Archives pour la catégorie Littérature

Les chiffres, des marqueurs du pouvoir ?

Les médecins de Molière asseyaient leur prestige et leur pouvoir sur quelques mots vaguement, très vaguement, latin. À l’époque, cette langue déjà morte depuis longtemps était la marque des savants et des puissants. C’était celle aussi qui expliquait le monde, aussi bien par la religion que par la science. Même si elle s’est affaiblie progressivement depuis, elle a gardé un pouvoir extraordinaire jusqu’au milieu du XXe siècle.

Puissants mais ignorants

Pourtant, feu le pouvoir du latin ne venait pas d’une connaissance de cette langue, ni des élites, ni du peuple. Tous l’ignoraient à des degrés divers mais cela faisait savant et le peuple envoûté ne pouvait répondre à un argument s’il était énoncé dans cette langue. La religion est mystère et quoi de mieux qu’une langue venue de la nuit des temps pour l’évoquer ? Le pouvoir du latin venait d’ailleurs de là. D’autres religions fonctionnent de même. Aux yeux du peuple, les caractéristiques essentielles du latin étaient d’être une langue partagée par les savants et les puissants, qui explique le monde, tout en étant incompréhensible donc incontestable par le commun des mortels.

Les chiffres, le latin de notre époque ?

Il suffit de lire ces trois caractéristiques pour voir que, dans notre monde occidental, la langue des chiffres a aujourd’hui remplacé le latin. Même envoûtement sans compréhension ni possibilité de contestation. Si Molière vivait de nos jours, il s’amuserait sans doute de certains débats autour de pourcentages où nul ne semble rien comprendre… et personne n’ose le dire. Prenons un exemple. Dans un pays imaginaire, un homme politique affirme : Monsieur, vous avez augmenté les impôts de 20 %, nous les rétablirons en les baissant de 20 % ! Son adversaire passera sans doute pour un extraterrestre s’il fait remarquer que cela ne correspond pas à un rétablissement mais finalement à une baisse. En effet, si on multiplie les impôts par 1,2, ce qui correspond à l’augmentation de 20 %, pour les multiplier ensuite par 0,8, ce qui correspond à la baisse de 20 %, nous les avons finalement multipliés par 1,2 x 0,8, soit 0,96… ce qui correspond à une baisse finale de 4 %. Dans un autre style, voici un discours a priori très convaincant : La part de la richesse produite détenue par les 1 % les plus riches est passée de 7 à 9 % entre 1982 et 2006. À l’inverse les bas salaires ont eux stagné et, sur 25 ans, la hausse du SMIC net réel demeure bien inférieure à celle des gains de productivité moyens. À la première lecture, il semble très précis, tout est chiffré : 1 %, 7 à 9 %, etc. À la seconde lecture, on s’aperçoit que tout est flou. Par exemple, le rédacteur a mis en parallèle, les 1 % plus riches et les bas salaires. Ces plus riches sont-ils « les plus haut salaires » ou « les plus grosses fortunes » ? Sur le fond, cela n’a guère d’importance, l’idée véhiculée est claire mais que viennent faire ces chiffres dans l’affaire ? La réponse est la même que pour les médecins de Molière. Le rédacteur de ce texte a voulu s’auréoler du prestige d’une science qui lui semble étrangère. Nous voyons sur cet exemple, que nous aimerions imaginaire, que les chiffres ont bien pris la place autrefois occupée par le latin chez ceux qui briguent le pouvoir…

La preuve par les chiffres

Certains chiffres ne font que sous-entendre. Par exemple, que penser de l’affirmation : La fortune de Bill Gates équivaut au Produit Intérieur Brut du Portugal ? Elle sous-entend que certains individus, dont Bill Gates, sont plus puissants que certains états, et non des moindres. Pourtant, que compare-t-on ici ? D’un côté, tout le patrimoine de Bill Gates, de l’autre, la richesse produite en une année au Portugal. La même confusion que la précédente ! Si l’on voulait prouver que Bill Gates est plus puissant que le Portugal, il faudrait comparer les deux patrimoines. En fait, la fortune de Bill Gates a beau être colossale pour un seul individu, c’est une goutte d’eau par rapport à celle du Portugal. On retrouve la même utilisation des chiffres dans des affirmations du style : Pour les États-Unis, la valeur des actifs des fonds de pension était en 1996 de 4 752 milliards de dollars, soit 62 % du PIB américain, celle de fonds de placement collectif de 3 539 milliards de dollars, soit 46 % du PIB, et celle des compagnies d’assurance s’établissait 3 052 milliards soit 30 % du PIB. Au total, ces fonds de pension détiennent l’équivalent de 138 % du PIB américain. Autrement dit, on confond sciemment ou non, un revenu et un patrimoine… Il est facile de produire à l’envi ce genre de preuve.

