Multiplier les dettes pour gagner une fortune

Certains écoliers peinent avec la règle des signes et en particulier avec le terrifiant « moins par moins égal plus ». Dans La vie de Henry Brulard, son roman autobiographique, Stendhal s’en amuse ainsi :

Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ?

Brahmagupta invente le zéro

L’usage des termes mathématiques hors contexte peut donner des résultats surprenants. La raison de la règle des signes est d’une autre nature (voir les dangers de philosopher sur les nombres). L’important est que les règles de calcul habituelles sur les nombres soient respectées. C’est ce que fait l’inventeur du nombre zéro et des nombres négatifs, le mathématicien indien Brahmagupta, (VIIe siècle de notre ère) quand il donne les règles régissant zéro, ainsi que nombres positifs ou négatifs, en termes de dettes et de fortunes :

Une dette moins zéro est une dette. Une fortune moins zéro est une fortune. Zéro moins zéro est zéro. Une dette soustraite de zéro est une fortune. Une fortune soustraite de zéro est une dette. Le produit de zéro par une dette ou une fortune est zéro. Le produit de zéro par zéro est zéro. Le produit ou le quotient de deux fortunes est une fortune. Le produit ou le quotient de deux dettes est une fortune. Le produit ou le quotient d’une dette et d’une fortune est une dette. Le produit ou le quotient d’une fortune et d’une dette est une dette.

Le zéro, avion de chasse japonais de la Seconde Guerre mondiale, n’était pas nul.

Le zéro absolu

Pour revenir à notre écolier moderne, pardonnons-lui car la question n’est pas si simple. Ainsi, dans ses Pensées, Blaise Pascal (XVIIe siècle), pourtant grand mathématicien, écrit cette phrase surprenante :

Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro.

Sans le vouloir, Pascal pointe ici l’une des difficultés à considérer zéro comme un nombre véritable : l’idée du zéro absolu, celui en dessous duquel on ne peut descendre. Il n’aurait sans doute pas admis nos températures négatives, et aurait donc préféré les degrés Fahrenheit aux Celsius. Pour cette raison, sans aucun doute, Daniel Gabriel Fahrenheit (XVIIIe siècle) fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° et elle bout à 212° environ.

La règle des signes n’est donc pas si simple … mais source de poésie !

Les dangers de philosopher sur les nombres

Pourquoi les Grecs n’ont-ils découvert ni les réels, ni le zéro et n’admettaient même pas le « un » dans la confrérie des nombres ? La raison tient à la philosophie, voire la mystique, dont ils encombraient ces notions. Le même schéma se retrouve à l’œuvre dans les temps modernes.

Idée pythagoricienne des nombres

Les nombres sont nés englués de mystique. Pour Pythagore, le « un » représente le divin. Plus précisément, voici comment il parle du nombre triangulaire : 1 + 2 + 3 + 4 = 10.

Le triangle sacré selon Pythagore.

Pour lui, le « un » est le divin, le principe de toute chose … Le « deux » est le couple masculin, féminin, la dualité … Le « trois », les trois niveaux du monde, l’enfer, la terre et le ciel … Le « quatre », les quatre éléments, l’eau, l’air, la terre et le feu … Enfin, le tout fait « dix », la totalité de l’univers, le divin compris ! On peut trouver ces idées poétiques mais, avec de telles prémisses, on peut aussi craindre le pire ! C’est pour de telles raisons mystiques que Pythagore proclama : « tout est nombre » ce qui, dans son esprit, signifie « nombre entier naturel ». L’idée venait de la « raison ». Elle était rationnelle.

Les grandeurs commensurables

Pourtant, pour être égaux aux rapports entre nombres entiers, il est nécessaire que les longueurs (ou les quantités de façon générale) aient une commune mesure, soient commensurables en d’autres termes. Cela signifie que si AB et BC sont deux segments contigus, on peut placer un point U tel que AB et AC soient multiples de AU (AU est la commune mesure).

AB et AC sont commensurables s’il existe un point U tel que AB et AC soient multiples de AU.

