Archives pour la catégorie Histoire

Galilée, Cosme II de Médicis et le paradoxe de Toscane

Cosme II de Médicis, Grand-duc de Toscane, avait remarqué qu’en jetant trois dés, le total dix sortait plus souvent que le neuf. Pourtant, il existait autant de façons de décomposer neuf et dix en somme de trois nombres entre un et six, ce qui lui semblait contradictoire.

Une façon de décomposer dix en somme de trois nombres.

Ce paradoxe est connu sous le nom de paradoxe de Toscane.

La solution de Galilée

Galilée (1564 – 1642), qui fut le précepteur de Cosme II, trouva la raison de cette bizarrerie. On peut comprendre son mécanisme en considérant le jeu de pile ou face. Si la pièce n’est pas pipée, la probabilité d’obtenir pile est égale à ½ et de même celle d’obtenir face. Si on joue deux fois de suite, chacune des possibilités PP, PF, FP et FF est équiprobable donc leurs probabilités sont toutes égales à ¼. Si on jette les deux pièces à la fois, les probabilités d’avoir deux piles ou deux faces sont égales à ¼ mais celle d’avoir un pile et un face est égale à ½ car elle regroupe les deux cas PF et FP. Il en va exactement de même dans le paradoxe de Toscane. Les décompositions de neuf et dix ne sont pas équivalentes de ce point de vue. La différence tient en la décomposition de neuf en trois fois le même nombre, ce qui est impossible pour dix. Le calcul permet d’établir que la probabilité d’obtenir neuf est égale à 25/216 alors que celle d’obtenir dix est égale à 27 / 216 soit 1/8. Ces deux nombres montrent que Cosme était fin observateur, et vraiment très grand joueur, car les probabilités ne diffèrent que de 1 %.

 

Sornettes sur la planète

Les scientifiques essayent d’expliquer le monde dans lequel ils vivent, en utilisant du mieux qu’ils le peuvent leurs connaissances, fondées sur l’observation. Cela n’a pas été toujours sans difficultés, erreurs et tâtonnements en fonction des savoirs du moment. Ainsi en a-t-il été de la forme de la Terre ou de sa position et de son mouvement dans le système Solaire.

Le goût des métaphores

Aux époques où l’érudition, et le savoir en général, était, dans chaque pays, détenu par les autorités religieuses, les débats se sont souvent enlisés dans des joutes stériles entre rationnel et irrationnel. Les religions se sont, en général, construites sur des écrits d’époques reculées ou l’emploi de métaphores était courant. Ainsi l’affirmation que l’on trouve au chapitre 5 de l’évangile de Matthieu « vous êtes le sel de la Terre » n’indique pas que les disciples de Jésus étaient faits en sel et non en chair et en os ! Il en est de même des quatre coins de la Terre !

Le géocentrisme fait de la résistance

Représentation géocentrique de l’univers. La Bible le justifie par un court verset du livre de Josué (10-13) où le soelil s’arrête pour permettre la victoire d’Israël.

Ces époques lointaines devraient être révolues car si la fabrication du savoir est entre les mains de scientifiques de plus en plus performants, la connaissance que l’on a de ce savoir est maintenant l’affaire de chacun, de sa propre culture et de son accès à l’information. Quelques cas resteront cependant irréductibles : en 1999, année de l’éclipse totale de Soleil en France, j’ai été pris à parti un jour dans un café, par un consommateur qui croyait encore et doit croire toujours que le Soleil tourne autour de la Terre. Mais, hélas, la crédulité des uns fait le bonheur des autres.

La Terre est plate !

Les peuples de marins peuvent difficilement ignorer que la Terre est ronde. Même par ciel dégagé, les bateaux disparaissent graduellement derrière l’horizon. Ceci ne s’expliquerait pas si la Terre était plate. En revanche, si elle est sphérique, c’est logique. De nos jours, nous disposons d’une preuve qui semble incontournable : les photographies prises de l’espace.

 

Photographie de la Terre prise de l’espace.