 

Les âges de la vie

Avant 30 ans, on parle d’enfants puis d’adolescents et enfin de jeunes gens (femmes ou hommes) mais il n’existe pas de termes spécifiques liés précisément à l’âge.

La crise de la trentaine

Tout change à 30 ans. À trente ans et un jour, on entre dans sa 31e année. On a alors la trentaine jusqu’à 39 ans. On est également un trentenaire mais cela se dit moins.

L’an zéro n’a jamais existé

Remarquez que les siècles fonctionnent différemment, ce qui prête à confusion. Ainsi, le 20e siècle a commencé en 1901 comme le 21e en 2001 et non en 2000. Pourquoi ? Tout simplement parce que zéro n’existait pas quand on inventa l’ère chrétienne… au VIe siècle après Jésus-Christ… mais revenons aux âges de la vie.

Centenaire pour l’éternité

À 40 ans, on devient un quadragénaire et on a la quarantaine. À 50 ans, un quinquagénaire et on a la cinquantaine. À 60 ans, un sexagénaire et on a la soixantaine. Ensuite, on devient successivement un septuagénaire, un octogénaire puis un nonagénaire mais on n’a la septantaine, la huitantaine ou l’octantaine puis la nonantaine que dans certaines régions. À 100 ans, les survivants sont des centenaires jusqu’à la fin de leurs jours.

Arithmancie, numérologie et astrologie

La numérologie moderne est également nommée arithmancie, mot qui vient du grec et signifie la prophétie par les nombres. Les normes numérologiques ne sont guère fixées. La plus fréquente prétend prédire l’avenir d’une personne en se servant de ses noms et prénoms … pour les transformer en nombres entre 1 et 9. La règle la plus courante est attribuée à un certain Septimus Tripoli, vers 1350. Chaque lettre de A à I se voit attribuer son numéro d’ordre (de 1 à 9), puis on recommence avec les lettres de J à R puis celle de S à Z. Les numérologues déterminent alors trois nombres : le nombre d’expression, le nombre intime et le nombre de réalisation. Le premier est la somme de toutes les lettres de vos noms et prénoms, ramenés à 9, comme dans la preuve par neuf. Le second se détermine de même, mais en ne considérant que les voyelles, tandis que le dernier n’utilise que les consonnes.

Un peu de calcul

Ainsi HERVE LEHNING donne : 8 + 5 + 9 + 4 + 5 + 3 + 5 + 8 + 5 + 9 + 5 + 7, soit 73 donc 7 + 3, soit 10 donc 1. Le nombre d’expression est 1. Pour les voyelles, on obtient 5 + 5 + 5 + 9 soit 24, c’est-à-dire 6. Le nombre intime est 6. Pour les consonnes, on obtient 73 – 24 = 49, soit 4. Le nombre de réalisation est 4.

Un portrait flatteur

Portait flatteur de l’auteur.

Ces calculs faits, les numérologues fonctionnent comme les astrologues, ils proposent une étude de personnalité que personne ne contestera, en voici un exemple :

Vous avez besoin d’être aimé et admiré, et pourtant vous êtes critique avec vous-même. Vous avez certes des points faibles dans votre personnalité, mais vous savez généralement les compenser. Vous avez un potentiel considérable que vous n’avez pas tourné à votre avantage. À l’extérieur vous êtes discipliné et vous savez vous contrôler, mais à l’intérieur vous tendez à être préoccupé et pas très sûr de vous-même. Parfois vous vous demandez sérieusement si vous avez pris la bonne décision ou fait ce qu’il fallait. Vous préférez une certaine dose de changement et de variété, et devenez insatisfait si on vous entoure de restrictions et de limitations. Vous vous flattez d’être un esprit indépendant ; et vous n’acceptez l’opinion d’autrui que dûment démontrée. Mais vous avez trouvé qu’il était maladroit de se révéler trop facilement aux autres. Par moments, vous êtes très extraverti, bavard et sociable, tandis qu’à d’autres moments vous êtes introverti, circonspect, et réservé. Certaines de vos aspirations tendent à être assez irréalistes.

