Archives pour l'étiquette histoire

Magie et mathématique

Certaines croyances magiques restent attachées aux mathématiques. L’exemple le plus simple est celui du nombre treize qui porte chance … ou malchance selon les personnes. On évite ainsi, même chez certains mathématiciens, d’être treize à table. Cette croyance est extra-mathématique. Elle vient du dernier repas du Christ avec ses apôtres et non pas d’une propriété mathématique du nombre treize. Il en est de même de la plupart des nombres considérés comme magiques ou sacrés, comme sept par exemple. Nous n’insisterons pas sur cette question, et pas davantage sur la numérologie ou sur l’arithmancie qui prétendent prévoir l’avenir au travers de quelques additions. Leurs relations aux mathématiques sont les mêmes que celle de l’astrologie à l’astronomie. Même si certains mathématiciens furent numérologues comme certains astronomes furent astrologues jusqu’à l’époque de Kepler (XVIIe siècle), aujourd’hui, il est difficilement imaginable qu’un mathématicien ou un astronome pratique ce type de pseudosciences.

Les nombres parfaits

Plus étonnants que ces nombres auxquels on attribue un pouvoir surnaturel, d’autres sont considérés comme magiques pour des raisons internes aux mathématiques. Parmi les plus étudiés sont les nombres parfaits dont parle déjà Euclide au IIIe siècle avant notre ère dans ses Éléments. Par définition, les nombres parfaits sont les nombres égaux à la somme de leurs diviseurs autres qu’eux-mêmes. Par exemple, 6 est parfait puisque ses diviseurs stricts sont 1, 2 et 3 dont la somme est égale à 6. La traduction littérale du terme grec utilisé par Euclide pour désigner les nombres parfaits est nombre à qui il ne manque rien ce qui permet de mieux comprendre les définitions de nombre abondant et de nombre déficient : nombre dont la somme des diviseurs est supérieure (respectivement inférieure) au nombre donné. Ainsi 12 est abondant, 3, 4 et 5 sont déficients.

Quand Dieu est contraint à la perfection …

Saint Augustin (354 – 430) d’après un tableau de la Renaissance

Cela pourrait être une simple curiosité et peu importe le nom utilisé mais, dans l’Antiquité, la perfection de ces nombres était bien vue comme telle. Ainsi, dans La cité de Dieu, on peut lire sous la plume d’Augustin d’Hippone (354 – 430) une vision mystique de cette perfection : Ainsi, nous ne devons pas dire que le nombre six est parfait, parce que Dieu a achevé tous ses ouvrages en six jours : loin de là, Dieu a achevé tous ses ouvrages en six jours parce que le nombre six est parfait ; supprimez le monde, ce nombre resterait également parfait ; mais s’il n’était pas parfait, le monde, qui reproduit les mêmes rapports, n’aurait plus la même perfection.

On trouve des idées voisines dans Arithmetica d’un philosophe néo-pythagoricien comme Nicomaque de Gérase (Ier siècle de notre ère), pourtant véritable mathématicien puisqu’il découvrit le quatrième nombre parfait : Il arrive que, de même que le beau et le parfait sont rares et se comptent aisément, tandis que le laid et le mauvais sont prolifiques, les nombres excédents et déficients sont en très grand nombre et en grand désordre ; leur découverte manque de toute logique. Au contraire, les nombres parfaits se comptent facilement et se succèdent dans un ordre convenable ; on n’en trouve qu’un seul parmi les unités, 6, un seul dans les dizaines, 28, un troisième assez loin dans les centaines, 496 ; quant au quatrième, dans le domaine des mille, il est voisin de dix mille, c’est 8128. Ils ont un caractère commun, c’est de se terminer par un 6 ou par un 8, et ils sont tous invariablement pairs.

