Archives pour la catégorie Histoire

De Tannenberg au « miracle » de la Vistule

Quel rapport entre la bataille de Tannenberg (26-29 août 1914) et la bataille de Varsovie (13-25 août 1920) ? Dans les deux cas, les armées russes furent défaites par des armées très inférieures en nombre du fait de l’interception de leurs communications radios.

La bataille de Tannenberg

En août 1914, l’entrée en guerre de la Russie se fit dans une telle précipitation qu’aucun matériel cryptographique n’avait été livré si bien que les communications russes se faisaient en clair par radio. Autrement dit, les Allemands étaient invités aux réunions d’état-major des Russes. Le général en chef allemand sut utiliser cet avantage pour diviser les armées russes et anéantir l’une d’entre elles.

Le « miracle » de la Vistule

Si le renseignement allemand avait été particulièrement aidé par l’absence de chiffrement des messages russes en 1914, c’est par le décryptement que, en 1920, les Polonais s’invitèrent aux réunions d’état-major russe avec un résultat identique. La victoire qui s’ensuivit fut attribué par le clergé polonais à une intervention divine d’où le nom qui lui fut attribué de miracle de la Vistule.

L’excellence polonaise en matière de cryptologie

Le miracle de la Vistule est donc avant tout un miracle du décryptement.

L’excellence du bureau du chiffre polonais se poursuivit jusqu’au début de la Seconde Guerre mondiale puisque le premier décryptement d’Enigma fut un succès conjoint de l’espionnage français et du génie de trois mathématiciens polonais : Marian Rejewski (1905 – 1980), Jerzy Rozycki (1909 – 1942) et Henryck Zygalski (1908 – 1978). L’espionnage a fourni les tables de chiffrement de l’armée allemande de 1931 à 1938. Les mathématiques ont permis, grâce à ce renseignement, de reconstituer les câblages de la version militaire de l’Enigma et de fabriquer des répliques d’Enigma dès 1933. Les messages furent alors déchiffrés régulièrement. Les mathématiciens polonais cherchèrent à pouvoir se passer des tables de chiffrement, ce qu’ils réussirent à faire, en particulier en créant une machine, la bomba. Elle permettait de trouver la clef du jour en quelques minutes. Après la défaite de la Pologne puis celle de la France, les résultats polonais furent livrés aux Britanniques. Le mathématicien Alan Turing (1912 – 1954) et son équipe de Bletchley Park reprirent avec succès le décryptement en l’améliorant et en l’adaptant aux complexifications successives d’Enigma. La guerre fut probablement écourtée de deux ans grâce au décryptement.

 

 

L’application surprenante d’un vieux problème d’Apollonius

L’Antiquité grecque s’est passionnée du problème d’Apollonius (trois siècles avant notre ère) sans doute sans y voir la moindre application. Songez ! Étant donné trois cercles du plan, il s’agit de trouver les cercles qui leur sont tangents. Il fallut attendre François Viète (1540 – 1603) pour qu’il trouve une solution complète. Au maximum, huit cercles sont solutions.

Le cercle rouge est tangent aux trois cercles bleus

Repérage acoustique de l’artillerie

Une idée pour repérer les pièces d’artillerie est d’utiliser le son produit lors de la mise à feu. Les instruments essentiels pour ces repérages sont des microphones, dispositifs inventés à la fin du XIXe siècle. S’ils sont adaptés aux basses fréquences et ignorent les autres, les sons de l’artillerie lourde sont distingués des autres bruits du champ de bataille. Il faut en utiliser au moins trois, reliés à un appareil d’enregistrement effectuant un tracé sur un même rouleau enregistreur afin de comparer les instants de réception du son.

Le son de la même mise à feu est enregistré à des instants différents selon la position des micros.

Dans le cas de l’enregistrement ci-dessus, l’onde sonore venant du canon ennemi (en T) se déplace selon un cercle de centre T. Elle atteint d’abord le point A où est placé le premier microphone puis le point B où est placé le second après un temps t mesurable sur l’enregistrement et enfin le point C après un temps t’ (toujours après le point A). En tenant compte de la vitesse du son, la distance de T à A est égale à un nombre R, qu’il s’agit de déterminer, celle de T à B à R + rr correspond à la distance parcourue par le son pendant le temps t et enfin la distance de T à C égale à R + r’ où r’ correspond à la distance parcourue par le son pendant le temps t’.

Si T est connu, le cercle de centre T et de rayon R passe par A et est tangent au cercle de centre B et de rayon r ainsi qu’au cercle de centre de centre C et de rayon r’, ce qui se résume en une figure bien connue des mathématiciens de l’époque, au problème d’Apollonius, l’un des cercles étant de rayon nul :

Le cercle de centre T passe par A et est tangent aux cercles de centres B et C.

Résolution du problème

De nos jours, ce problème est résolu par la géométrie analytique et un logiciel détermine directement les coordonnées de la position de la batterie ennemie (système de localisation de l’artillerie par acoustique, SL2A). Ce système peut être couplé de nos jour avec un radar de contrebatterie (RCB), qui a cependant le défaut d’être lui-même repérable puisqu’un radar émet des ondes, contrairement au système acoustique.

En février 1915, Ferdinand Daussy, ingénieur des mines, soldat à Verdun, réalise, à partir d’un moteur de phonographe et d’un diapason entretenu électriquement, un appareil de repérage au son inscrivant sur un papier d’enregistrement le cent millième de seconde. À partir de trois postes d’observation, il parvint à situer les pièces allemandes pourtant invisibles. Les artilleurs français déclenchèrent un tir sur cet emplacement, arrêtant ainsi le feu ennemi. À cette époque, les microphones étaient reliés au système de contrôle par des fils, ce qui le rendait vulnérable. À Verdun, une attaque allemande mit fin au système de Ferdinand Daussy.