L’effet Barnum

Phineas Barnum (1810 – 1894) se définissait comme le prince des charlatans.

Un psychologue, Bertram Forer (1914 – 2000), après avoir fait remplir un test de personnalité à ses étudiants, leur avait donné à tous ce même compte-rendu, sans même lire leurs tests, et leur avait demandé de le noter de 1 à 5, 5 signifiant qu’il était excellent. La moyenne des résultats fut 4,26 ! Ce test a souvent été répété, le résultat a toujours été le même. Les numérologues, comme les astrologues ou autres voyants, utilisent ce même procédé. Ce défaut qui nous pousse à accepter si facilement une description, même fausse, de nous-même à condition qu’elle soit flatteuse est souvent appelé effet Barnum, en hommage au maître de la manipulation psychologique que fut l’homme de cirque, Phineas Barnum.

 

Sornettes sur la planète

Les scientifiques essayent d’expliquer le monde dans lequel ils vivent, en utilisant du mieux qu’ils le peuvent leurs connaissances, fondées sur l’observation. Cela n’a pas été toujours sans difficultés, erreurs et tâtonnements en fonction des savoirs du moment. Ainsi en a-t-il été de la forme de la Terre ou de sa position et de son mouvement dans le système Solaire.

Le goût des métaphores

Aux époques où l’érudition, et le savoir en général, était, dans chaque pays, détenu par les autorités religieuses, les débats se sont souvent enlisés dans des joutes stériles entre rationnel et irrationnel. Les religions se sont, en général, construites sur des écrits d’époques reculées ou l’emploi de métaphores était courant. Ainsi l’affirmation que l’on trouve au chapitre 5 de l’évangile de Matthieu « vous êtes le sel de la Terre » n’indique pas que les disciples de Jésus étaient faits en sel et non en chair et en os ! Il en est de même des quatre coins de la Terre !

Le géocentrisme fait de la résistance

Représentation géocentrique de l’univers. La Bible le justifie par un court verset du livre de Josué (10-13) où le soelil s’arrête pour permettre la victoire d’Israël.

Ces époques lointaines devraient être révolues car si la fabrication du savoir est entre les mains de scientifiques de plus en plus performants, la connaissance que l’on a de ce savoir est maintenant l’affaire de chacun, de sa propre culture et de son accès à l’information. Quelques cas resteront cependant irréductibles : en 1999, année de l’éclipse totale de Soleil en France, j’ai été pris à parti un jour dans un café, par un consommateur qui croyait encore et doit croire toujours que le Soleil tourne autour de la Terre. Mais, hélas, la crédulité des uns fait le bonheur des autres.

La Terre est plate !

Les peuples de marins peuvent difficilement ignorer que la Terre est ronde. Même par ciel dégagé, les bateaux disparaissent graduellement derrière l’horizon. Ceci ne s’expliquerait pas si la Terre était plate. En revanche, si elle est sphérique, c’est logique. De nos jours, nous disposons d’une preuve qui semble incontournable : les photographies prises de l’espace.

 

Photographie de la Terre prise de l’espace.

Pour certains, cela prouve simplement l’existence d’un complot international pour faire croire que la Terre est ronde ! L’obscurantisme a toujours fait recette à travers les siècles. D’autres sont des personnes cultivant un sens de l’humour atypique. Ainsi, on peut lire sur internet, plaisanterie ou délire ?

La Terre est plate, elle a la forme d’un disque avec, au centre, le Pôle Nord et les continents groupés autour de lui sauf l’Antarctique qui correspond en fait à la circonférence du disque. Personne n’est jamais tombé du disque car personne n’a jamais pu traverser l’Antarctique…

La Terre plate avec le pôle nord en son centre et le pôle sud comme montagne frontière empêchant les océans de se déverser à l’extérieur.