Pour certains, cela prouve simplement l’existence d’un complot international pour faire croire que la Terre est ronde ! L’obscurantisme a toujours fait recette à travers les siècles. D’autres sont des personnes cultivant un sens de l’humour atypique. Ainsi, on peut lire sur internet, plaisanterie ou délire ?

La Terre est plate, elle a la forme d’un disque avec, au centre, le Pôle Nord et les continents groupés autour de lui sauf l’Antarctique qui correspond en fait à la circonférence du disque. Personne n’est jamais tombé du disque car personne n’a jamais pu traverser l’Antarctique…

La Terre plate avec le pôle nord en son centre et le pôle sud comme montagne frontière empêchant les océans de se déverser à l’extérieur.

Les expériences d’un ingénieur anglais

Au XIXe siècle, un ingénieur anglais et original, Samuel Rowbotham (1816 – 1864) décida de réaliser des expériences pour décider si la Terre était ronde ou plate. L’idée était de vérifier, en utilisant un télescope, si une rivière, la Bedford, en l’occurrence s’incurvait ou pas. Si la Terre est bien ronde, on ne peut voir un bateau plat sur une rivière à plus de cinq kilomètres… or Rowbotham réussit à en voir un à plus de dix kilomètres ! Preuve que la Terre est plate ? Non, sans doute mais l’expérience est troublante… En fait, elle s’explique par la réfraction de la lumière, le phénomène qui explique les mirages dans le désert. Même si notre ingénieur était animé d’un esprit malicieux, sa démarche était sans contexte de nature scientifique… et son expérience ne fait que raffermir la théorie selon laquelle la Terre est ronde.

La Terre est creuse !

L’existence de vastes cavernes souterraines est une évidence. Tous les spéléologues peuvent en témoigner. Les théories selon lesquelles certaines seraient occupées par des animaux fantastiques ou des civilisations intra-terrestres sont plus hasardeuses. C’est parfait quand elles ne sont que l’occasion d’œuvres littéraires fantastiques, comme chez Jules Verne et son Voyage au centre de la Terre et chez Edgar Jacobs et L’énigme de l’Atlantide.

C’est beaucoup plus ennuyeux quand certains commencent à croire à une Terre réellement creuse et habitée à l’intérieur. Au XVIIe siècle, l’astronome Edmund Halley, celui qui prédit correctement le retour de la comète qui depuis porte son nom, a envisagé une Terre creuse faite de plusieurs coquilles séparées par des atmosphères. Son but était d’expliquer des anomalies dans le champ magnétique. L’hypothèse d’une atmosphère lumineuse à l’intérieur de la Terre expliquait de plus les aurores boréales en s’échappant vers l’extérieur… d’où l’hypothèse d’entrées au niveau des pôles. Halley alla jusqu’à émettre l’hypothèse que ces trois mondes intérieurs pouvaient être habités.

Modèle de Terre creuse.

Cette hypothèse n’a pas convaincu ses collègues scientifiques de l’époque… mais plaît davantage à toutes sortes d’ésotériques modernes. Certains voient même un soleil intérieur et des habitants vivants dans un monde concave, donc les pieds en l’air, ce miracle ayant lieu grâce à la force centrifuge. Bien entendu, la physique nous apprend que c’est impossible !

L’annulation du champ magnétique

Le champ magnétique terrestre s’inverse avec une période fluctuant entre quelques milliers et quelques millions d’années, c’est-à-dire que le pôle nord magnétique est parfois au pôle nord géographique, parfois au pôle sud. La polarité des roches magmatiques, qui dépend du champ magnétique à l’époque de leur solidification, montre que celui-ci s’est inversé plusieurs fois. Que se passe-t-il entre ces deux phases ? Si un champ passe de la valeur –1 à la valeur +1 de manière continue, il semble clair qu’il doit passer par 0 entre les deux. Quand le champ est annulé, le pire devient probable sinon certain, car le magnétisme terrestre est une protection contre les bombardements cosmiques ! On ne peut cependant pas attribuer les principales extinctions de masse (celle du Permien, celle des Dinosaures ou celle des Mammouths) à une inversion du champ magnétique terrestre, comme certains l’ont proposé, car les dates ne correspondent pas ! De plus, un champ continu sur une sphère peut s’inverser sans jamais s’annuler. Il s’agit d’un résultat mathématique. En revanche, il est exact qu’une valeur réelle continue ne peut changer de signe sans s’annuler. Le danger de l’annulation du champ magnétique terrestre est un mythe.

