dizaines de millions de chiffres. Ils sont tous d’une forme liée à la notion de nombre premier, ce que nous verrons plus loin.

Les temps ont changé et plus personne ne comprend l’expression « nombre parfait » dans le sens d’une perfection externe aux mathématiques.

John et Alicia Nash … et la course aux armements

Le mathématicien John Nash (né en 1928) est mort le 23 Mai 2015 en compagnie de son épouse Alicia (née en 1933) dans un accident de taxi dans le New Jersey. Ils revenaient d’Oslo où John avait reçu le prix Abel, considéré comme le prix Nobel des mathématiques, le 19 Mai en compagnie de Louis Nirenberg (né en 1925) pour leurs contributions fondamentales et absolument remarquables à la théorie des équations aux dérivées partielles non linéaires, et à ses applications à l’analyse géométrique.

Théorie des jeux

Les jeux de la théorie des jeux ne sont pas tous ludiques.

John Nash est plus connu pour son apport à la théorie des jeux pour lequel il a obtenu le prix Nobel d’économie en 1994. Pour simplifier, la théorie des jeux est l’étude des comportements rationnels des individus en situation de conflit d’où ses applications en économie, stratégie et politique. Les équilibres de Nash sont les issues du jeu où aucun joueur ne regrettera son choix a posteriori. Prenons l’exemple de la course aux armements du temps de la guerre froide. Les États-Unis comme la Russie gagnent à ne pas dépenser leur argent inutilement mais ils perdent d’arrêter la course si l’autre la poursuit. Le jeu a ainsi deux équilibres de Nash : les deux pays courent ou les deux s’arrêtent.

Une femme d’exception

John et Alicia Nash en 2015.

John Nash est également connu pour le film qui lui a été consacré dont le titre français est Un homme d’exception, qui décrit son combat contre la schizophrénie dans lequel son épouse Alicia fut véritablement une femme d’exception.

Les vestiges de la base vingt

La façon de dire les nombres en français a des variantes locales. Ainsi comment doit-on lire, ou écrire en toutes lettres, le nombre 283 ? La logique du français voudrait : deux cent huitante-trois… pourtant cela ne s’écrit ainsi que dans certaines régions de l’Est de la France et dans quelques cantons suisses. Les Belges préfèrent : deux cent octante-trois et la majorité des Français, comme des Canadiens : deux cent quatre-vingt-trois. Ces quatre-vingts viendraient d’une ancienne façon de compter en usage autrefois en France et dont nous aurions hérité des Celtes. En effet, on la retrouve en Bretagne comme au pays de Galles et en Irlande. Le principe est partout le même, il s’agit d’un usage partiel de la base vingt. Il nous en reste le quatre-vingts de nos comptes mais aussi un hôpital parisien : celui des Quinze-Vingts, fondé par saint Louis (1214 – 1270) pour accueillir 15 fois 20, c’est-à-dire 300, vétérans aveugles. Il est toujours spécialisé en ophtalmologie.

Des traces chez Molière …

Portrait de Molière (1622 – 1673)

Cette façon de compter se retrouvait autrefois plus souvent qu’aujourd’hui, ainsi, dans L’avare de Molière, à la scène 5 de l’acte II, Frosine dit à Harpagon :

Par ma foi ! Je disais cent ans ; mais vous passerez les six vingts.

Six vingts signifiait 120. Pour 100 cependant, Frosine ne dit pas cinq vingts.

… Et chez Victor Hugo

Dans Notre-Dame de Paris, Victor Hugo (1802 – 1885) nous fait découvrir une autre trace de ce système quand il relate l’assaut de Notre-Dame par les truands (au livre X, chapitre 4) :

Clopin Trouillefou, arrivé devant le haut portail de Notre-Dame, avait en effet rangé sa troupe en bataille. Quoiqu’il ne s’attendît à aucune résistance, il voulait, en général prudent, conserver un ordre qui lui permît de faire front au besoin contre une attaque subite du guet ou des onze vingts.

Au Moyen-Âge, les onze vingts étaient un corps de police de 11 fois 20, c’est-à-dire 220, membres.

Que dit la grammaire (d’époque) ?

La grammaire des grammaires de Charles-Pierre Girault-Duvivier.