Les expériences d’un ingénieur anglais

Au XIXe siècle, un ingénieur anglais et original, Samuel Rowbotham (1816 – 1864) décida de réaliser des expériences pour décider si la Terre était ronde ou plate. L’idée était de vérifier, en utilisant un télescope, si une rivière, la Bedford, en l’occurrence s’incurvait ou pas. Si la Terre est bien ronde, on ne peut voir un bateau plat sur une rivière à plus de cinq kilomètres… or Rowbotham réussit à en voir un à plus de dix kilomètres ! Preuve que la Terre est plate ? Non, sans doute mais l’expérience est troublante… En fait, elle s’explique par la réfraction de la lumière, le phénomène qui explique les mirages dans le désert. Même si notre ingénieur était animé d’un esprit malicieux, sa démarche était sans contexte de nature scientifique… et son expérience ne fait que raffermir la théorie selon laquelle la Terre est ronde.

La Terre est creuse !

L’existence de vastes cavernes souterraines est une évidence. Tous les spéléologues peuvent en témoigner. Les théories selon lesquelles certaines seraient occupées par des animaux fantastiques ou des civilisations intra-terrestres sont plus hasardeuses. C’est parfait quand elles ne sont que l’occasion d’œuvres littéraires fantastiques, comme chez Jules Verne et son Voyage au centre de la Terre et chez Edgar Jacobs et L’énigme de l’Atlantide.

C’est beaucoup plus ennuyeux quand certains commencent à croire à une Terre réellement creuse et habitée à l’intérieur. Au XVIIe siècle, l’astronome Edmund Halley, celui qui prédit correctement le retour de la comète qui depuis porte son nom, a envisagé une Terre creuse faite de plusieurs coquilles séparées par des atmosphères. Son but était d’expliquer des anomalies dans le champ magnétique. L’hypothèse d’une atmosphère lumineuse à l’intérieur de la Terre expliquait de plus les aurores boréales en s’échappant vers l’extérieur… d’où l’hypothèse d’entrées au niveau des pôles. Halley alla jusqu’à émettre l’hypothèse que ces trois mondes intérieurs pouvaient être habités.

Modèle de Terre creuse.

Cette hypothèse n’a pas convaincu ses collègues scientifiques de l’époque… mais plaît davantage à toutes sortes d’ésotériques modernes. Certains voient même un soleil intérieur et des habitants vivants dans un monde concave, donc les pieds en l’air, ce miracle ayant lieu grâce à la force centrifuge. Bien entendu, la physique nous apprend que c’est impossible !

L’annulation du champ magnétique

Le champ magnétique terrestre s’inverse avec une période fluctuant entre quelques milliers et quelques millions d’années, c’est-à-dire que le pôle nord magnétique est parfois au pôle nord géographique, parfois au pôle sud. La polarité des roches magmatiques, qui dépend du champ magnétique à l’époque de leur solidification, montre que celui-ci s’est inversé plusieurs fois. Que se passe-t-il entre ces deux phases ? Si un champ passe de la valeur –1 à la valeur +1 de manière continue, il semble clair qu’il doit passer par 0 entre les deux. Quand le champ est annulé, le pire devient probable sinon certain, car le magnétisme terrestre est une protection contre les bombardements cosmiques ! On ne peut cependant pas attribuer les principales extinctions de masse (celle du Permien, celle des Dinosaures ou celle des Mammouths) à une inversion du champ magnétique terrestre, comme certains l’ont proposé, car les dates ne correspondent pas ! De plus, un champ continu sur une sphère peut s’inverser sans jamais s’annuler. Il s’agit d’un résultat mathématique. En revanche, il est exact qu’une valeur réelle continue ne peut changer de signe sans s’annuler. Le danger de l’annulation du champ magnétique terrestre est un mythe.

La Terre, être vivant !

Le souffle de Gaïa par Josephine Wall.

1979, un chimiste, James Lovelock, puisant dans la mythologie, assimila la Terre à un organisme vivant, qu’il nomma Gaïa, du nom de la déesse grecque qui personnifie notre planète. En fait, son idée personnelle n’était pas aussi radicale. Il voyait plutôt l’atmosphère terrestre comme un système autorégulé, pas comme un être vivant. Malheureusement, comme on pouvait s’y attendre, cette idée a suscité un bon nombre de dérives mystiques aussi dangereuses qu’inconséquentes. Nous voyons les dangers d’une déification de notre planète ! Respecter notre environnement est une chose, sacrifier l’humanité à une soi-disant déesse en est une autre.

