Archives pour la catégorie Vie quotidienne

L’art du défilement, Vauban et Gaspard Monge

L’un des problèmes pour construire des fortifications à l’époque de Vauban (1633 – 1707) était  :

Comment défiler une fortification des tirs de l’ennemi ?

Le verbe « défiler » doit s’entendre ici au sens commun de « se défiler ». Comment cacher l’intérieur d’un ouvrage aux vues et aux tirs de l’agresseur ? Bien entendu, il suffit de bâtir partout des remparts assez hauts. L’ennui est que la hauteur fragilise les remparts. Le tout doit rester équilibré. Sur le terrain, les bons ingénieurs comme Vauban savaient défiler leurs ouvrages mais comment s’y prendre à partir d’un simple plan côté ?

La géométrie descriptive

Gaspard Monge (1746 – 1818) inventa la géométrie descriptive pour résoudre ce problème. De façon générale, elle permettait d’étudier certains objets de l’espace comme l’intersection de deux tores dans l’épure qui suit. Le résultat pouvait être très esthétique, comme on peut le voir dans ce cas.

Dessin se trouvant dans Objets mathématiques, Institut Henri Poincaré, livre que nous recommandons fortement.

Les déblais et remblais

Le même Monge, sans doute également motivé par la construction de fortifications, publia un Mémoire sur la théorie des déblais et des remblais où il se proposait de résoudre un problème très concret : comment déplacer des tas de sable vers un certain nombre de destinations de la manière la plus économique possible ?

Dessin explicatif du problème dans le mémoire de Monge.

Ici il s’agit de déblayer la zone de gauche pour remblayer celle de droite (ou l’inverse puisque les deux problèmes sont équivalents). Dans son mémoire, Monge étudie ce problème mais ne le résout pas dans sa généralité. Voir l’article d’Étienne Ghys dans Image des mathématiques.

Le transport optimal

Ce problème se généralise en problème du transport optimal : comment un fournisseur peut-il livrer un certain nombre de points de vente de façon à minimiser ses coûts ? Le problème de Monge a ainsi été redécouvert par Léonid Kantorovitch (1912 – 1986) qui obtint le prix Nobel d’économie en 1975 pour ses avancées sur la question en ouvrant un nouveau domaine, celui de la programmation linéaire. Plus récemment, Cédric Villani (né en 1973) a obtenu la médaille Fields en revisitant le problème du transport optimal en le rapprochant du problème de la diffusion des gaz. Cette capacité de rapprochement entre des domaines a priori différents est un marqueur des grands mathématiciens.

 

Une astroïde dans un autobus

La notion d’enveloppe de droites recouvre deux notions en général équivalentes. D’un côté, il s’agit d’une courbe séparant deux domaines entre eux, de l’autre une courbe tangente à toutes les droites. La seconde se prête mieux au calcul.

Exemple d’une porte d’autobus

Prenons un exemple concret, celui d’une porte d’autobus coulissante à deux battants s’ouvrant selon le schéma :

Porte d’autobus à deux battants se repliant. Au sol, on obtient deux segments de droite. Celui de gauche pivote pour décrire un quart de disque. Celui de droite est plus intéressant à étudier.

La projection sur le sol de la porte de droite (sur la figure) est un segment qui définit une droite coupant deux droites perpendiculaires selon un segment AB de longueur constante (celle de la porte entière).

La projection de la porte sur le sol de l’autobus est constituée des deux segments égaux AI et IO. Comme IO = IB, le segment AB est de longueur constante.

Apparition d’une enveloppe

Il est facile de tracer un grand nombre de segments AB en faisant varier l’angle t de 0 à 90° on voit alors apparaître une courbe en négatif : leur enveloppe.

Les segments AB restent tangents à une même courbe. Cette courbe est leur enveloppe.

Si on fait varier l’angle t de 0 à 360°, on obtient une courbe en forme d’astre, appelée pour cela astroïde.

L’astroïde en entier.

Point de Monge

Gaspard Monge (1746 – 1818), l’un des créateurs de l’école polytechnique et de l’école normale supérieure où il a ensuite enseigné a trouvé un moyen de décrire l’enveloppe d’une famille de droites dépendant d’un paramètre D (t) comme le lieu d’un point mobile, appelé depuis point de Monge en son hommage, ou simplement point caractéristique de D (t). Il se définit comme la limite du point d’intersection de  D (t) et D (t + dt) quand dt tend vers zéro, ce qui permet son calcul à travers la notion de dérivée : le point de Monge est à l’intersection de  D (t) et  D’ (t) qui s’obtient en dérivant l’équation de  D (t) par rapport à  t.