L’échec des fractions

Malheureusement pour sa doctrine, Pythagore prouva lui-même qu’il existe des grandeurs incommensurables, le côté et la diagonale d’un carré par exemple. Son raisonnement est fondé sur la figure suivante.

En découpant un carré (de côté AB), on peut en former deux (de côté CD). En les mesurant à la même aune, nous obtenons deux entiers et l’égalité : AB . AB = 2 CD . CD. Dans la factorisation de ce nombre, 2 intervient un nombre pair de fois à gauche et un nombre impair à droite, ce qui est absurde.

En factorisant l’égalité : AB . AB = 2 CD . CD, Pythagore obtint une absurdité. Son idée s’écroule : il existe des longueurs incommensurables. Son dogme « tout est nombre » ne retrouvera vie que dans les temps modernes, quand d’autres « objets » seront admis dans le champ des nombres, en particulier, le rapport de la diagonale au côté du carré, racine de 2 que nous disons toujours irrationnelle.

Le “un” est-il un nombre ?

Que les idées mystiques aboutissent à des erreurs semble normal. Plus étrangement, le « bon sens » peut faire de même. Les anciens Grecs ne considéraient pas l’unité comme un nombre, car elle ne représente pas une multiplicité. On ne dénombre qu’à partir de deux ! Selon Euclide, un nombre est un assemblage composé d’unités. Autrement dit, l’unité est la source et l’origine de tout nombre. Avant de compter, il est nécessaire de distinguer l’unité qui, de ce fait, a un statut à part. Qu’est-ce qu’un sommet en montagne ? Cette question peut sembler simpliste, elle demande pourtant de savoir distinguer une antécime d’un sommet. Il en est de même si on veut compter des plantes. Dans chaque cas, il est nécessaire de distinguer l’unité.

Une fois cette étape accomplie, nous pouvons dénombrer, ce qui correspond à une suite d’opérations : 2 = 1 + 1, 3 = 1 + 1 + 1, etc. L’idée qu’une seule unité serait un nombre est rejetée car « 1 » est singulier et les nombres, pluriels. L’assemblage commence à deux. La question peut sembler factice, mais elle est plus embarrassante qu’il n’y paraît. Quand faut-il utiliser un pluriel ? Du fait de ce type de questions, il fallut plusieurs millénaires pour voir dans le « un » rien d’autre qu’un nombre ordinaire. Le problème s’est alors reporté sur le zéro.

“Zéro” est-il un nombre ?

Pendant longtemps, zéro a été exclu de l’univers des nombres car il ne représente ni un dénombrement, ni une mesure. Nous devons son apparition en tant que nombre au mathématicien indien Brahmagupta (VIIe siècle après Jésus-Christ). Pour lui, il ne s’agit pas seulement de la notation d’une absence d’unité, de dizaine ou de centaine, etc. comme dans la numération de position mais aussi d’un vrai nombre, sur lequel on peut calculer. Il le définit d’ailleurs comme le résultat de la soustraction d’un nombre par lui-même. Il donne les bons résultats l’impliquant dans les opérations licites (addition, soustraction et multiplication) mais se trompe en estimant que 0 divisé par 0 est égal à lui-même. On peut le comprendre, la question n’est pas simple.

Règle d’extension à zéro

La règle d’extension des résultats à zéro n’est pas d’origine philosophique, mais calculatoire. Par exemple, que vaut un nombre à la puissance zéro ? Pour répondre à cette question, se demander ce que signifie de porter un nombre à la puissance zéro est inutile, voire nuisible. A priori, 2 à la puissance 4 (par exemple) est égal à 2 multiplié 4 fois par lui-même, soit 24 = 2 . 2 . 2 . 2. De même, en remplaçant 4 par n’importe quel nombre entier supérieur à 1, donc 21 = 2. Mais que peut bien vouloir dire un nombre multiplié 0 fois par lui-même ? Se poser la question ainsi, c’est se condamner à ne pas pouvoir y répondre. En fait, il faut trouver un principe d’extension. La propriété essentielle est la formule 24+1 = 24 . 2, valable en remplaçant 4 par n’importe quel nombre. En le remplaçant par 0, nous obtenons 20+1 = 20 . 21, ce qui donne 2 = 20 . 2. En simplifiant par 2, nous obtenons 20 = 1. Ce résultat est encore vrai si nous remplaçons 2 par tout nombre non nul. Ainsi, un nombre non nul porté à la puissance 0 est égal à 1.