Si le fragile vaisseau Terre doit être préservé, c’est essentiellement pour offrir à l’humanité qui y vit la meilleure chance de se développer.

Les carnets à spirales sont-ils à hélices ?

En grec ancien, speirao signifiait « enrouler », de bandelettes en particulier, mot qui rapprochait les langes des enfants de ceux des momies. Notre mot « spirale » en dérive… pourtant, de ce temps, « spirale » se disait éliks  … qui a donné notre « hélice ». Les deux mots viennent donc de l’idée d’enrouler, mais les spirales sont tombées dans le monde à deux dimensions tandis que les hélices se sont élevées dans celui à trois dimensions. Hélas, les spirales de la violence comme celles du chômage, ou d’autres encore, nous enfoncent sans cesse et sont donc plutôt des hélices que des spirales.

De façon plus gaie, nous devons à cette confusion première, entre hélice et spirale, les carnets à spirales, si chers à William Sheller, qui pourtant sont à hélices, pas celles des avions, celles plus prosaïques des mathématiques.

Les hélices, des mathématiques aux bateaux et aux avions

Quel rapport entre les hélices des mathématiciens et celles des avionneurs ? A priori, aucun. Pourtant, le premier engin destiné à mouvoir un liquide était la vis d’Archimède, qui est bien construite sur une hélice circulaire. Cette origine explique l’utilisation du terme « hélice » pour tous les engins destinés à mouvoir un fluide, ou à mouvoir un objet dans un fluide.

La vis d’Archimède est une hélice, dans le sens des mathématiques comme de la mécanique des fluides.

Comment évaluer l’espérance de vie d’un bébé qui vient de naître ?

Une fille vient de naître. Les médias nous apprennent qu’elle a une espérance de vie de 85 ans. D’où vient cette prédiction ? Que signifie l’espérance de vie ? Pour le comprendre, dans un premier temps, oubliez le sens commun du verbe « espérer » car la définition n’est claire que pour les générations entièrement décédées ! La voici. L’espérance de vie est la durée moyenne de vie des personnes nées la même année. La définition est étrange puisque, toutes ces personnes étant décédées, leur vie n’est plus une espérance. Si ce n’était le côté macabre, peut-être vaudrait-il mieux parler d’âge moyen à la mort ? La notion est identique, même si l’espérance de vie devient équivalente à celle de mort. Toutefois, le terme « espérance de vie » se comprend mieux pour les vivants.

Une définition macabre

Pour l’instant, restons malgré tout sur les générations passées car ce sont les seules qui permettent des calculs certains. Pour déterminer l’espérance de vie des gens nés en 1850 par exemple, il suffit de connaître tous les actes de naissance de 1850 et tous les actes de décès postérieurs. On en déduit les âges au décès et on en fait la moyenne… on trouve 41 ans. Cependant, ce calcul n’est possible que pour les générations entièrement décédées, pas pour les enfants qui viennent de naître !

Un modèle de la réalité

Pour prévoir l’espérance de vie de ceux qui viennent de naître, on imagine qu’ils subiront à chaque âge de leur vie la mortalité de l’année en cours. Plus précisément, on calcule le quotient de mortalité des deux sexes à chaque âge grâce à des estimations de population et de décès. En l’absence de toute migration, l’idée est très simple. Le premier janvier 2009, on compte 440428 hommes de 40 ans et 815 décès d’hommes de 40 ans pendant l’année 2 009. Le quotient de mortalité des hommes de 40 ans est donc estimé à 815 divisé par 440 428, soit 1,850 ‰. La méthode est fiable si on peut appliquer la loi des grands nombres. Ses résultats sont fantaisistes quand ce n’est pas le cas, particulièrement pour les grands âges.

