La géométrie des fortifications de Vauban

Les forts du Moyen-Âge peuvent avoir des formes polygonales. Celles-ci restent cependant convexes. La règle pour les forts de l’époque de Vauban est différente. En terrain plat, on part d’un polygone régulier convexe. La longueur des côtés correspond à la portée utile des pièces d’artillerie de l’époque, un peu moins pour que l’effet soit meilleur. La norme est de 330 mètres. Le nombre de côtés dépend alors de la taille de la ville à ceinturer ainsi. Par exemple, un pentagone régulier de côté égal à 330 mètres englobe une surface de 18 hectares, un hexagone, 28 et un octogone, 52.

Partons ici d’un pentagone comme pour la citadelle de Lille. Au milieu de chaque côté, perpendiculairement et vers l’intérieur, nous portons une longueur de 55 mètres. Nous obtenons, un polygone plus compliqué en forme d’étoile.

Schéma de base d’une fortification bastionnée.

 

Ajout des bastions

Le but est d’établir aux sommets du polygone initial de petits fortins appelés « bastions » et destinés à recevoir des pièces d’artillerie pouvant couvrir les côtés du polygone en étoile, appelés « courtines ». Pour éviter d’être de trop bonnes cibles pour l’artillerie adverse, ces remparts ne dépassent pas du paysage. Leur hauteur vient des fossés situés autour. Ces murs sont essentiellement constitués de terre pour mieux résister aux boulets en fer. La maçonnerie qui les entoure est destinée à tenir le tout. Du côté de la place forte, elle se nomme l’escarpe. De l’autre côté, la contrescarpe. Un domaine est laissé vide et sans protection pour l’ennemi tout autour. Il se nomme le glacis. Sa longueur correspond au minimum à la portée des canons. Vu du glacis, l’assaillant n’aperçoit que des murailles modestes puisque le fossé les dissimule.

Nous sommes maintenant en présence de plusieurs polygones, l’un extérieur joignant les extrémités des bastions, l’autre intérieur dans le prolongement des courtines. Un autre limite le glacis.

Les bastions (en bleu) situés aux sommets du pentagone sont destinés à couvrir les courtines (en rouge). Les murs extérieurs des deux forment l’escarpe. La contrescarpe n’est pas indiquée sur cette figure. Elle est située de l’autre côté du fossé entourant le rempart.

Multiplication des défenses externes

Demi-lune vue du fort à Mont-Dauphin. Cette fortification protège la citadelle tout en restant sous le feu en provenant. L’ennemi ne peut que difficilement s’y maintenir après l’avoir prise.

Pour éviter ce défaut, Vauban a l’idée d’ajouter deux défenses externes devant chaque courtine : la tenaille à son pied et la demi-lune devant. Chacune de ces défenses n’offre aucune protection du côté de la place forte elle-même. Si l’ennemi la prend, il s’y trouve à découvert, donc dans une position difficile à tenir.

Les tenailles (près du fort) et les demi-lunes (toutes en vert) sont destinées à retarder l’ennemi dans sa progression. Ces fortifications ne sont pas fortifiées du côté de la place forte.

Vauban généralisa ce principe en détachant les bastions de la place forte elle-même. D’autre part, le tout est entouré d’un dernier petit rempart parallèle et recouvert, appelé « chemin couvert ». Ainsi, il se situe au sommet de la contrescarpe. Il s’agit en même temps de la première ligne de défense et d’un chemin de ronde, destiné à l’observation.

Les bastions sont détachés de la place. Sur cette photo, la direction de la meurtrière montre leur usage. Il s’agit de placer les courtines sous le feu de la place.

 

 

Comment peut-on chiffrer avec une courbe ?

Vous avez peut-être entendu d’une méthode de cryptographie utilisant des courbes, des courbes elliptiques plus précisément. Mais comment peut-on chiffrer, c’est-à-dire transformer un message clair en un message caché, avec une courbe ?

Les courbes elliptiques

Les courbes en question sont les courbes elliptiques, c’est-à-dire des courbes d’équation y2 = x3 + a x + ba et b sont des nombres, par exemple y2 = x3 – 2 x + 1 ce qui peut se dessiner. On obtient la figure suivante.

La courbe est l’ensemble des points M de coordonnées x et y vérifiant l’équation ci-dessus, c’est-à-dire y2 = x3 – 2 x + 1.

Le rapport avec les ellipses, qui sont des cercles « aplatis » sur l’un de leur diamètre, est indirect puisqu’il concerne le calcul de leurs longueurs. Nous n’insisterons pas sur ce point car il n’a aucun rapport avec la cryptographie. L’intérêt est qu’on peut définir des opérations transformant les points de cette courbe en un autre. On s’approche de l’idée de chiffrement … sans encore l’avoir atteinte toutefois.

Loi de groupe sur une courbe elliptique

L’avantage des courbes elliptiques est qu’on peut y définir une loi. La figure suivante montre comment, à deux points P et Q de la courbe, on associe un point que l’on note P + Q.

Dans le cas général, on trace la droite PQ. Elle coupe la courbe en un point R, P + Q est le symétrique de R par rapport à l’axe des abscisses. Si P = Q, PQ est la tangente en P à la courbe. Pour que cette définition fonctionne dans tous les cas, nous devons adjoindre à la courbe un point à l’infini, que nous notons 0. Si PQ est verticale, P + Q = 0.

On montre que cette loi + a les propriétés habituelles de l’addition des nombres, soit l’associativité, la commutativité, l’existence d’un point neutre (le point à l’infini) et d’un symétrique pour tout point (le symétrique par rapport à l’axe des abscisses justement).