La Terre, être vivant !

Le souffle de Gaïa par Josephine Wall.

1979, un chimiste, James Lovelock, puisant dans la mythologie, assimila la Terre à un organisme vivant, qu’il nomma Gaïa, du nom de la déesse grecque qui personnifie notre planète. En fait, son idée personnelle n’était pas aussi radicale. Il voyait plutôt l’atmosphère terrestre comme un système autorégulé, pas comme un être vivant. Malheureusement, comme on pouvait s’y attendre, cette idée a suscité un bon nombre de dérives mystiques aussi dangereuses qu’inconséquentes. Nous voyons les dangers d’une déification de notre planète ! Respecter notre environnement est une chose, sacrifier l’humanité à une soi-disant déesse en est une autre.

Si le fragile vaisseau Terre doit être préservé, c’est essentiellement pour offrir à l’humanité qui y vit la meilleure chance de se développer.

L’os d’Ishango

Au musée des sciences naturelles de Bruxelles, se trouve un os strié de nombreuses entailles, découvert dans les années 1950 à Ishango au Congo belge (devenu RDC) par Jean de Heinzelin de Braucourt (1920 – 1998). Cet os daté de 20000 ans avant notre ère n’est pas le plus ancien artefact de ce type connu, mais le nombre de ses entailles a donné un grand nombre d’hypothèses.

Compter les entailles

L’os d’Ishango est couvert de stries.

Si on sait chercher, on y trouve le nombre 60 qui, depuis les Mésopotamiens, est lié à l’astronomie, des nombres premiers comme 11, 13, 17 et 19, etc. Certains en ont déduit qu’il s’agissait d’un calendrier lunaire car 60 correspond presqu’au nombre de jours de deux lunaisons. La somme des nombres de deux colonnes se retrouvant parfois ailleurs, d’autres y voient l’ancêtre de la calculatrice. Une autre hypothèse proposée est qu’il s’agirait d’un jeu mathématique qu’aurait pratiqué l’homme d’Ishango.

Calcul des probabilités

La multiplicité des hypothèses montre que leur origine commune réside dans le calcul des probabilités : plus vous considérez de nombres, plus vous y trouverez de relations entre eux et avec d’autres. Il est cependant probable que l’os d’Ishango n’ait été destiné qu’à compter, peut-être du gibier. C’est le plus important car cela prouve que l’homme d’Ishango savait compter, même s’il n’était pas le premier.

Le déclin de l’art de chiffrer sous Napoléon Ier

Sous l’impulsion de la dynastie Rossignol, la cryptographie française a connu une première apogée aux XVIIe et XVIIIe siècles.

La régression de la Révolution et de l’Empire

L’excellence française en matière de cryptographie se perdit à la Révolution. Une des raisons pour cela est sans doute la dissolution du cabinet noir, ce qui était une des doléances importantes de 1789. Une expertise qui se transmettait de génération en génération semble alors s’être perdue. En particulier, la faiblesse de ne chiffrer que les parties qu’on veut garder secrètes devint presque systématique dans l’armée révolutionnaire et dans l’armée impériale qui lui succéda. On y distinguait deux types de chiffres, les petits et les grands, même s’il ne serait pas exagéré de dire qu’ils étaient tous rendus petits par leurs utilisateurs, comme cela ressort des papiers de George Scovell , le décrypteur du général britannique Wellington au Portugal et en Espagne.