À partir de ces quotients de mortalité des personnes de chaque âge, les statisticiens reconstruisent des tables de mortalité. On ne considère donc plus une population réelle mais une génération fictive de 100000 individus qui connaîtrait toute sa vie les conditions de mortalité par âge de l’année considérée. La table que l’on peut construire chaque année sur cette génération fictive est appelée la table du moment. C’est à partir de cette table qu’on calcule l’espérance de vie des enfants dès leur naissance. Cette méthode est fondée sur l’hypothèse que la situation de la mortalité restera identique à ce qu’elle est actuellement, et ceci alors même que nous savons qu’il n’en est rien ! Malgré tout, ces résultats donnent une idée plus vraisemblable de la réalité du futur que l’utilisation de tables de mortalité de générations décédées. Mieux vaut parfois une approximation raisonnable qu’une précision illusoire.

 

Quarante et les nombres transgressifs

Dans la Bible, le nombre quarante semble celui des épreuves, de la pénitence, de l’attente et de la préparation. Il nous en reste la quarantaine et le carême chrétien, qui durent 40 jours. Ainsi, le déluge dure également 40 jours, la vie de Moïse est divisée en trois périodes de 40 ans, qui sont autant d’épreuves, les Hébreux errent 40 ans dans le désert et, quand Moïse monte au Sinaï, il y confère 40 jours avec Dieu. En rappel de toutes ces épreuves, Jésus se retire 40 jours au désert avant son ministère.

Le nombre de fauteuils de l’académie française

Est-ce pour la même raison que l’Académie française comprend 40 membres ? Seul Armand du Plessis, cardinal de Richelieu (1585 – 1642), qui fixa ce nombre, pourrait répondre à cette question. Cependant, à lire Arsène Houssaye (1814 – 1896) dans l’histoire du 41e fauteuil, ce fauteuil immortellement vide fut sans doute toujours le mieux occupé puisqu’on a pu y voir des hommes comme Molière, Pascal ou Descartes quand l’immortel abbé Cotin, et d’autres de la même envergure, siégeaient parmi les 40 premiers. Cette expression transgressive, « le 41e fauteuil », peut être rapprochée du « 21e arrondissement de Paris », lieu de tous les miracles et sans doute le mieux famé de tous les arrondissements de la capitale puisque, selon une antique expression populaire, tous les couples illégitimes s’y marient.

L’an 40

Enfin, pour ne pas être en reste sur 40, notons l’expression : s’en moquer comme de l’an 40 qui signifie « s’en désintéresser totalement ». D’où vient ce mystérieux 40 ? Les hypothèses sont tellement nombreuses qu’il est difficile de toutes les citer. Dans tous les cas, il ne s’agit pas de 1940 car l’expression est attestée au XVIIIe siècle. Certains la voient d’origine québécoise où la fin du monde avait été prévue en 1740… et ne s’était apparemment pas produite. D’autres y voient la transformation d’une très ancienne expression : s’en moquer comme de l’alcoran, mot qui désignait le Coran au XIVe siècle. Dans la lignée de 40, on peut encore citer 400 comme nombre de la plénitude, mais péjorative, dans l’expression : faire les 400 coups, qui signifie faire toutes les bêtises possibles. De même, 1000 peut être utilisé pour dire « beaucoup » et 1001 encore plus comme dans les mille et une nuits ou aussi : je te l’ai dit mille et une fois !

Dans huit jours…

Pourquoi dit-on « dans huit jours » pour dire « dans une semaine » ? Et 15 pour deux semaines, alors que 15 n’est même pas divisible par 2 ! De même, si nous sommes mardi 9 et que nous voulons parler du jeudi 11, nous disons « jeudi prochain », pour le suivant, le jeudi 18, « jeudi en huit » et pour le 25, « jeudi en quinze ».

Une origine biblique

L’origine n’est pas mathématique mais biblique ! En effet, nous retrouvons ce nombre 8 dans la Bible où il signifie qu’une semaine a été révolue. Le « huitième » est alors la marque du monde nouveau. Dans le judaïsme, la circoncision se pratique le huitième jour après la naissance. De même, l’auteur de l’évangile de Jean choisit le huitième jour pour faire apparaître Jésus Christ à Thomas, qui ne croyait pas les autres disciples.

Les mathématiciens sont-ils tous platoniciens ?

Comme Platon, les mathématiciens sont des créateurs de mondes, tels celui du mythe de la caverne. Doit-on pour autant considérer les mathématiciens comme platoniciens ?