Cette égalité correspond à une idée subtile : celle de la généralité des calculs. On définit la puissance 0 pour que les règles de calcul connues sur les puissances restent vraies dans ce cas particulier. Il reste l’ambiguïté de 0 à la puissance 0. Suivant les cas, on peut retenir la valeur 1 par souci de généralité ou considérer cette quantité comme non définie.

Pour la même raison, il est possible d’étendre la définition de la factorielle. A priori, 4 ! (lire factorielle 4) est le produit des entiers naturels de 1 à 4, de même 5 ! La factorielle de 0 n’a donc aucun sens. Cependant, comme précédemment, 5 ! = 5 . 4 ! et ceci en remplaçant 4 par n’importe quel nombre. Si nous voulons définir 0 !, il est donc nécessaire que 1 ! = 1 . 0 ! ce qui fournit 0 ! = 1. Pour les mêmes raisons, le produit et la somme d’une liste de zéro nombre entier sont égaux à 1 et 0.

Les nombres négatifs

Les mêmes phénomènes de méfiance se sont produits pour les nombres négatifs même si, de nos jours, ils ont pris un sens concret avec les températures, qui peuvent être négatives, et les étages en sous-sol des immeubles. À l’époque de Brahmagupta, cette notion était très abstraite. Les nombres négatifs n’ont d’ailleurs été admis en Occident que bien plus tard. Descartes les évitait encore ! Dans ses Pensées, Pascal, pourtant grand mathématicien, écrit d’ailleurs cette phrase surprenante : « Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro ». Sans le vouloir, Pascal pointe ici l’une des difficultés à considérer zéro comme nombre véritable : l’idée du zéro absolu, celui en dessous duquel on ne peut descendre. Il n’aurait sans doute pas admis nos températures négatives, et aurait donc préféré les degrés Fahrenheit aux Celsius. Fahrenheit fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° (Celsius) et elle bout à 212° environ.

Ces choix étranges de Fahrenheit s’expliquent par la réticence de l’époque devant les nombres négatifs. On préférait d’ailleurs parler de quantités plutôt que de nombres. Il s’agissait d’artifices de calcul pour résoudre des équations, dont on écartait ensuite les solutions négatives. Tout en étant une origine, zéro véhicule une idée d’absolu, en dessous duquel on ne peut aller, comme on le voit chez Pascal. Cette idée a perduré jusqu’au XIXe siècle, Lazare Carnot disait encore : « Pour obtenir réellement une quantité négative isolée, il faudrait retrancher une quantité effective de zéro, ôter quelque chose de rien : opération impossible. Comment donc concevoir une quantité négative isolée ? »

L’erreur de sens

La question ne doit pas être examinée d’un point de vue philosophique en se demandant, par exemple, ce que signifie de multiplier les dettes entre elles, ou de plaisanter sur les possibilités de faire un bénéfice en les multipliant comme le fait Stendhal dans La vie de Henry Brulard, son roman autobiographique : « Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ? »

L’usage des termes mathématiques hors contexte peut donner des résultats amusants, mais la question n’est pas là. L’important est que les règles de calcul habituelles sur les nombres soient respectées. Ces idées ont débouché sur la notion de corps de nombres au XIXe siècle.

La réalité des réels

L’expérience du calcul suggère que l’écriture décimale permet d’atteindre les mesures avec toute précision désirée, quelle qu’elle soit. Celle-ci n’a pas de limite et on peut, par exemple, parler du milliardième chiffre après la virgule du nombre pi. Jusqu’à la fin du XXe siècle, ce genre d’affirmation avait un côté gratuit car personne ne pouvait le connaître. Aujourd’hui, nous savons qu’il s’agit du chiffre 2. Bien sûr, il existera toujours une limite indépassable, tout simplement parce que notre temps est fini, et notre énergie comptée. Aussi infime que soit le coût de l’impression d’un chiffre sur du papier, un écran d’ordinateur ou un emplacement mémoire d’un DVD, on se ruinerait à vouloir en écrire trop. Cependant, il est facile d’imaginer que tout nombre possède un nième chiffre après la virgule, et cela pour tout entier n, aussi grand soit-il.