Cet usage de compter par vingtaines était alors plus général que le montre ces quelques vestiges, comme Charles-Pierre Girault-Duvivier (1765 – 1832) le note dans sa grammaire des grammaires :

Six vingts vieillit ; on dit plus ordinairement cent-vingt ; on disait encore dans le siècle passé sept vingts ans, huit vingts ans : depuis six ou sept vingts ans que l’église calvinienne a commencé (Bossuet) – Des femmes enceintes au nombre de huit vingts et plus – l’Académie ne condamnait pas autrefois cette manière de s’exprimer, et en permettait l’usage jusqu’à dix-neuf vingts en excluant seulement deux vingts, trois vingts, cinq vingts et dix vingts.

Une fois admis ce compte particulier en vingtaine pour la quatrième, il est logique de continuer jusqu’au seuil de la cinquième, c’est-à-dire jusqu’à 99. Nonante est ainsi devenu quatre-vingts dix, écrit depuis quatre-vingt-dix. En revanche, en Belgique, 90 est resté nonante sauf pour parler du roman de Victor Hugo : Quatre-vingt Treize. Une étrangeté reste et concerne le pluriel mis à vingt. On écrit quatre-vingts mais quatre-vingt-un et non quatre-vingts et un comme le voudrait l’imitation des cas de vingt à soixante, de plus vingt perd son pluriel et se trouve au singulier alors que le nombre a augmenté ! Ce problème de choix ou non du pluriel est bien singulier !

 

 

Le jour où le dogme de Pythagore s’écroula

Pythagore pensait que tout était nombre, nombre entier plus précisément ou rapport de nombres entiers. De nos jours, on dit nombres rationnels, du latin ratio qui, dans ce contexte signifie rapport.

La duplication du carré

Dans le Ménon de Platon, le problème de Socrate est celui de la duplication du carré, c’est-à-dire de trouver un carré d’aire double d’un carré donné.

Le grand carré orange duplique le carré représenté de travers. Pour le démontrer, il suffit de compter les triangles.

La solution pour dupliquer un carré est d’en construire un dont le côté est la diagonale du premier. Selon le théorème de Pythagore, 2 = 2 2a est le côté du carré et d sa diagonale. Si tout est nombre, a et d sont deux nombres entiers naturels (en choisissant bien l’unité).

Un raisonnement par l’absurde

Ici commence un raisonnement mathématique subtil, l’un des plus anciens de ce type. Bien que nous ne connaissions aucun de ces deux nombres, nous imaginons la factorisation de 2 = 2 2 et y comptons les occurrences du facteur 2 en utilisant chacune des formes à droite et à gauche du signe égal. Ce nombre est pair dans 2 puisque chaque apparition dans d est doublée par l’effet de la multiplication par lui-même. Le même phénomène se produit dans 2. En multipliant cette quantité par 2, on en ajoute un. Le nombre de 2 dans 2 2 est donc impair. L’égalité 2 = 2 2 conduit à une absurdité : le nombre de 2 est à la fois pair (dans 2) et impair (dans 2 2). L’hypothèse de l’existence d’une commune mesure entre les côtés des deux carrés aboutit à une absurdité, elle est donc fausse.

L’écroulement du dogme de Pythagore

L’idée de Pythagore s’écroule, il existe des longueurs incommensurables. Son dogme « tout est nombre » ne retrouvera vie que dans les temps modernes, quand d’autres « objets » seront admis dans le champ des nombres, en particulier, le rapport de la diagonale au côté du carré, racine de 2 que nous disons irrationnel, non pas parce que ce nombre ne serait pas raisonnable mais parce qu’il ne s’agit pas d’un rapport d’entiers.

 

L’unité est-elle un nombre?

Les Grecs anciens refusaient de considérer l’unité comme un nombre, comme on peut le lire dans La Métaphysique d’Aristote :

Il est, d’ailleurs, de toute évidence que c’est l’unité qui exprime la mesure ; […] le nombre est une pluralité mesurée […] Aussi, n’a-t-on pas moins raison de dire que l’unité n’est pas un nombre.

Un ne fait pas nombre

Ce refus de considérer « un » comme un nombre vient de l’assimilation du concept de nombre à ceux de pluralité ou de multiplicité. Cette confusion se retrouve en français ou « nombreux » ne peut signifier « un ».

Une reconnaissance tardive

En 1585, Simon Stevin écrit dans les premières pages de La pratique d’arithmétique :

Comme l’unité est nombre par lequel la quantité d’une chose expliquée se dit un.