Qu’elle fut ou non gravée à l’entrée de son académie, la phrase Que nul n’entre ici s’il n’est géomètre est conforme à la pensée de Platon : il est bon que le philosophe apprenne la géométrie. Au livre VII de La république, il mentionne d’ailleurs son étude comme un pré requis à celle de la philosophie, et une matière indispensable dans le cursus du futur citoyen. Les mathématiques forgent la pensée de Platon, comme on le voit dans Le Ménon. Inversement, tout mathématicien est-il platonicien ?

Un créateur de mythes

Avant d’essayer de répondre à cette question, examinons le mode de pensée de Platon. Sa méthode fondamentale est la création de mythes. Le procédé est classique dans l’Antiquité où l’usage de métaphores permettait d’introduire des concepts abstraits à travers des expériences quotidiennes. Le mythe le plus célèbre inventé par Platon est celui de la caverne, où il introduit le concept de « monde des idées ». En voici un résumé rapide. Des hommes, enfermés dans une caverne, ne voient l’extérieur qu’à travers des ombres. Ils n’ont pas accès à la réalité mais seulement à son image. Ce mythe est une métaphore où la caverne est notre monde, et l’extérieur, le monde des idées. Une transposition est nécessaire pour comprendre le message de Platon, même si celle-ci est claire.

Le monde des idées

Ce monde des idées, existe-t-il ? Platon l’a postulé, ce qui l’a mené à adopter la thèse de l’immortalité de l’âme. Elle lui permet d’affirmer qu’elle vient de ce monde et, pour cette raison, en garde une vague mémoire. La philosophie grecque a parfois ce côté jusqu’au boutiste, que l’on retrouve facilement chez les mathématiciens. Pas question pour eux que 2 + 2 fasse 3,99. C’est 4 sans discussion possible. Cette démarche, correcte quand elle reste dans son cadre, peut aboutir parfois à des extravagances inutiles, comme l’idée d’une âme immortelle, même dans le passé. Platon en avait besoin pour expliquer notre accès instinctif à son monde des idées. Pour lui, on n’apprend pas, on se souvient. Cette remarque explique la pédagogie de Socrate dans Le Ménon, quand il fait démontrer le théorème de Pythagore à un esclave. Celui-ci est censé retrouver des connaissances lointaines, du temps où son âme n’était pas prisonnière de son corps. Socrate aide son interlocuteur à « accoucher » de ce qui existe déjà en lui. Dans ce sens, l’invention est impossible, seul « trouver » l’est. Ce vocabulaire correspond à celui utilisé en général en mathématiques. L’expression « il invente des théorèmes » est souvent péjorative, car elle sous entend qu’ils sont faux.

Le monde des idées mathématiques

De même, les mathématiciens inventent des mondes, semblables au monde des idées de Platon. Aucun point du monde réel n’est jamais le point idéal que nous imaginons. Il a forcément une certaine épaisseur. Il en est de même de la droite et du cercle. Nous en avons des idées que nous visualisons et même matérialisons, mais c’est sur les idées que nous raisonnons. Pour rendre ses résultats plus solides, depuis l’Antiquité, le monde de la géométrie est régi par un certain nombre d’axiomes, c’est-à-dire de résultats considérés comme vrais sans démonstration. Cette méthode a été généralisée et approfondie par David Hilbert au début du XXe siècle. De nos jours, chaque théorie (arithmétique, géométrie, etc.) a ses axiomes, qui la structurent.

L’ombre des idées

Ces théories ont un rapport complexe avec la réalité. Officiellement, pour les mathématiciens, les axiomes résultent du libre arbitre des créateurs de ces théories. Est-il raisonnable de le prétendre, ou est-ce un moyen de se libérer de la réalité ? Restons dans le domaine de la géométrie pour donner un exemple. On y démontre une propriété de la parabole, liée à son foyer (appelée propriété focale pour cela), que nous résumons par un dessin.

Propriété focale de la parabole : Si une droite D parallèle à l’axe d’une parabole coupe celle-ci en un point M, la droite symétrique de D par rapport à la tangente en M à la parabole passe par son foyer.

Cette propriété a des conséquences visibles dans notre univers quotidien : paraboles sur les toits des immeubles, fours solaires petits et grands, phares des voitures ou des bords de mer. La propriété des paraboles existant dans le monde de la géométrie s’applique dans notre monde.