Des conjectures à la pelle

À l’heure actuelle, le dernier point évoqué par Nicomaque de Gérase reste une conjecture. Personne n’a encore réussi à prouver qu’il n’existait pas de nombres parfaits impairs, même si le fait que personne n’en ait jamais trouvé un seul milite dans ce sens. De même, l’existence d’une infinité de nombres parfaits pairs est une conjecture. Les quatre premiers sont connus depuis l’Antiquité : 6, 28, 496 et 8128 et, à l’heure actuelle, nous n’en connaissons que 49 ! Les plus grands n’ont été découverts que récemment et ont plusieurs dizaines de millions de chiffres. Ils sont tous d’une forme liée à la notion de nombre premier, ce que nous verrons plus loin.

Les temps ont changé et plus personne ne comprend l’expression « nombre parfait » dans le sens d’une perfection externe aux mathématiques.

L’unité est-elle un nombre?

Les Grecs anciens refusaient de considérer l’unité comme un nombre, comme on peut le lire dans La Métaphysique d’Aristote :

Il est, d’ailleurs, de toute évidence que c’est l’unité qui exprime la mesure ; […] le nombre est une pluralité mesurée […] Aussi, n’a-t-on pas moins raison de dire que l’unité n’est pas un nombre.

Un ne fait pas nombre

Ce refus de considérer « un » comme un nombre vient de l’assimilation du concept de nombre à ceux de pluralité ou de multiplicité. Cette confusion se retrouve en français ou « nombreux » ne peut signifier « un ».

Une reconnaissance tardive

En 1585, Simon Stevin écrit dans les premières pages de La pratique d’arithmétique :

Comme l’unité est nombre par lequel la quantité d’une chose expliquée se dit un.

Alors que cela nous semble aujourd’hui naturel, Simon Stevin se sent obligé de défendre cette position dans un long raisonnement de plusieurs pages, preuve que cette notion n’est pas admise comme naturelle à son époque. Pourquoi ? Tout simplement parce qu’elle s’oppose à la tradition philosophique du Moyen-Âge pour qui il n’est point de vérité en dehors d’Aristote, d’où le discours étonnant :

Il est notoire que l’on dit vulgairement que l’unité n’est pas nombre, mais seulement son principe […] ce que nous nions. Nous pouvons argumenter de la sorte : La partie est de même matière qu’est son entier, unité est partie de multitude d’unités, donc l’unité est de même matière qu’est la multitude d’unités. Mais la matière de multitude d’unités est nombre donc la matière d’unité est nombre.

Le « un » est donc devenu nombre à l’époque de Simon Stevin même si certains, comme Diophante, un célèbre mathématicien grec du IIIe siècle après Jésus-Christ, l’utilisaient déjà comme tel… mais après avoir donné les définitions usuelles à l’époque, comme en sorte d’hommage à la tradition.

 

 

L’énigme du tunnel de Samos

Dans l’île grecque de Samos, on peut visiter un tunnel qui, selon Hérodote, fut creusé au VIe siècle avant notre ère, simultanément par ses deux extrémités … et l’erreur au point de rencontre ne fut que de 60 centimètres, comme le tracé du tunnel l’atteste toujours. On ne sait pas comment son architecte, Eupalinos, en fit les plans, mais on sait qu’ils ne doivent rien au hasard. La plupart des historiens qui se sont penchés sur la question en on déduit qu’Eupalinos avait anticipé les instruments et les mathématiques inventés plusieurs siècles après sa mort. Est-ce vraisemblable ? Pourquoi les aurait-on oubliés ensuite ? De plus, pourquoi faire des hypothèses inutiles ? Il est plus raisonnable d’essayer d’imaginer des méthodes compatibles avec les mathématiques et les instruments connus de l’époque.

Un aqueduc extérieur imaginaire …

De la source captée jusqu’à l’entrée du tunnel, l’eau suit des conduites extérieures, quoique enterrées. On peut imaginer que, dans un premier temps, l’aqueduc allait ainsi jusqu’à la sortie du tunnel en suivant grossièrement les lignes de niveaux du terrain. La topographie le permet comme le montre la carte du lieu.

Les lignes de niveaux aux alentours du tunnel de Samos (entrée en A, sortie en B) montrent qu’il est possible de contourner la montagne par l’ouest (voir l’orientation sur le dessin) en restant à niveau (ligne ACB). Le trajet fait alors environ 2200 mètres (le double du trajet direct AB).