De façon générale, nous appelons développement décimal une suite de chiffres telle que 65, 692 873 451 etc. à l’infini avec la condition suivante : les chiffres ne sont pas tous égaux à 9 à partir d’un certain rang. Le résultat est ce que l’on appelle un nombre réel. Ces nombres permettent de représenter la notion intuitive de mesure (longueur, aire, volume, temps, etc.). Pourquoi ? Pour l’expliquer, imaginez vouloir mesurer un segment OA. Comment faites-vous ? Sans doute prenez-vous une règle graduée.

Pour mesurer une longueur, on la porte le long d’une règle graduée. Ici, OA vaut entre 2,6 et 2,7.

Vous faites correspondre le point O et la graduation 0 de la règle puis placez celle-ci le long du segment OA. Le point A se situe alors entre deux graduations, disons entre 2 et 3. La longueur vaut donc 2, augmenté de quelque chose. Comment l’évaluer plus précisément ? Tout simplement en utilisant les graduations directement inférieures (les dixièmes). La longueur se situe entre deux de ces graduations, disons entre 6 et 7. On peut imaginer continuer ainsi à l’infini même si, en réalité, nous ne pouvons dépasser une certaine précision. La longueur OA est donc représentée par un développement décimal, éventuellement illimité. De plus, une suite infinie de 9, comme 2, 999 … par exemple, est impossible car correspond au nombre directement supérieur (ici 3). La notion de nombre réel est donc un bon modèle mathématique pour étudier celle de longueur et, de façon plus générale, de toute mesure de même nature.

Les nombres aujourd’hui

Le mot « réel » ne doit pas leurrer. Ces nombres n’existent pas plus dans la réalité que les autres. Ce sont des abstractions utiles pour modéliser le monde réel. Leur efficacité se mesure à l’aune des résultats qu’ils permettent d’obtenir. Autrement dit, le contrôle philosophique sur les nombres ne se fait pas a priori pour satisfaire à quelques conceptions plus ou moins dogmatiques. Ce contrôle se fait a posteriori sur les résultats qu’ils permettent d’obtenir. Cette idée peut troubler certains car elles impliquent que la vérité se mesure à son efficacité. Il en est de même des axiomes des mathématiciens. Il n’existe pas d’axiomes « vrais », il existe des axiomes utiles.

 

De l’utilité d’une mauvaise orthographe pour chiffrer

Une bonne orthographe peut perdre l’apprenti chiffreur car elle facilite la recherche de mots probables. Ainsi, écrire « pitèn » au lieu de « capitaine » peut servir à la dissimulation…

Le tueur du zodiaque

Un tueur en série, qui sévit en Californie à la fin des années soixante et début des années soixante-dix, nargua la police avec des messages chiffrés de façon a priori simple. Tout porte à penser qu’il est mort depuis puisque ses crimes et ses revendications cessèrent, mais rien ne le prouve. Nous ne nous intéresserons pas à cet aspect ici mais aux quelques messages chiffrés qu’il envoya à la police et à la presse dont le suivant.

Décryptement

L’un d’entre eux fut décrypté par un enseignant et son épouse, Donald et Betty Harden. Leur idée fut de rentrer dans la psychologie d’un tueur en série qui, selon eux, a un égo surdéveloppé… ainsi le message devait commencer par la lettre « I » qui, en anglais, signifie « je ». Ensuite, ils ont cherché « kill » et « killing » qui correspondent au verbe « tuer ». Le code s’écroula ensuite petit à petit. Pour tromper les décrypteurs, le tueur avait de plus fait de nombreuses fautes d’orthographe. Voici le message décrypté :