Remarque : on trouvera les détails des calculs sur mon site : ici

Chiffrement

Pour chiffrer, on ne considère pas les courbes elliptiques sur le corps des nombres réels mais sur un corps fini comme Z / N où N est un nombre premier. La courbe a alors un nombre fini de points. L’idée de départ est qu’un texte peut être transformé en une suite de points de la courbe. Cela revient à écrire dans un alphabet ayant autant de signes que la courbe a de points. Notons que le problème sous-jacent n’a rien de simple mais, théoriquement, le chiffrement consiste alors à transformer un point de la courbe. La clef secrète est constituée d’un point P de la courbe et d’un nombre entier, comme 3 par exemple. On calcule ensuite P ’ = 3 P. La clef publique est alors le couple de points (P, P ’). Pour crypter un point M, le chiffreur choisit un entier, 23 par exemple, et transmet le couple (U, V) défini par : U = 23 P et V = M + 23 P ’. La connaissance du premier nombre, ici 3, suffit pour retrouver M car M = V – 3 U.

Logarithme discret

Pour retrouver le nombre choisi, 3 dans notre exemple, connaissant P et P ’, il suffit de savoir résoudre l’équation : P ’ = 3 P. L’utilisation du verbe « suffir » ne doit pas tromper. Cela ne signifie absolument pas que cela soit facile mais que, si vous savez le faire, vous savez décrypter. Le nombre 3 est alors appelé un logarithme discret ce qui n’est guère intuitif si on utilise la notation additive ci-dessus. Avec une notation multiplicative de l’opération de groupe, cela devient plus habituel puisque l’équation s’écrit alors : P ’ = P3. Dans l’ensemble des nombres usuels, 3 correspondrait au logarithme de base P de P ’ d’où le nom dans le cadre d’un groupe fini. À l’heure actuelle, ce problème est considéré comme très difficile. On estime qu’une clef de 200 bits pour les courbes elliptiques est plus sûre qu’une clef de 1024 bits pour la méthode R.S.A. Comme les calculs sur les courbes elliptiques ne sont pas compliqués à réaliser, c’est un gros avantage pour les cartes à puces où on dispose de peu de puissance, et où la taille de la clef influe beaucoup sur les performances. Les inconvénients sont de deux ordres. D’une part, la théorie des fonctions elliptiques est complexe et relativement récente. Il n’est pas exclu que l’on puisse contourner le problème du logarithme discret. D’autre part, la technologie de cryptographie par courbe elliptique a fait l’objet du dépôt de nombreux brevets à travers le monde. Cela pourrait rendre son utilisation coûteuse !

Comment évaluer l’espérance de vie d’un bébé qui vient de naître ?

Une fille vient de naître. Les médias nous apprennent qu’elle a une espérance de vie de 85 ans. D’où vient cette prédiction ? Que signifie l’espérance de vie ? Pour le comprendre, dans un premier temps, oubliez le sens commun du verbe « espérer » car la définition n’est claire que pour les générations entièrement décédées ! La voici. L’espérance de vie est la durée moyenne de vie des personnes nées la même année. La définition est étrange puisque, toutes ces personnes étant décédées, leur vie n’est plus une espérance. Si ce n’était le côté macabre, peut-être vaudrait-il mieux parler d’âge moyen à la mort ? La notion est identique, même si l’espérance de vie devient équivalente à celle de mort. Toutefois, le terme « espérance de vie » se comprend mieux pour les vivants.

Une définition macabre

Pour l’instant, restons malgré tout sur les générations passées car ce sont les seules qui permettent des calculs certains. Pour déterminer l’espérance de vie des gens nés en 1850 par exemple, il suffit de connaître tous les actes de naissance de 1850 et tous les actes de décès postérieurs. On en déduit les âges au décès et on en fait la moyenne… on trouve 41 ans. Cependant, ce calcul n’est possible que pour les générations entièrement décédées, pas pour les enfants qui viennent de naître !

Un modèle de la réalité

Pour prévoir l’espérance de vie de ceux qui viennent de naître, on imagine qu’ils subiront à chaque âge de leur vie la mortalité de l’année en cours. Plus précisément, on calcule le quotient de mortalité des deux sexes à chaque âge grâce à des estimations de population et de décès. En l’absence de toute migration, l’idée est très simple. Le premier janvier 2009, on compte 440428 hommes de 40 ans et 815 décès d’hommes de 40 ans pendant l’année 2 009. Le quotient de mortalité des hommes de 40 ans est donc estimé à 815 divisé par 440 428, soit 1,850 ‰. La méthode est fiable si on peut appliquer la loi des grands nombres. Ses résultats sont fantaisistes quand ce n’est pas le cas, particulièrement pour les grands âges.

À partir de ces quotients de mortalité des personnes de chaque âge, les statisticiens reconstruisent des tables de mortalité. On ne considère donc plus une population réelle mais une génération fictive de 100000 individus qui connaîtrait toute sa vie les conditions de mortalité par âge de l’année considérée. La table que l’on peut construire chaque année sur cette génération fictive est appelée la table du moment. C’est à partir de cette table qu’on calcule l’espérance de vie des enfants dès leur naissance. Cette méthode est fondée sur l’hypothèse que la situation de la mortalité restera identique à ce qu’elle est actuellement, et ceci alors même que nous savons qu’il n’en est rien ! Malgré tout, ces résultats donnent une idée plus vraisemblable de la réalité du futur que l’utilisation de tables de mortalité de générations décédées. Mieux vaut parfois une approximation raisonnable qu’une précision illusoire.