…qui aide à trouver la sortie

Cette hypothèse est difficile à soutenir car aucun vestige d’un tel ouvrage ne nous est parvenu. De plus, le tunnel est quasiment horizontal, seul le canal qui le longe a une déclivité de six mètres sur un peu plus d’un kilomètre. Cette hypothèse d’un aqueduc extérieur donne cependant une première approche du problème, naturelle pour un constructeur d’aqueduc. Pour déterminer l’entrée et la sortie, il s’agit de se déplacer à l’horizontale au flanc de la montagne, pour rejoindre un point duquel l’aqueduc peut continuer. Des preuves archéologiques montrent que les Samiens disposaient d’instruments pour déterminer l’horizontale. Le principe en est simple. Il s’agissait de longues gouttières en terre cuite dans lesquelles on versait de l’eau. L’horizontale était obtenue quand l’eau ne s’écoulait pas. De même, ils utilisaient des fils à plomb, ce qui permettait de déterminer la verticale. On peut imaginer suivre l’horizontale ainsi en plantant des pieux dont les sommets restent au même niveau. Si le niveau mesure 2 mètres de long, et que l’incertitude est inférieure à 1 millimètre pour chaque pieu, nous obtenons une incertitude totale de 1,10 mètres. L’erreur effective à la jonction des deux branches du tunnel étant de 60 centimètres, l’utilisation de cette méthode est vraisemblable. Cependant, elle exige de planter 1100 pieux. On peut la simplifier de ce point de vue en utilisant des visées oculaires permettant d’espacer les pieux.

Pour cela, on plante deux pieux à 10 mètres l’un de l’autre, dont les sommets sont à l’horizontale et on les aligne avec un pieu à cent mètres environ, tenu par un assistant. Ceci permet de passer à un total d’une cinquantaine de pieux (deux tous les 100 mètres environ).

Visée pour maintenir l’horizontale. Les pieux A et B sont alignés grâce à un niveau à eau. Si l’erreur entre les deux est limitée à 2 millimètres, celle entre A et C sera limitée à 2 centimètres. La capacité de l’œil humain rend insensible l’erreur due à l’acuité visuelle.

L’œil humain a une capacité de résolution de 0,5 minute environ (1 / 120 degré). Avec un viseur, sur cent mètres, nous pouvons espérer une incertitude inférieure à 2 centimètres. Sur une distance de 2 200 mètres, cela donne une incertitude totale de 44 centimètres, ce qui est compatible avec l’erreur effective de 60 centimètres.

La direction de la sortie

La deuxième extrémité trouvée, comment déterminer la direction dans laquelle le tunnel doit être percé ? Une idée simple tient à la topographie du terrain. Il s’en faut de peu que l’on ne puisse voir les deux extrémités du tunnel du haut de l’Acropole. Dans ce cas, il aurait suffi d’y disposer trois pieux alignés et, par approximations successives de les aligner à des pieux plantés aux extrémités du tunnel à construire. L’opération est semblable à la précédente, sans mise à niveau.

Si le sommet S est visible des extrémités A et B, il suffit d’aligner cinq pieux, trois en S, un en A et un en B pour déterminer la direction AB. Cette opération peut être faite par essais successifs.

En fait, la topographie du terrain ne permet pas cette solution. On peut malgré tout l’appliquer, soit en surélevant le sommet au moyen d’une tour de dix mètres environ, soit en plantant des pieux intermédiaires. Une station supplémentaire, éventuellement légèrement surélevée, suffit pour réaliser un alignement visible de proche en proche.

En disposant des relais (comme I) entre les extrémités A et B et le sommet, il est possible de réaliser un alignement de pieux entre A et B. On vérifie cet alignement comme précédemment, de proche en proche.

Ceci fait, les deux pieux à chaque extrémité donnent la direction à suivre. Il est facile de la conserver ensuite. Cependant, pour être sûr de se rencontrer, le mieux est d’obliquer légèrement un peu avant le milieu des travaux car, dans un plan, deux droites non parallèles se rencontrent toujours. L’une des branches du tunnel effectivement construit par Eupalinos présente des portions en zigzag montrant qu’il n’était pas certain de ses mesures et voulait éviter de manquer le deuxième tronçon qui, lui, reste rectiligne.