George Scovell (1774 – 1861)

Comme ils le feront ensuite au cours des deux guerres mondiales, les Britanniques systématisèrent l’interception et le décryptement des messages en créant, sous les ordres de Scovell, un corps d’éclaireurs chargé, en plus de la mission habituelle de guider l’armée, de porter les messages, d’intercepter ceux de l’ennemis et de les décrypter. Bien entendu, ces éclaireurs étaient choisis pour leur connaissance du français, de l’espagnol et de l’anglais, en plus de leurs qualités proprement militaires. En ce qui concerne l’interception, les éclaireurs de Scovell furent aidés par la guérilla qui rendit les routes peu sûres pour l’armée française, si elle ne se déplaçait pas en nombre. Les petits chiffres pouvaient être de simples substitutions alphabétiques.

Un exemple lors de la campagne d’Allemagne en 1813

Les dépêches de la Grande Armée étaient envoyées en plusieurs exemplaires. L’ennemi récupérait souvent plusieurs exemplaires du même message ce qui aurait pu ne pas être grave s’ils avaient tous étaient chiffrés de façon identique. La reproduction se faisait apparemment à partir de l’original non chiffré ce qui donne, par exemple, ces deux exemplaires chiffrés différemment de la même dépêche du Maréchal Berthier en septembre 1813, un mois avant la bataille de Leipzig.

Dépêche chiffrée

Péterswald, ce 17 septembre 1813,

Monsieur le Maréchal,

L’empereur ordonne que 175. 138. 167. 164. 90. 138. 167. 152. 169. 145. 53. 166. 117. 137. 103. 157. 176. 152. 167. 134. 37. 37. 117. 174. 169. 106. 171. 15. 117. 15. 132. 6. 175. 176. 126. 48. 164. 153. 126. 32. 50. 175. 176. 126. 25. 68. 94. 105. 122. 171. 115. 176. 15. 164. 118.169. 166. 35. 138. 169. 81. 136. 20. 173. 138. 53. 171. 107. 87. 82. 131.. 15. 52. 134. 81. 94. 137. 90. 138. 169. 106. 51. 169. 116. 168. 115. 175. 176. 126. 137. 148. 115. 6. 119. 156. 90. 3. 176. 177. 146. 146.52.169. 82. 131. 169. 107. 92. 126. 52. 167. 23. 53. 35. 138. 6. 61. 167. 52. 106. 171. 39. 53. 50. 52. 6. 72. 167. 177. 169. 117. 167. 137. 22. 145. 171. 115. 167.68.154. 107. 94. 138. 164. 126. 115. 176. 16. 115. 167. 20. 176. 131. 67. 126. 6. 145. 175. 138. 167. 126. 115. 23. 126. 68. 23. 159. 92. 53. 93. 81. 94. 137. 22. 6. 90. 35. 138. 169.81. 174. 169. 119.53. 115.15.

Le Prince Vice-Connétable, Major Général,

Berthier

Dépêche partiellement chiffrée

Péterswald, ce 17 septembre 1813,

Monsieur le Maréchal,

L’empereur ordonne que vous vous portiez le plus tôt possible 167. 138. 169. 106. 171. 15. 117 avec son infanterie, sa cavalerie et son artillerie, en ne laissant 15. 164. 138. 169. 176. 166. 35. 138. 169. 81 que ce que Sa Majesté a désigné pour 106. 78. Son principal but sera de rester 107. 87. 176. 169. 53. 52. 167. 52. 35. 138. 6. 85. 82. 52. 106. 171. 171. 15. 117 et de chasser 117. 107. 156. 169. 145. 171. 115. 167. 68 qui manœuvrent dans 20. 176. 131. 75. Vous pouvez vous rendre en droite ligne 156. 169. 40. 35. 138. 169. 81. 167. 138. 169. 87. 53. 91.