Pour les férus de calculs, si a est le longueur de la porte, l’équation de D (t) est  x sin t + y cos t = a cos t sin t donc les coordonnées du point de Monge est solution du système :

On en déduit ses coordonnées :

ce qui permet de tracer l’enveloppe de la famille de droites D.

Arithmancie, numérologie et astrologie

La numérologie moderne est également nommée arithmancie, mot qui vient du grec et signifie la prophétie par les nombres. Les normes numérologiques ne sont guère fixées. La plus fréquente prétend prédire l’avenir d’une personne en se servant de ses noms et prénoms … pour les transformer en nombres entre 1 et 9. La règle la plus courante est attribuée à un certain Septimus Tripoli, vers 1350. Chaque lettre de A à I se voit attribuer son numéro d’ordre (de 1 à 9), puis on recommence avec les lettres de J à R puis celle de S à Z. Les numérologues déterminent alors trois nombres : le nombre d’expression, le nombre intime et le nombre de réalisation. Le premier est la somme de toutes les lettres de vos noms et prénoms, ramenés à 9, comme dans la preuve par neuf. Le second se détermine de même, mais en ne considérant que les voyelles, tandis que le dernier n’utilise que les consonnes.

Un peu de calcul

Ainsi HERVE LEHNING donne : 8 + 5 + 9 + 4 + 5 + 3 + 5 + 8 + 5 + 9 + 5 + 7, soit 73 donc 7 + 3, soit 10 donc 1. Le nombre d’expression est 1. Pour les voyelles, on obtient 5 + 5 + 5 + 9 soit 24, c’est-à-dire 6. Le nombre intime est 6. Pour les consonnes, on obtient 73 – 24 = 49, soit 4. Le nombre de réalisation est 4.

Un portrait flatteur

Portait flatteur de l’auteur.

Ces calculs faits, les numérologues fonctionnent comme les astrologues, ils proposent une étude de personnalité que personne ne contestera, en voici un exemple :

Vous avez besoin d’être aimé et admiré, et pourtant vous êtes critique avec vous-même. Vous avez certes des points faibles dans votre personnalité, mais vous savez généralement les compenser. Vous avez un potentiel considérable que vous n’avez pas tourné à votre avantage. À l’extérieur vous êtes discipliné et vous savez vous contrôler, mais à l’intérieur vous tendez à être préoccupé et pas très sûr de vous-même. Parfois vous vous demandez sérieusement si vous avez pris la bonne décision ou fait ce qu’il fallait. Vous préférez une certaine dose de changement et de variété, et devenez insatisfait si on vous entoure de restrictions et de limitations. Vous vous flattez d’être un esprit indépendant ; et vous n’acceptez l’opinion d’autrui que dûment démontrée. Mais vous avez trouvé qu’il était maladroit de se révéler trop facilement aux autres. Par moments, vous êtes très extraverti, bavard et sociable, tandis qu’à d’autres moments vous êtes introverti, circonspect, et réservé. Certaines de vos aspirations tendent à être assez irréalistes.

L’effet Barnum

Phineas Barnum (1810 – 1894) se définissait comme le prince des charlatans.

Un psychologue, Bertram Forer (1914 – 2000), après avoir fait remplir un test de personnalité à ses étudiants, leur avait donné à tous ce même compte-rendu, sans même lire leurs tests, et leur avait demandé de le noter de 1 à 5, 5 signifiant qu’il était excellent. La moyenne des résultats fut 4,26 ! Ce test a souvent été répété, le résultat a toujours été le même. Les numérologues, comme les astrologues ou autres voyants, utilisent ce même procédé. Ce défaut qui nous pousse à accepter si facilement une description, même fausse, de nous-même à condition qu’elle soit flatteuse est souvent appelé effet Barnum, en hommage au maître de la manipulation psychologique que fut l’homme de cirque, Phineas Barnum.

 

Dans huit jours…

Pourquoi dit-on « dans huit jours » pour dire « dans une semaine » ? Et 15 pour deux semaines, alors que 15 n’est même pas divisible par 2 ! De même, si nous sommes mardi 9 et que nous voulons parler du jeudi 11, nous disons « jeudi prochain », pour le suivant, le jeudi 18, « jeudi en huit » et pour le 25, « jeudi en quinze ».