Le problème de la longueur du tunnel est accessoire. Même s’il est utile de la connaître pour savoir quand obliquer pour être sûr de la rencontre, il suffit d’en avoir une approximation grossière. Une fois le tunnel construit, on peut la calculer de façon plus précise et en déduire la pente à donner au canal. Finalement, sa profondeur varie de 3 à 9 mètres pour assurer un flux constant.

Et Marie Stuart perdit la tête à cause d’un mauvais chiffre …

Ayant été élevée à la cour de France à l’époque d’Henri II, Marie Stuart,qui fut reine d’Écosse et de France, utilisait un chiffre du type de ceux d’Henri II comme le suivant, qu’il avait avec Philibert Babou, ambassadeur à Rome.

Ce chiffre utilisé par Henri II est un chiffre par substitution offrant plusieurs équivalents pour chaque lettre, muni d’un nomenclateur pour les mots courants.

Les chiffres de Marie Stuart

Marie Stuart utilisait plusieurs chiffres, selon ses correspondants. L’examen de celui utilisé dans le complot de 1586, qui se trouve aux archives du Royaume-Uni, montre qu’il est bien du type précédent.

Le chiffre utilisé par Marie Stuart en 1586. On voit clairement qu’il est de même nature que celui de Henri II.

Autrement dit, le chiffre de Marie Stuart était du niveau de ceux des rois de son époque. Elle perdit pourtant la tête de l’avoir utilisé. Un chiffre faible est toujours pire que l’absence de chiffre. Son sort se noua alors qu’elle était prisonnière au château de Chartley au nord de l’Angleterre. Son seul contact avec le monde extérieur était sa correspondance, chiffrée par son secrétaire, Gilbert Curle. Elle la faisait sortir clandestinement, cachée dans des tonneaux de bière.

Espionnage de la correspondance de Marie

La principale faille dans ce scénario était la personne chargée de cette tâche, Gilbert Gifford, un agent double de Francis Walsingham (1530 – 1590), secrétaire d’Élisabeth Ie. Il lui transmit toutes les lettres de Marie, ce qui permit au cryptanalyste de Walsingham, Thomas Phelippes de les décrypter, en utilisant vraisemblablement la méthode du mot probable (c’est-à-dire rechercher la présence de mots qu’on estime probable dans une correspondance, en fonction du destinataire, par exemple “reine”, “cousine”, etc.). L’abondance des messages lui facilita sans doute la tâche.

Le complot et la manipulation de Walsingham

En 1586, son ancien page, Anthony Babington, qui faisait partie d’un complot contre la reine d’Angleterre, lui écrivit une longue lettre chiffrée où il lui décrivait les détails du complot et demandait son accord. La réponse de Marie scella son destin. Quand Thomas Phelippes l’eut décryptée, il ajouta une potence à la copie qu’il en fit ! Pour que Walsingham obtienne les noms de tous les complices, il ajouta un postscriptum à la lettre demandant les noms de tous les comploteurs. En plus d’être excellent cryptanalyste, Phelippes était un faussaire hors pair ! Ainsi, Babington livra lui-même ses complices. Tous furent exécutés avant le procès de Marie.

De Tannenberg au “miracle” de la Vistule

Quel rapport entre la bataille de Tannenberg (26-29 août 1914) et la bataille de Varsovie (13-25 août 1920) ? Dans les deux cas, les armées russes furent défaites par des armées très inférieures en nombre du fait de l’interception de leurs communications radios.

La bataille de Tannenberg

En août 1914, l’entrée en guerre de la Russie se fit dans une telle précipitation qu’aucun matériel cryptographique n’avait été livré si bien que les communications russes se faisaient en clair par radio. Autrement dit, les Allemands étaient invités aux réunions d’état-major des Russes. Le général en chef allemand sut utiliser cet avantage pour diviser les armées russes et anéantir l’une d’entre elles.