Le Prince Vice-Connétable, Major Général,

Berthier

Conséquences

Grâce à cette maladresse, si les deux messages sont interceptés, l’ennemi peut commencer à les décrypter. Par exemple, la première phrase « L’empereur ordonne que vous vous portiez le plus tôt possible » appelle en suite « sur une ville ou un lieu. Il est vraisemblable que 167 signifie S, 138, U et 169, R. De même, « en ne laissant » appelle « à » donc 15 signifie probablement A. En reportant ceci dans le texte, on découvre à la fin de la dépêche :

« Vous pouvez vous rendre en droite ligne 169. R. 40. 35. UR. 81. S U R 87. 53. A. » ce qui signifie vraisemblablement : Vous pouvez vous rendre en droite ligne par telle ville (40. 35. UR. 81.) sur telle autre (87. 53. A). Le nom de la première ville, qui est allemande, finit sans doute par « burg » donc 35 signifie B et 81, G.

La partie entièrement chiffrée commence alors à se dévoiler. Par exemple, le « vous vous » a été chiffré en 175. U. S. 164. 90. U. S. donc 175 signifie VO, 164, V et 90, O. Ces équivalences permettent de progresser au point que l’avant dernière ville se dévoile, il s’agit de Coburg. Une carte d’Allemagne nous permet alors de penser que la dernière ville, dont le nom finit par A, est Iéna. En continuant ainsi, on finit par découvrir la dépêche de Berthier :

L’empereur ordonne que vous vous portiez le plus tôt possible sur la Saale, avec son infanterie, sa cavalerie et son artillerie, en ne laissant à Wurtzburg que ce que sa Majesté a désigné pour la garnison. Son principal but sera de rester maître des débouchés de la Saale et de chasser les partisans ennemis qui manœuvrent dans cette direction. Vous pouvez vous rendre en droite ligne par Coburg sur Iéna.

Généralité de l’erreur

Cette erreur de chiffrer de deux façons différentes la même dépêche se retrouve à d’autres époques. Ainsi, la machine de Lorenz utilisée par les Allemands pour les dépêches entre le quartier général à Berlin et les armées fut décryptée suite à une erreur de procédure de ce type. Même si les méthodes ont changées, les leçons du passé restent valables.

 

La géométrie des fortifications de Vauban

Les forts du Moyen-Âge peuvent avoir des formes polygonales. Celles-ci restent cependant convexes. La règle pour les forts de l’époque de Vauban est différente. En terrain plat, on part d’un polygone régulier convexe. La longueur des côtés correspond à la portée utile des pièces d’artillerie de l’époque, un peu moins pour que l’effet soit meilleur. La norme est de 330 mètres. Le nombre de côtés dépend alors de la taille de la ville à ceinturer ainsi. Par exemple, un pentagone régulier de côté égal à 330 mètres englobe une surface de 18 hectares, un hexagone, 28 et un octogone, 52.

Partons ici d’un pentagone comme pour la citadelle de Lille. Au milieu de chaque côté, perpendiculairement et vers l’intérieur, nous portons une longueur de 55 mètres. Nous obtenons, un polygone plus compliqué en forme d’étoile.

Schéma de base d’une fortification bastionnée.

 

Ajout des bastions

Le but est d’établir aux sommets du polygone initial de petits fortins appelés « bastions » et destinés à recevoir des pièces d’artillerie pouvant couvrir les côtés du polygone en étoile, appelés « courtines ». Pour éviter d’être de trop bonnes cibles pour l’artillerie adverse, ces remparts ne dépassent pas du paysage. Leur hauteur vient des fossés situés autour. Ces murs sont essentiellement constitués de terre pour mieux résister aux boulets en fer. La maçonnerie qui les entoure est destinée à tenir le tout. Du côté de la place forte, elle se nomme l’escarpe. De l’autre côté, la contrescarpe. Un domaine est laissé vide et sans protection pour l’ennemi tout autour. Il se nomme le glacis. Sa longueur correspond au minimum à la portée des canons. Vu du glacis, l’assaillant n’aperçoit que des murailles modestes puisque le fossé les dissimule.

Nous sommes maintenant en présence de plusieurs polygones, l’un extérieur joignant les extrémités des bastions, l’autre intérieur dans le prolongement des courtines. Un autre limite le glacis.

Les bastions (en bleu) situés aux sommets du pentagone sont destinés à couvrir les courtines (en rouge). Les murs extérieurs des deux forment l’escarpe. La contrescarpe n’est pas indiquée sur cette figure. Elle est située de l’autre côté du fossé entourant le rempart.