Alors que cela nous semble aujourd’hui naturel, Simon Stevin se sent obligé de défendre cette position dans un long raisonnement de plusieurs pages, preuve que cette notion n’est pas admise comme naturelle à son époque. Pourquoi ? Tout simplement parce qu’elle s’oppose à la tradition philosophique du Moyen-Âge pour qui il n’est point de vérité en dehors d’Aristote, d’où le discours étonnant :

Il est notoire que l’on dit vulgairement que l’unité n’est pas nombre, mais seulement son principe […] ce que nous nions. Nous pouvons argumenter de la sorte : La partie est de même matière qu’est son entier, unité est partie de multitude d’unités, donc l’unité est de même matière qu’est la multitude d’unités. Mais la matière de multitude d’unités est nombre donc la matière d’unité est nombre.

Le « un » est donc devenu nombre à l’époque de Simon Stevin même si certains, comme Diophante, un célèbre mathématicien grec du IIIe siècle après Jésus-Christ, l’utilisaient déjà comme tel… mais après avoir donné les définitions usuelles à l’époque, comme en sorte d’hommage à la tradition.

 

 

Boby Lapointe et le bibi-binaire

Boby Lapointe (1922 – 1972) est connu comme chanteur humoriste, le seul chanteur français jamais sous-titré en France. Pourquoi ? Pas à cause de son élocution aléatoire mais parce que l’apprécier demandait une sacrée gymnastique intellectuelle ! Voici le début d’une de ses chansons les plus faciles pour en montrer le style.

Le poisson Fa

Il était une fois
Un poisson fa.
Il aurait pu être poisson-scie,
Ou raie,
Ou sole,
Ou tout simplement poisseau d’eau,

Ou même un poisson un peu là,
Non, non, il était poisson fa :
Un poisson fa,
Voilà.

et cela continue avec toutes les notes…

Une formation mathématique

Pas étonnant diront certains car la formation de Boby Lapointe  était fortement marquée par les mathématiques. Il aurait pu faire partie de l’Oulipo, comme adepte des littératures à contraintes ! Après un bac MathElem en 1940, il suivit les cours d’une classe de MathSpé et aurait intégré SupAero s’il n’avait pas été requis par le STO (service du travail obligatoire) en Autriche, dont il s’est évadé pour vivre dans la clandestinité. Boby Lapointe était donc un matheux et on le voit dans une de ses inventions.

L’hexadécimal

Revenons aux mathématiques avant de revenir à Boby Lapointe ! Vous avez sans doute remarqué que les clefs Wifi sont formées de chiffres décimaux entrecoupés de quelques lettres, entre A et F, comme par exemple : 9A8356D713058F4569C54039A0.

Il s’agit en fait d’un nombre écrit en base seize, en hexadécimal autrement dit. Dans cette base, les chiffres sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Les cinq derniers représentent les nombres décimaux de 10 à 15. Ce système permet d’écrire les nombres binaires de façon raccourcie. Par exemple, pour écrire le nombre binaire 1 100 101 en hexadécimal, il suffit de grouper les bits par quatre : 110 0101 et de traduire ces groupes : 110 vaut 6 et 0101, 5. Ce nombre s’écrit donc 65 en base seize. De même, un milliard, qui s’écrit 11 1011 1001 1010 1100 1010 0000 0000 en binaire, s’écrit 3B 9AC A00 en hexadécimal, ce que l’on obtient en traduisant chaque groupe de quatre bits.

Signification des chiffres hexadécimaux, c’est-à-dire des chiffres du système de base 16. En plus des chiffres usuels, ce système utilise les chiffres A, B, C, D, E et F qui représentent 10, 11, 12, 13, 14 et 15.

Le système bibi-binaire

Boby Lapointe inventa une notation pour les chiffres hexadécimaux où chaque chiffre se voit attribuer un symbole et une prononciation.

Système bibi-binaire de Boby Lapointe. Chaque chiffre du système hexadécimal se voit attribuer un graphisme et une prononciation dépendant de son écriture en base deux. L’ordre de l’écriture est indiqué pour le chiffre 0.

Ainsi 2019, qui s’écrit 7E3 en hexadécimal puisque 2019 vaut         7 x 16² + 14 x 16 + 3, se dit « bidehi » en bibi-binaire et s’écrit :

Zéro est-il un nombre ?

Zéro est un symbole utile pour écrire les nombres mais est-il lui-même un nombre ? Si nous restons sur l’idée des nombres naturels, la réponse est « non ». Ils sont faits pour compter, et que signifie dénombrer l’absence ? Zéro est un être troublant. Il n’a été accueilli que tardivement dans la communauté des nombres. À son introduction, zéro était plus la marque d’une absence, pour faciliter la notation positionnelle des nombres, qu’un nombre véritable. 