Le “miracle” de la Vistule

Si le renseignement allemand avait été particulièrement aidé par l’absence de chiffrement des messages russes en 1914, c’est par le décryptement que, en 1920, les Polonais s’invitèrent aux réunions d’état-major russe avec un résultat identique. La victoire qui s’ensuivit fut attribué par le clergé polonais à une intervention divine d’où le nom qui lui fut attribué de miracle de la Vistule.

L’excellence polonaise en matière de cryptologie

Le miracle de la Vistule est donc avant tout un miracle du décryptement.

L’excellence du bureau du chiffre polonais se poursuivit jusqu’au début de la Seconde Guerre mondiale puisque le premier décryptement d’Enigma fut un succès conjoint de l’espionnage français et du génie de trois mathématiciens polonais : Marian Rejewski (1905 – 1980), Jerzy Rozycki (1909 – 1942) et Henryck Zygalski (1908 – 1978). L’espionnage a fourni les tables de chiffrement de l’armée allemande de 1931 à 1938. Les mathématiques ont permis, grâce à ce renseignement, de reconstituer les câblages de la version militaire de l’Enigma et de fabriquer des répliques d’Enigma dès 1933. Les messages furent alors déchiffrés régulièrement. Les mathématiciens polonais cherchèrent à pouvoir se passer des tables de chiffrement, ce qu’ils réussirent à faire, en particulier en créant une machine, la bomba. Elle permettait de trouver la clef du jour en quelques minutes. Après la défaite de la Pologne puis celle de la France, les résultats polonais furent livrés aux Britanniques. Le mathématicien Alan Turing (1912 – 1954) et son équipe de Bletchley Park reprirent avec succès le décryptement en l’améliorant et en l’adaptant aux complexifications successives d’Enigma. La guerre fut probablement écourtée de deux ans grâce au décryptement.

 

 

L’application surprenante d’un vieux problème d’Apollonius

L’Antiquité grecque s’est passionnée du problème d’Apollonius (trois siècles avant notre ère) sans doute sans y voir la moindre application. Songez ! Étant donné trois cercles du plan, il s’agit de trouver les cercles qui leur sont tangents. Il fallut attendre François Viète (1540 – 1603) pour qu’il trouve une solution complète. Au maximum, huit cercles sont solutions.

Le cercle rouge est tangent aux trois cercles bleus

Repérage acoustique de l’artillerie

Une idée pour repérer les pièces d’artillerie est d’utiliser le son produit lors de la mise à feu. Les instruments essentiels pour ces repérages sont des microphones, dispositifs inventés à la fin du XIXe siècle. S’ils sont adaptés aux basses fréquences et ignorent les autres, les sons de l’artillerie lourde sont distingués des autres bruits du champ de bataille. Il faut en utiliser au moins trois, reliés à un appareil d’enregistrement effectuant un tracé sur un même rouleau enregistreur afin de comparer les instants de réception du son.

Le son de la même mise à feu est enregistré à des instants différents selon la position des micros.

Dans le cas de l’enregistrement ci-dessus, l’onde sonore venant du canon ennemi (en T) se déplace selon un cercle de centre T. Elle atteint d’abord le point A où est placé le premier microphone puis le point B où est placé le second après un temps t mesurable sur l’enregistrement et enfin le point C après un temps t’ (toujours après le point A). En tenant compte de la vitesse du son, la distance de T à A est égale à un nombre R, qu’il s’agit de déterminer, celle de T à B à R + rr correspond à la distance parcourue par le son pendant le temps t et enfin la distance de T à C égale à R + r’ où r’ correspond à la distance parcourue par le son pendant le temps t’.

Si T est connu, le cercle de centre T et de rayon R passe par A et est tangent au cercle de centre B et de rayon r ainsi qu’au cercle de centre de centre C et de rayon r’, ce qui se résume en une figure bien connue des mathématiciens de l’époque, au problème d’Apollonius, l’un des cercles étant de rayon nul :

Le cercle de centre T passe par A et est tangent aux cercles de centres B et C.