I LIKE KILLING PEOPLE BECAUSE IT IS SO MUCH FUN IT IS MORE FUN THAN KILLING WILD GAME IN THE FORREST BECAUSE MAN IS THE MOST DANGEROUS ANAMAL OF ALL TO KILL SOMETHING GIVES ME THE MOST THRILLING EXPERENCE IT IS EVEN BETTER THAN GETTING YOUR ROCKS OFF WITH A GIRL THE BEST PART OF IT IS THAT WHEN I DIE I WILL BE REBORN IN PARADICE AND ALL THE I HAVE KILLED WILL BECOME MY SLAVES I WILL NOT GIVE YOU MY NAME BECAUSE YOU WILL TRY TO SLOI DOWN OR STOP MY COLLECTING OF SLAVES FOR MY AFTERLIFE EBEORIETEMETHHPITI

Nous pouvons le traduire ainsi : « J’aime tuer les gens parce que c’est du plaisir, plus que de tuer du gibier dans la forêt, parce que l’homme est l’animal le plus dangereux de tous à tuer. C’est excitant, même plus que d’avoir du bon temps avec une fille. Le mieux sera quand je mourrai. Je renaîtrai au paradis et tous ceux que j’ai tués deviendront mes esclaves. Je ne donnerai pas mon nom car vous essayeriez de ralentir ou de stopper ma récolte d’esclaves pour mon au-delà. Ebeorietemethhpiti. »

Malheureusement, malgré ce qu’il avait annoncé à la police, sa signature restait incompréhensible. Il annonçait d’ailleurs lui-même pourquoi il ne donnait pas son nom.

 

 

Loi des petits nombres versus loi des grands nombres

La théorie des probabilités permet de démontrer que les jeux de casino comme la roulette sont conçus pour ruiner les joueurs, même si ce jeu a des failles … que nous ne dévoilerons pas ici. La loi des grands nombres assure un bénéfice confortable aux organismes de jeu. Le hasard intervient pour les joueurs, pas pour eux ! Les compagnies d’assurance agissent de même. Si elles assurent cent mille voitures, elles savent d’avance combien auront d’accidents et quel en sera le coût. La prime d’assurance est calculée en fonction de ce risque qui n’en est plus un dès que l’on applique la loi des grands nombres ! Si 5% des automobilistes ont un accident chaque année, vous ne pouvez prévoir si vous en aurez un. En revanche, votre compagnie d’assurance sait que, sur ses cent mille assurés, cinq mille environ auront un accident.

La loi des petits nombres

Contrairement aux organismes de jeu et aux assureurs, les particuliers n’utilisent pas la loi des grands nombres. Si un événement malheureux mais peu probable se produit deux fois de suite à une année d’intervalle, ils se diront que « jamais deux sans trois » et prévoiront un troisième pour l’année suivante. À l’inverse, plusieurs années sans accident leur feront croire que plus rien ne peut leur arriver. Autrement dit, ils utilisent une loi des petits nombres et non la loi des grands nombres. Bien entendu, il ne s’agit pas de mathématique mais de psychologie ! Pour un mathématicien, cette loi des petits nombres peut passer pour un canular. C’est pourtant de manière tout à fait scientifique et en utilisant correctement la loi des grands nombres que Daniel Kahneman (né en 1934) l’a mise en évidence. Plus précisément, il a étudié expérimentalement le comportement des individus devant l’assurance ! Il apparaît que plusieurs années sans accident poussent l’américain moyen à résilier ses contrats d’assurance !

 

Saint Urlo, saint patron des cryptologues ?

Traditionnellement, chaque groupe, professionnel ou autre, a son saint patron. Ce saint a en général un lien avec le groupe en question.

Gabriel, saint patron des transmetteurs

L’annonce faite à Marie par Gabriel.