Naissance de zéro comme nombre

Nous devons son apparition en tant que nombre au mathématicien indien Brahmagupta (598 – 668). Dans le Brahmasphutasiddhanta, ce qui signifie « l’ouverture de l’Univers », écrit entièrement en vers, il donne les règles régissant zéro, ainsi que les nombres positifs ou négatifs, en termes de dettes et de fortunes :

Une dette moins zéro est une dette. Une fortune moins zéro est une fortune. Zéro moins zéro est zéro. Une dette soustraite de zéro est une fortune. Une fortune soustraite de zéro est une dette. Le produit de zéro par une dette ou une fortune est zéro. Le produit de zéro par zéro est zéro. Le produit ou le quotient de deux fortunes est une fortune. Le produit ou le quotient de deux dettes est une fortune. Le produit ou le quotient d’une dette et d’une fortune est une dette. Le produit ou le quotient d’une fortune et d’une dette est une dette.

Chacun reconnaîtra dans ces lignes une version ancienne de la règle des signes, dont un extrait de La vie de Henry Brulard, le roman autobiographique de Stendhal (1783 – 1842) semble un écho humoristique :

Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ?

L’usage des termes mathématiques hors contexte peut donner des résultats amusants, cependant la question n’est pas là. L’important est que les règles de calcul habituelles sur les nombres soient respectées, mais revenons à Brahmagupta. Pour lui, zéro n’est pas seulement la notation d’une absence d’unité, de dizaine ou de centaine, etc., comme dans la numération de position, mais aussi un vrai nombre, sur lequel on peut compter. Il le définit d’ailleurs comme le résultat de la soustraction d’un nombre par lui-même. Il donne les bons résultats l’impliquant dans les opérations licites (addition, soustraction et multiplication) mais se trompe en estimant que 0 divisé par 0 est égal à lui-même. On peut le comprendre, la question n’est pas simple. Elle est restée obscure, même pour un grand nombre de mathématiciens jusqu’au XIXe siècle puisque, dans ses Éléments d’algèbre, Alexis Clairaut (1713 – 1765), après avoir donné les règles de calcul, est obligé d’insister sur la nuance entre le signe d’un nombre et celui d’une opération :

On demandera peut-être si on peut ajouter du négatif avec du positif, ou plutôt si on peut dire qu’on ajoute du négatif. À quoi je réponds que cette expression est exacte quand on ne confond point ajouter avec augmenter. Que deux personnes par exemple joignent leurs fortunes, quelles qu’elles soient, je dirai que c’est là ajouter leurs biens, que l’un ait des dettes et des effets réels, si les dettes surpassent les effets, il ne possédera que du négatif, et la jonction de la fortune à celle du premier diminuera le bien de celui-ci, en sorte que la somme se trouvera, ou moindre que ce que possédait le premier, ou même entièrement négative.

Ces questions de fortunes et de dettes, de Brahmagupta à Clairaut font penser que le zéro serait venu d’un problème de comptabilité patrimoniale. Au-delà des termes utilisés, rien ne permet cependant de l’affirmer.

Zéro dans les opérations

La règle d’extension des résultats à zéro n’est pas d’origine philosophique, mais calculatoire. Par exemple, à partir de la définition que donne Brahmagupta de zéro : 2 – 2 = 0, on déduit des règles habituelles de l’arithmétique :

2 + 0 = 2 + (2 – 2) = 4 – 2 = 2

ce qui peut sembler une évidence par ailleurs : quand on ajoute rien, on conserve ce que l’on a… La question est beaucoup moins évidente quand on veut multiplier par zéro. Quel sens cela a-t-il dans l’absolu ? Pour le voir, l’important est de se focaliser sur les règles de calcul, sans y chercher d’autre philosophie. La question se traite de la même manière que la précédente :

3 x 0 = 3 x (2 – 2) = 3 x 2 – 3 x 2 = 6 – 6 = 0.

Bien entendu, dans les raisonnements précédents, les nombres 2 et 3 peuvent être remplacés par n’importe quels autres, le résultat n’est pas modifié. Un nombre multiplié par zéro est donc égal à zéro. Ce résultat, qui peut sembler étrange de prime abord, est nécessaire pour la généralité des règles opératoires.