Une origine biblique

L’origine n’est pas mathématique mais biblique ! En effet, nous retrouvons ce nombre 8 dans la Bible où il signifie qu’une semaine a été révolue. Le « huitième » est alors la marque du monde nouveau. Dans le judaïsme, la circoncision se pratique le huitième jour après la naissance. De même, l’auteur de l’évangile de Jean choisit le huitième jour pour faire apparaître Jésus Christ à Thomas, qui ne croyait pas les autres disciples.

Quelle est la taille de la Française moyenne ?

Vous lisez dans la presse que la Française moyenne mesure 1 mètre 63. Si vous rencontrez une Française, quelle est la probabilité qu’elle ait cette taille ?

Moyenne et répartition

En l’absence d’informations supplémentaires, impossible de répondre à cette question. Pour cela, il faut connaître la répartition de la taille des Françaises. De plus, la question est mal formulée : la Française moyenne est un mythe … il est préférable de parler de la taille moyenne des Françaises. En fait, elles se répartissent en 25 % de petites (1 mètre 54 en moyenne), 50 % de moyennes (1 mètre 63 en moyenne) et 25 % de grandes (1 mètre 72 en moyenne). La répartition exacte suit une courbe en forme de cloche comme c’est le cas généralement quand on étudie une population homogène sous un certain critère.

Courbe de répartition de la taille des Françaises. Peu ont la taille moyenne !

Cette courbe ne suffit pas non plus pour répondre à la question, même si elle donne l’idée que la probabilité qu’une femme donnée mesure 1 mètre 63 se situe entre 10 et 20 %. Les données statistiques sont donc à analyser avec prudence.

Le tipi optimal

Penchons-nous sur la forme des tipis des indiens d’Amérique. Il s’agit d’un cône dont la hauteur vaut environ 75 % du diamètre de la base. Des calculs montrent que cette forme minimise la toile à utiliser pour un volume donné, comme les abeilles économisent la cire pour créer leurs alvéoles. Est-ce un hasard ? Difficile de répondre à la question car d’autres paramètres comme la solidité de l’ensemble entrent en jeu. Peu importe, ces problèmes d’optimisation se retrouvent souvent dans la nature comme dans la vie pratique.

Un tipi.

Analyse mathématique

Analysons celui-ci mathématiquement. Un tipi est une tente conique caractérisée par le rayon de sa base, R, et par sa hauteur, que nous notons proportionnellement à R, k R, car le problème tient essentiellement à ce rapport k. La capacité du tipi est égale à son volume et la surface de toile, à son aire latérale.

Le tipi est un cône caractérisé par le rayon de sa base R et par sa hauteur k R.

Le volume est égal à Pi / 3 multiplié par le carré du rayon R et par la hauteur k R. Imposer un volume de 10 mètres cube (par exemple) lie le rapport k au rayon R. L’aire latérale dépend alors uniquement de ce rapport. Cette dépendance se traduit par une courbe en forme de J à l’envers. Nous y constatons un minimum de l’aire pour une valeur de k de l’ordre de 1,4, autrement dit pour une hauteur 40 % supérieure au rayon de la base. De façon plus précise, le calcul différentiel montre que ce minimum est atteint pour k égal à la racine carrée de 2, ce qui fait 1,414 à 0,001 près.

Variation de l’aire latérale en fonction du rapport entre la hauteur et le rayon. Le calcul montre que le minimum est atteint quand k est égal à la racine de 2, soit 1,414 à 0,001 près.

À volume égal, l’aire latérale du tipi est donc minimale pour un rapport proche de 1,4. La courbe montre de plus que la variation de l’aire latérale est faible autour de ce rapport, ce qui explique que, dans la pratique, il oscille autour de 1,4.

Loi des petits nombres versus loi des grands nombres

La théorie des probabilités permet de démontrer que les jeux de casino comme la roulette sont conçus pour ruiner les joueurs, même si ce jeu a des failles … que nous ne dévoilerons pas ici. La loi des grands nombres assure un bénéfice confortable aux organismes de jeu. Le hasard intervient pour les joueurs, pas pour eux ! Les compagnies d’assurance agissent de même. Si elles assurent cent mille voitures, elles savent d’avance combien auront d’accidents et quel en sera le coût. La prime d’assurance est calculée en fonction de ce risque qui n’en est plus un dès que l’on applique la loi des grands nombres ! Si 5% des automobilistes ont un accident chaque année, vous ne pouvez prévoir si vous en aurez un. En revanche, votre compagnie d’assurance sait que, sur ses cent mille assurés, cinq mille environ auront un accident.