Par exemple, le saint patron des transmetteurs de l’armée est très logiquement l’archange Gabriel, celui qui annonce les bonnes nouvelles comme celle faite à Marie dans les Évangiles. La fête des transmetteurs est donc le 29 septembre, le jour de la saint Gabriel. Le saint patron du renseignement militaire est un autre archange, Raphaël, fêté le même jour comme tous les archanges. La relation de ce saint avec le renseignement est mystérieuse. Saint Simon nous aurait semblé plus approprié, lui qui fut qualifié d’espion sagace et fantasque de Versailles et des coulisses du pouvoir au temps de Louis XIV par l’académicien Yves Coirault (1919 – 2001). Même si nous penchons nettement en faveur du choix de saint Simon, comme saint patron des espions, nous respectons la tradition qui lui préfère Raphaël.

L’évidence de Saint Urlo

En ce qui concerne les cryptologues, d’après leur proximité avec les transmissions et le renseignement, ils peuvent se réclamer de Gabriel, de Raphaël et de saint Simon, mais ils préfèrent souvent reconnaître le patronage de saint Urlo. Pourquoi ? Toux ceux qui se sont déjà attaqués au décryptement de vieux grimoires écrits avec des alphabets chiffrés le savent. La lettre la plus fréquente en français est la lettre  e, ensuite viennent dans un ordre approximatif s, a, i, n, t, u, r, l, o.  Affirmer qu’Urlo est le saint patron des cryptologues est une bonne façon de se souvenir des lettres les plus fréquentes en français, pour appliquer l’analyse fréquentielle.

Un saint breton qui a sa chapelle

Chapelle de Saint Urlo à Lanvénégen (Morbihan)

Notre présentation d’Urlo peut faire penser qu’il s’agit d’un saint imaginaire. Pourtant un voyage dans le Morbihan, à Lanvévégen plus précisément, vous le fera découvrir. En effet, il s’agit d’un saint breton. L’orthographe de son nom varie de Gurloës à Ourlou en passant par Urlo. Au XIe siècle, Urlo fut le premier abbé de l’abbaye Sainte-Croix de Quimperlé. Il ne fut canonisé que difficilement car personne n’avait été témoin d’un seul miracle qu’il aurait réalisé. Pour nous, cela n’est qu’une preuve supplémentaire de son lien avec la cryptologie car les exploits des décrypteurs sont effectivement tenus secrets longtemps. La fête de saint Urlo est le 25 mars.

Des plantes et des maths

Les plantes ont un rapport étonnant avec les mathématiques, hasard ou nécessité ? Je vous laisse juger.

Suite de Fibonacci

Léonard de Pise, dit Fibonacci, a créé sa suite comme un simple exercice d’arithmétique :

Un homme met un couple de lapins dans un lieu isolé de tous les côtés par un mur. Combien de couples obtient-on en un an si chaque couple engendre tous les mois un nouveau couple à compter du troisième mois de son existence ? 

Le calcul est simple, la suite donne : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc. Chaque nombre est la somme des deux qui le précèdent.Cette règle a fasciné au-delà de l’exercice. De plus, on la retrouve souvent dans la nature. En voici quelques exemples.

1, 2, 3, fleurs dans le désert du Namib (Namibie).                     © Hervé Lehning

Cette suite se retrouve plus souvent dans le décompte des pétales des fleurs. La seule façon de les compter est malheureusement de les effeuiller …

Saurez-vous trouver le nombre de Fibonacci derrière ces pétales de griffes de sorcière (littoral du sud de la France) ? © Hervé Lehning

La géométrie, des rosaces à la sphère

Après l’arithmétique, nous trouvons la géométrie avec des rotations surprenantes et des développements en sphère.

Rotation naturelle dans une plante succulente. La règle de formation des feuilles implique que celles-ci se déduisent l’une de l’autre par rotation. Littoral du sud de la France.     © Hervé Lehning
Cette plante sauvage des Alpes se développe naturellement en sphère. Parc des Écrins                © Hervé Lehning

Intersection d’un cercle et d’une droite dans la toundra

Cercle et droite sur une plante de la toundra. Groenland      © Hervé Lehning

Cette plante de la toundra groenlandaise présente deux formes géométriques simples : un cercle et une droite. Le cercle est naturel. Il correspond au développement de la plante dans toutes les directions à partir d’une graine, mais pourquoi a-t-elle dépéri d’un seul côté d’une droite ?