Multiplication des défenses externes

Demi-lune vue du fort à Mont-Dauphin. Cette fortification protège la citadelle tout en restant sous le feu en provenant. L’ennemi ne peut que difficilement s’y maintenir après l’avoir prise.

Pour éviter ce défaut, Vauban a l’idée d’ajouter deux défenses externes devant chaque courtine : la tenaille à son pied et la demi-lune devant. Chacune de ces défenses n’offre aucune protection du côté de la place forte elle-même. Si l’ennemi la prend, il s’y trouve à découvert, donc dans une position difficile à tenir.

Les tenailles (près du fort) et les demi-lunes (toutes en vert) sont destinées à retarder l’ennemi dans sa progression. Ces fortifications ne sont pas fortifiées du côté de la place forte.

Vauban généralisa ce principe en détachant les bastions de la place forte elle-même. D’autre part, le tout est entouré d’un dernier petit rempart parallèle et recouvert, appelé « chemin couvert ». Ainsi, il se situe au sommet de la contrescarpe. Il s’agit en même temps de la première ligne de défense et d’un chemin de ronde, destiné à l’observation.

Les bastions sont détachés de la place. Sur cette photo, la direction de la meurtrière montre leur usage. Il s’agit de placer les courtines sous le feu de la place.

 

 

Le petit rapporteur

Rapporteur : outil de mesure d’angles connu pour son côté délateur

Nous dédions notre définition à la mémoire de Pierre Desproges (1939 – 1988), qui aurait pu en être l’auteur, et dont le nom reste attaché au Petit Rapporteur, une émission culte des années 70. Cette émission traitait de l’actualité sous l’angle pervers du petit bout de la lorgnette. Malgré ce point, son rapport avec les angles et les mathématiques peut sembler anecdotique.

La devise du petit rapporteur fait référence à celle du Figaro : sans la liberté de blâmer, il n’est point d’éloge flatteur.

 L’humour mathématicien

Cependant, l’humour du Petit Rapporteur évoque bien celui des mathématiciens qui frôle toujours l’absurde. On s’en convaincra au travers de quelques pièces d’anthologie accessibles sur internet, en particulier de la fameuse interview de Françoise Sagan par Pierre Desproges et de la bataille de boudin blanc entre Pierre Desproges et Daniel Prévost, sans parler de la visite à Montcuq de Daniel Prévost.

L’hypothèse de Riemann au salar d’Uyuni

Le salar d’Uyuni est un gigantesque désert de sel sur les hauts plateaux boliviens. On y trouve un cimetière de locomotives offrant plusieurs nuances de rouilles du meilleur effet photographique.

Locomotive rouillant sur le salar d’Uyuni

Un tag étonnant

Une grande partie de ce matériel ferroviaire à l’abandon est tagué. Une inscription nous a tout de même étonné par sa composante mathématique.

L’hypothèse de Riemann taguée sur une locomotive rouillant dans le salar d’Uyuni

Le tag affirme que les zéros non triviaux (i.e. entiers négatifs pairs) de la fonction dzéta de Riemann sont complexes de partie réelle égale à 1/2. Il s’agit d’une conjecture faite par Bernhard Riemann en 1859 et aujourd’hui dotée d’un prix d’un million de dollars par l’institut Clay. Rencontre étonnante !

 

Quarante et les nombres transgressifs

Dans la Bible, le nombre quarante semble celui des épreuves, de la pénitence, de l’attente et de la préparation. Il nous en reste la quarantaine et le carême chrétien, qui durent 40 jours. Ainsi, le déluge dure également 40 jours, la vie de Moïse est divisée en trois périodes de 40 ans, qui sont autant d’épreuves, les Hébreux errent 40 ans dans le désert et, quand Moïse monte au Sinaï, il y confère 40 jours avec Dieu. En rappel de toutes ces épreuves, Jésus se retire 40 jours au désert avant son ministère.