La loi des petits nombres

Contrairement aux organismes de jeu et aux assureurs, les particuliers n’utilisent pas la loi des grands nombres. Si un événement malheureux mais peu probable se produit deux fois de suite à une année d’intervalle, ils se diront que « jamais deux sans trois » et prévoiront un troisième pour l’année suivante. À l’inverse, plusieurs années sans accident leur feront croire que plus rien ne peut leur arriver. Autrement dit, ils utilisent une loi des petits nombres et non la loi des grands nombres. Bien entendu, il ne s’agit pas de mathématique mais de psychologie ! Pour un mathématicien, cette loi des petits nombres peut passer pour un canular. C’est pourtant de manière tout à fait scientifique et en utilisant correctement la loi des grands nombres que Daniel Kahneman (né en 1934) l’a mise en évidence. Plus précisément, il a étudié expérimentalement le comportement des individus devant l’assurance ! Il apparaît que plusieurs années sans accident poussent l’américain moyen à résilier ses contrats d’assurance !

 

Quels poids portent-ils ?

Sur les chemins de l’Himalaya, jusqu’à 5000 mètres d’altitude, on rencontre sans cesse des porteurs et porteuses, parfois des enfants, surmontés de charges impressionnantes. Comment évaluer leurs poids ?

Compter les canettes

L’évaluation est relativement simple pour les porteurs de caisses de bière : on compte le nombre de canettes. le poids de chacune est facile à évaluer, un peu plus d’un tiers de kilo. Vingt paquets de dix donnent un fardeau de 70 kilogrammes … à porter sur des milliers de mètres de dénivelée !

Hotte d’un colporteur de l’Himalaya. Elle pèse environ 70 kg.                             © Hervé Lehning

Evaluer des volumes et des densités

Quel poids porte cette petite fille de 13 ans rencontrée sur le chemin de son village ?

Fillette de 13 ans, surmontée d’un imposant chargement, en route pour Phortse (400 mètres plus haut).             © Hervé Lehning

Elle y transporte des feuilles, que l’on utilise pour transformer le produit des toilettes en compost. La charge correspond malgré tout aux bottes de foin ordinaires qui, pressées, pèsent environ 20 kilogrammes. Malgré le côté impressionnant de sa charge, il est peu probable que cette jeune fille transporte plus de 10 à 15 kilogrammes sur son dos. Cela reste important pour une enfant dont la croissance n’est manifestement terminée, mais reste comparable aux poids des cartables de certains de nos collégiens.

Une buse de fonte

Buse en fonte sur le chemin de Namché Bazar. © Hervé Lehning

Autrement plus impressionnante est la buse en fonte que transporte cet homme en route vers Namché Bazar. Elle est destinée à créer une conduite forcée, pour servir à une micro usine hydro électrique. Le progrès vient ici à dos d’homme. Quel est le poids de cette buse ? Il est relativement facile d’évaluer le volume de fonte. La longueur est de 2,5 mètre environ, le diamètre 30 centimètres et l’épaisseur 1 centimètre. En mètres cubes, le volume est donc égal à :

2,5 x (0,152 – 0,142) x 3,14

soit 0,018 m3. La fonte ayant une densité de 7,4 tonnes au m3, nous en déduisons un poids de 130 kilogrammes environ. Même si nous admettons une erreur de 20 % dans notre évaluation, nous aboutissons à un poids supérieur à 100 kilogrammes, ce qui est impressionnant.

Les philosophes font-ils la cuisine ?

Un célèbre philosophe contemporain aurait affirmé : « les mathématiques ne servent à rien dans la vie quotidienne ». Pourtant, je me souviens parfaitement de ma mère me demandant : « quatre tiers de 200 grammes, ça fait combien Hervé ? ».

Des maths à la cuisine

Pourquoi cette question ? Pas pour tester ma capacités en calcul mental. Tout simplement parce que nous étions 8 à table et que ma mère utilisait une recette de cuisine donnée pour 6. Les ingrédients devaient donc être multipliés par 8/6, soit 4/3.  Vue la précision des balances, une réponse précise était 270 grammes, répondre 266,666… aurait été ridicule.

Des notions subtiles

Autrement dit, nous avons affaire ici, dans la vie quotidienne, à deux notions mathématiques subtiles : la multiplication par une fraction et la notion d’approximation. Pour répondre à la question avec toute la rigueur mathématique qu’elle exige, nous dirons donc : « certains philosophes ne font pas la cuisine ».