Parabole en montagne. L’utilisation d’un miroir en forme de parabole permet de focaliser les rayons du soleil en un point et donc de faire bouillir de l’eau. © Hervé Lehning

Peu de mathématiciens doutent réellement de cette efficacité, même si certains scientifiques l’estiment « déraisonnable ».

Vérité des axiomes

La raison de cette « estimation » est l’opinion exprimée par les mathématiciens contemporains eux-mêmes. Si vous les questionnez sur ce que sont les axiomes, il est probable qu’ils répondront comme nous l’avons exposé plus haut. Ce sont des règles que l’on se donne de manière arbitraire, et sur lesquelles on développe une théorie cohérente, en suivant les règles de la logique. De ce point de vue, cette théorie n’est pas plus « réelle » ou « vraie » que les axiomes qui la fondent. Cependant, les résultats acquis sont extrêmement solides. Si on admet la « vérité » des axiomes, celle des théorèmes suit.

Les théories mathématiques : des modèles

Si cette vérité est conditionnelle, pourquoi les résultats des mathématiques sont-ils utiles dans le monde réel ? La réponse est simple. Les axiomes ne sont pas choisis arbitrairement ! Plutôt que de le prétendre, il serait préférable de dire que, s’ils l’étaient, on pourrait encore parler de mathématiques. Mais ils ne le sont pas ! Le fait est que l’on ne s’intéresse pas à ces mathématiques du bon plaisir. Ils sont choisis pour que les théories mathématiques qui en découlent soient de bons modèles de la réalité. Pour cela, ils s’en inspirent. Comme Platon, les mathématiciens inventent des mondes idéaux, dont la réalité est un reflet. En ce sens, ils sont platoniciens mais des platoniciens rarement dupes de leurs modèles. Ils ont conscience que leur monde des idées est une abstraction dont ils sont l’origine. Ce n’est pas un monde préexistant de toute éternité, comme le monde des idées de Platon.

Multiplier les dettes pour gagner une fortune

Certains écoliers peinent avec la règle des signes et en particulier avec le terrifiant « moins par moins égal plus ». Dans La vie de Henry Brulard, son roman autobiographique, Stendhal s’en amuse ainsi :

Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ?

Brahmagupta invente le zéro

L’usage des termes mathématiques hors contexte peut donner des résultats surprenants. La raison de la règle des signes est d’une autre nature (voir les dangers de philosopher sur les nombres). L’important est que les règles de calcul habituelles sur les nombres soient respectées. C’est ce que fait l’inventeur du nombre zéro et des nombres négatifs, le mathématicien indien Brahmagupta, (VIIe siècle de notre ère) quand il donne les règles régissant zéro, ainsi que nombres positifs ou négatifs, en termes de dettes et de fortunes :

Une dette moins zéro est une dette. Une fortune moins zéro est une fortune. Zéro moins zéro est zéro. Une dette soustraite de zéro est une fortune. Une fortune soustraite de zéro est une dette. Le produit de zéro par une dette ou une fortune est zéro. Le produit de zéro par zéro est zéro. Le produit ou le quotient de deux fortunes est une fortune. Le produit ou le quotient de deux dettes est une fortune. Le produit ou le quotient d’une dette et d’une fortune est une dette. Le produit ou le quotient d’une fortune et d’une dette est une dette.

Le zéro, avion de chasse japonais de la Seconde Guerre mondiale, n’était pas nul.

Le zéro absolu

Pour revenir à notre écolier moderne, pardonnons-lui car la question n’est pas si simple. Ainsi, dans ses Pensées, Blaise Pascal (XVIIe siècle), pourtant grand mathématicien, écrit cette phrase surprenante :

Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro.

Sans le vouloir, Pascal pointe ici l’une des difficultés à considérer zéro comme un nombre véritable : l’idée du zéro absolu, celui en dessous duquel on ne peut descendre. Il n’aurait sans doute pas admis nos températures négatives, et aurait donc préféré les degrés Fahrenheit aux Celsius. Pour cette raison, sans aucun doute, Daniel Gabriel Fahrenheit (XVIIIe siècle) fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° et elle bout à 212° environ.

La règle des signes n’est donc pas si simple … mais source de poésie !