Le nombre de fauteuils de l’académie française

Est-ce pour la même raison que l’Académie française comprend 40 membres ? Seul Armand du Plessis, cardinal de Richelieu (1585 – 1642), qui fixa ce nombre, pourrait répondre à cette question. Cependant, à lire Arsène Houssaye (1814 – 1896) dans l’histoire du 41e fauteuil, ce fauteuil immortellement vide fut sans doute toujours le mieux occupé puisqu’on a pu y voir des hommes comme Molière, Pascal ou Descartes quand l’immortel abbé Cotin, et d’autres de la même envergure, siégeaient parmi les 40 premiers. Cette expression transgressive, « le 41e fauteuil », peut être rapprochée du « 21e arrondissement de Paris », lieu de tous les miracles et sans doute le mieux famé de tous les arrondissements de la capitale puisque, selon une antique expression populaire, tous les couples illégitimes s’y marient.

L’an 40

Enfin, pour ne pas être en reste sur 40, notons l’expression : s’en moquer comme de l’an 40 qui signifie « s’en désintéresser totalement ». D’où vient ce mystérieux 40 ? Les hypothèses sont tellement nombreuses qu’il est difficile de toutes les citer. Dans tous les cas, il ne s’agit pas de 1940 car l’expression est attestée au XVIIIe siècle. Certains la voient d’origine québécoise où la fin du monde avait été prévue en 1740… et ne s’était apparemment pas produite. D’autres y voient la transformation d’une très ancienne expression : s’en moquer comme de l’alcoran, mot qui désignait le Coran au XIVe siècle. Dans la lignée de 40, on peut encore citer 400 comme nombre de la plénitude, mais péjorative, dans l’expression : faire les 400 coups, qui signifie faire toutes les bêtises possibles. De même, 1000 peut être utilisé pour dire « beaucoup » et 1001 encore plus comme dans les mille et une nuits ou aussi : je te l’ai dit mille et une fois !

Boukhara : la forteresse et l’hyperboloïde

A Boukhara, en Ouzbékistan, une étrange construction fait face à l’antique forteresse.  Ce monument, qui n’attire pas les touristes, est pourtant témoin d’un courant artistique  important du début du vingtième siècle : le constructivisme russe.

Un château d’eau

Cette tour a été construite en 1927 par Vladimir Choukhov (1853 – 1939) pour servir de château d’eau. Désaffecté à la fin des années quarante, il est alors devenu un café jusqu’à ce qu’un accident mortel en interdise cet usage. Il vient d’être racheté par des Français pour devenir un point d’observation. Un ascenseur est prévu pour y accéder.

Le château d’eau est formé de deux séries de poutrelles d’acier qui en assurent la solidité.

Un hyperboloïde de révolution

La surface utilisée par Choukhov est célèbre en mathématiques et en architecture car elle est construite avec des droites. Pour comprendre sa fabrication, le plus simple est de partir d’un cylindre,   une surface simple à construire. Pour cela, il suffit de prendre un axe, d’y monter deux roues et d’y tendre des élastiques parallèles à l’axe. On obtient l’objet suivant.

Cylindre obtenu en tendant des élastiques entre deux roues fixées sur un axe. Les élastiques ont été choisis équidistants.

Les droites représentées par les élastiques sont les génératrices du cylindre.

On fait alors tourner la roue du haut d’un certain angle dans un sens et celle du bas du même angle dans le sens opposé. On obtient une nouvelle surface également générée par des droites.

Surface obtenue en tordant le cylindre.

Il se trouve qu’en tordant le cylindre du même angle dans un sens ou dans l’autre, on obtient la même surface, qui possède ainsi deux familles de génératrices.

Cette surface a été baptisée hyperboloïde de révolution à une nappe car elle est également obtenue en faisant tourner une hyperbole sur l’un de ses axes.

Pour des raisons physiques, cette surface est utilisée pour les tours de refroidissement des centrales nucléaires ou thermiques.