La méthode permet de trouver des résultats plus étonnants. Par exemple, que vaut un nombre à la puissance zéro ? Pour répondre à cette question, se demander ce que signifie de porter un nombre à la puissance zéro est inutile, voire nuisible. A priori, 2 à la puissance 4 (par exemple) est égal à 2 multiplié 4 fois par lui-même, soit 24 = 2 x 2 x 2 x 2. De même, en remplaçant 4 par n’importe quel nombre entier supérieur à 1, donc 21 = 2. Mais que peut bien vouloir dire un nombre multiplié 0 fois par lui-même ? Se poser la question ainsi, c’est se condamner à ne pas pouvoir y répondre puisqu’elle est absurde. En fait, il faut trouver un principe d’extension. La propriété essentielle est la formule : 24+1 = 24 x 2, valable en remplaçant 4 par n’importe quel nombre. En le remplaçant par 0, nous obtenons : 20+1 = 20 x 21, ce qui donne : 2 = 20 x 2. En simplifiant par 2, nous obtenons : 20 = 1. Ce résultat est encore vrai si nous remplaçons 2 par tout nombre non nul. Ainsi, un nombre non nul porté à la puissance 0 est égal à 1, ou du moins il faut le poser comme définition si on veut que la propriété des puissances vue plus haut (24+1 = 24 x 2) soit générale.

Cette égalité (20 = 1) correspond à une idée subtile : celle de la généralité des calculs. On définit la puissance 0 pour que les règles de calcul connues sur les puissances restent vraies dans ce cas particulier. Il reste malgré tout l’ambiguïté de 0 à la puissance 0.

 

Le carré Luoshu

La première référence à un carré magique est une légende chinoise associée à la rivière Luohe, un affluent du fleuve Jaune, qui eut son heure de gloire pendant le millénaire précédant notre ère, quand la ville de Luoyang, bâtie sur ses rives, était capitale de la Chine. Ses multiples versions parlent toutes d’une tortue portant d’étranges inscriptions sur son dos.

Une tortue légendaire

Pour calmer le dieu de la rivière, à chaque inondation, les habitants d’un village menacé d’être englouti lui offraient des sacrifices en vain. Cependant, ils remarquèrent qu’à chaque fois, une tortue venait sur les lieux du sacrifice et repartait. Le dieu du fleuve n’en tenait cure jusqu’à ce qu’un jour, un enfant remarqua des formes curieuses sur le dos de l’animal.

Dos de la tortue selon la légende

Dans chaque ligne, chaque colonne et chaque diagonale, le nombre était le même. Ainsi, les villageois comprirent que le dieu du fleuve demandait quinze sacrifices, et purent l’apaiser…

Les carrés magiques

Ce carré est depuis appelé « carré Luoshu » du nom de la rivière. Il a vite conquis le Moyen-Orient puis la Grèce où il était connu de Pythagore. Il est toujours utilisé comme amulette porte-bonheur et dans des exercices divinatoires. De nos jours, ces carrés où les sommes des nombres des lignes, colonnes et diagonales sont identiques sont appelés « carrés magiques », preuve de l’antique croyance. On peut de plus ajouter une contrainte, celle de n’utiliser que les premiers nombres donc ceux de 1 à 9, dans le cas d’un carré d’ordre trois, et ceux de 1 à 16 pour ceux d’ordre quatre. Avec cette dernière contrainte, il n’existe aucun carré d’ordre deux : vous pouvez disposer les nombres de 1 à 4 comme vous le voulez, le carré formé ne sera jamais magique. De ce fait, les pythagoriciens en faisaient un symbole du chaos. Aux symétries près, le carré d’ordre trois est unique, c’est le Luoshu (voir à la fin de cet article). De nos jours, les ésotériques préfèrent l’écrire de façon à faire apparaître le nombre 618 en première ligne car ce sont les premières décimales du nombre d’or. Pour eux, il devient ainsi doublement magique.

Le carré magique d’ordre 3

Carré magique d’ordre 3 faisant apparaître les décimales du nombre d’or.

Schéma de preuve

Si les cases du carré contiennent tous les nombres de 1 à 9, la somme de toutes les cases est 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, c’est-à-dire 45. Les sommes de toutes les rangées et des diagonales sont donc égales à 45 divisé par 3, soit 15. Selon leur place, les nombres participent à 4, 3 ou 2 sommes égales à 15. En partant d’un nombre initial, comme 1, nous examinons le nombre de décompositions donnant 15 en tout. Pour 1, il en existe deux : 9 + 5 et 8 + 6. En opérant ainsi, nous obtenons le tableau :

Ce tableau permet de remplir le carré.