Résolution du problème

De nos jours, ce problème est résolu par la géométrie analytique et un logiciel détermine directement les coordonnées de la position de la batterie ennemie (système de localisation de l’artillerie par acoustique, SL2A). Ce système peut être couplé de nos jour avec un radar de contrebatterie (RCB), qui a cependant le défaut d’être lui-même repérable puisqu’un radar émet des ondes, contrairement au système acoustique.

En février 1915, Ferdinand Daussy, ingénieur des mines, soldat à Verdun, réalise, à partir d’un moteur de phonographe et d’un diapason entretenu électriquement, un appareil de repérage au son inscrivant sur un papier d’enregistrement le cent millième de seconde. À partir de trois postes d’observation, il parvint à situer les pièces allemandes pourtant invisibles. Les artilleurs français déclenchèrent un tir sur cet emplacement, arrêtant ainsi le feu ennemi. À cette époque, les microphones étaient reliés au système de contrôle par des fils, ce qui le rendait vulnérable. À Verdun, une attaque allemande mit fin au système de Ferdinand Daussy.

On peut également réduire ce problème à une question d’intersection de deux hyperboles mais, au temps de la Grande Guerre, le calcul se faisait graphiquement sur une carte avec un jeu de disques de divers rayons par tâtonnement sachant que la portée maximale des canons était connue.

La méthode a amélioré le repérage des batteries ennemies mais elle n’est pas toujours précise car la vitesse du son dépend de facteurs météorologiques comme la température et la vitesse du vent. De plus, l’artillerie était souvent utilisée en grand nombre simultanément ce qui rendait délicat le repérage individuel de chaque batterie.

Laissons la conclusion sur l’importance de ces recherches à Paul Painlevé, mathématicien et ministre de la guerre en 1917, dans une allocution après la victoire : les mathématiques les plus abstraites ou les plus subtiles ont participé à la solution des problèmes de repérage et au calcul des tables de tir toutes nouvelles qui ont accru de 25 pour 100 l’efficacité de l’artillerie.

Une victoire remportée par la seule arme du chiffre

Le décryptement d’un seul message peut décider du sort d’une bataille ou d’une négociation. Ce fut le cas en 1626 quand les troupes du prince de Condé assiégeant Réalmont interceptèrent un messager sortant de la ville, porteur d’un message incompréhensible. Condé fit venir un jeune professeur de mathématiques de la région, Antoine Rossignol des Roches, qui en trouva le sens. Le message annonçait que la ville était à cours de munition. Condé fit porter le message décrypté à la ville, qui se rendit. La bataille fut gagnée grâce à la seule arme du Chiffre !

Chiffrement par alphabet chiffré

Ce message avait vraisemblablement été chiffré au moyen d’un alphabet chiffré, où chaque lettre est remplacée par un symbole, très en vogue à l’époque.

Un alphabet chiffré de 1626 (Archives de Strasbourg). Chaque lettre doit être remplacée par le symbole inscrit au dessus.

Le décryptement repose à la fois sur les mathématiques et sur la linguistique. Les mathématiques par la méthode des fréquences qui permet au moins de trouver le symbole représentant la lettre “e”. La linguistique par la méthode du mot probable qui permet de deviner des lots du message selon le contexte. Par exemple, dans un message sortant d’une ville assiégée, on peut s’attendre à des mots comme “vivres” ou “munitions”.

Chiffrement par dictionnaire chiffré

La faiblesse des alphabets chiffrés, même améliorés en chiffrant de plusieurs façons différentes les lettres fréquentes et en ajoutant des nulles, c’est-à-dire des symboles ne signifiant rien, amena Rossignol à créer des dictionnaires chiffrés c’est-à-dire des dictionnaires bilingues dont l’une des langues est le français et la seconde, des nombres. Ainsi, on chiffre non seulement des lettres (et ce de plusieurs manières), comme auparavant, mais aussi des syllabes et des mots. La méthode des fréquences n’a alors plus aucun sens et celle du mot probable devient difficile à utiliser. Leur inconvénient principal est leur sensibilité à l’espionnage ou aux hasards de la guerre.

Un dictionnaire chiffré où les lettres, mots, syllabes sont chiffrés par des nombres. Archives de Srasbourg