Les valeurs de π

En 1897, une résolution établissant que π = 4 fut proposée au vote des représentants de l’état de l’Indiana (États-Unis d’Amérique). Avant de sourire, le mathématicien se posera une question : pour quelle notion de distance ?

Qu’est-ce que π ?

Archimède a répondu à cette question voici fort longtemps. Il s’agit du rapport entre la circonférence d’un cercle et son diamètre. Qu’est-ce qu’un cercle ? L’ensemble des points du plan à égale distance d’un point donné. Qu’est-ce que la distance ? Ici, nous ne pouvons que marquer une pause dans nos réponses toutes faites. Plusieurs distances sont envisageables !

Distance à vol d’oiseau

En mathématiques, la distance la plus utilisée est qualifiée d’euclidienne. Dans la vie courante, on parle souvent de distance à vol d’oiseau. La distance d’un point A à un point B est la longueur du vecteur V qui mène de A à B. En tenant compte du théorème de Pythagore, elle s’exprime sous la forme :

| V |2 = x2 + y2.

Les cercles associés à cette distance ont la forme ronde usuelle. Le nombre π a la valeur connue, 3,14 à 0,01 près.

Distance Manhattan

Même pour un oiseau, la distance euclidienne correspond à une certaine vision du monde, où le vol est possible dans toutes les directions. À Manhattan, même pour voler, mieux vaut suivre les avenues, qui forment un maillage rectangulaire. La longueur d’un vecteur s’y exprime sous la forme :

| V | = | x | + | y |.

La distance Manhattan correspond au plus court chemin, si l’on marche le long des rues d’une ville au plan rectangulaire (comme Manhattan)

Le cercle unité a alors la forme d’un losange, sa circonférence est égale à 8 donc, pour cette distance, π = 4.

On retrouve la valeur 4 pour une autre distance (appelée distance infinie), celle donnant comme longueur à V, la plus grande des valeurs absolues de ses coordonnées. Les cercles ont alors une forme de carré.

Les « cercles » de même centre et de même rayon pour les trois distances.

Le décret de l’Indiana : humour ou sottise ?

Nous avons trouvé deux fois 4 et une seule fois 3,14. On pourrait en conclure que π = 4 est la valeur la plus raisonnable à retenir. Quand les rues des villes se coupent à angle droit, la distance Manhattan est la plus pertinente. Est-ce pour cette raison qu’une loi visant à adopter la valeur π = 4 fut proposée au vote de l’assemblée générale de l’état de l’Indiana ? Vous pouvez en juger vous-même en allant lire le texte plein d’humour de ce projet de loi sur l’Internet (utilisez un moteur de recherche pour en trouver une copie). Nous laisserons de toutes façons la question aux amateurs d’histoire (s).

Autres distances

Les trois distances utilisées se généralisent en utilisant un nombre p ³ 1 quelconque. Plus précisément, on pose :

| V |p = | x | p + | y | p.

La distance euclidienne correspond au cas : p = 2, la distance Manhattan au cas : p = 1. On démontre, par un passage à la limite, que la distance infinie correspond bien au cas : p = ∞.

Pour chacune de ces distances, nous obtenons une valeur de π, que nous notons πp. Comment en calculer une valeur approchée ? Tout simplement en procédant comme dans le cas de la distance euclidienne, c’est-à-dire en remplaçant le cercle par des polygones réguliers ayant un grand nombre de côtés. Si nous effectuons ces calculs pour p variant de 1 à 2 avec une précision de 0,001, nous obtenons le tableau :

 

p 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0
πp 4,000 3,757 3,573 3,434 3,333 3,260 3,209 3,176 3,155 3,145 3,142

 

Ainsi, πp semble décroissant de 1 à 2. Le phénomène inverse se produit de 2 à l’infini. On est amené à plusieurs conjectures :

1) π est la valeur minimale des πp,

2) πp prend toutes les valeurs entre π et 4,

3) πp = πq si 1/p + 1/q = 1.

On démontre que les trois sont exactes, en utilisant des raisonnements de calcul intégral dépassant le cadre de cet article.

Pour ces calculs, voir sur mon site.