On peut également réduire ce problème à une question d’intersection de deux hyperboles mais, au temps de la Grande Guerre, le calcul se faisait graphiquement sur une carte avec un jeu de disques de divers rayons par tâtonnement sachant que la portée maximale des canons était connue.

La méthode a amélioré le repérage des batteries ennemies mais elle n’est pas toujours précise car la vitesse du son dépend de facteurs météorologiques comme la température et la vitesse du vent. De plus, l’artillerie était souvent utilisée en grand nombre simultanément ce qui rendait délicat le repérage individuel de chaque batterie.

Laissons la conclusion sur l’importance de ces recherches à Paul Painlevé, mathématicien et ministre de la guerre en 1917, dans une allocution après la victoire : les mathématiques les plus abstraites ou les plus subtiles ont participé à la solution des problèmes de repérage et au calcul des tables de tir toutes nouvelles qui ont accru de 25 pour 100 l’efficacité de l’artillerie.

Une victoire remportée par la seule arme du chiffre

Le décryptement d’un seul message peut décider du sort d’une bataille ou d’une négociation. Ce fut le cas en 1626 quand les troupes du prince de Condé assiégeant Réalmont interceptèrent un messager sortant de la ville, porteur d’un message incompréhensible. Condé fit venir un jeune professeur de mathématiques de la région, Antoine Rossignol des Roches, qui en trouva le sens. Le message annonçait que la ville était à cours de munition. Condé fit porter le message décrypté à la ville, qui se rendit. La bataille fut gagnée grâce à la seule arme du Chiffre !

Chiffrement par alphabet chiffré

Ce message avait vraisemblablement été chiffré au moyen d’un alphabet chiffré, où chaque lettre est remplacée par un symbole, très en vogue à l’époque.

Un alphabet chiffré de 1626 (Archives de Strasbourg). Chaque lettre doit être remplacée par le symbole inscrit au dessus.

Le décryptement repose à la fois sur les mathématiques et sur la linguistique. Les mathématiques par la méthode des fréquences qui permet au moins de trouver le symbole représentant la lettre « e ». La linguistique par la méthode du mot probable qui permet de deviner des lots du message selon le contexte. Par exemple, dans un message sortant d’une ville assiégée, on peut s’attendre à des mots comme « vivres » ou « munitions ».

Chiffrement par dictionnaire chiffré

La faiblesse des alphabets chiffrés, même améliorés en chiffrant de plusieurs façons différentes les lettres fréquentes et en ajoutant des nulles, c’est-à-dire des symboles ne signifiant rien, amena Rossignol à créer des dictionnaires chiffrés c’est-à-dire des dictionnaires bilingues dont l’une des langues est le français et la seconde, des nombres. Ainsi, on chiffre non seulement des lettres (et ce de plusieurs manières), comme auparavant, mais aussi des syllabes et des mots. La méthode des fréquences n’a alors plus aucun sens et celle du mot probable devient difficile à utiliser. Leur inconvénient principal est leur sensibilité à l’espionnage ou aux hasards de la guerre.

Un dictionnaire chiffré où les lettres, mots, syllabes sont chiffrés par des nombres. Archives de Srasbourg

 

Le chiliogone de Descartes

Dans ses Méditations métaphysiques, René Descartes utilise l’exemple des chiliogones, c’est-à-dire des polygones à 1000 côtés, pour montrer qu’il existe des choses faciles à concevoir sans pour autant qu’il soit possible de les représenter. Essayons de le faire dans le cas du chiliogone régulier convexe !

Les polygones réguliers convexes

Si nous nous limitons aux polygones réguliers convexes, les premiers sont le triangle équilatéral, le carré, le pentagone régulier convexe et l’hexagone régulier convexe.

Les polygones convexes réguliers de 3, 4, 5 et 6 côtés.

Le chiliogone régulier convexe

À partir de là, il est facile d’imaginer le chiliogone régulier convexe : en pratique, il est indiscernable du cercle.

Le chiliogone régulier convexe est indiscernable du cercle

Si on supprime la condition de régularité et si les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée convexe. Si la condition de convexité est supprimée et les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée … qui peut ressembler à un infâme gribouillis.

Un polygone à 20 côtés peut déjà être très embrouillé, à 1000 côtés il peut devenir un infâme gribouillis

 

 

Le chiffre de la reine Marie-Antoinette

Pour qu’elles ne puissent pas être interceptées, Marie-Antoinette chiffrait ses lettres. La méthode qu’elle utilisait était a priori excellente… mais avec une erreur majeure : elle ne chiffrait qu’une lettre sur deux.

Chiffre de Vigenère

Marie-Antoinette chiffrait ses lettres par substitution poly-alphabétique, selon la méthode décrite par Blaise de Vigenère plus précisément. Cette méthode suppose de disposer d’une table de chiffrement, si possible une par destinataire. Voici comment se présentait ces tables :

Une table de chiffrement utilisée par Marie-Antoinette. @ Archives nationales

On notera que ce tableau ne contient que 22 lettres, les lettres manquantes sont J, K, U et W, ce qui correspond à un usage venant du latin où I et J d’un côté, U et V de l’autre sont confondues. K peut être remplacé par C et W par V.

Clef de chiffrement

L’utilisation de ce tableau pour chiffrer demande une clef secrète qu’on partage avec le destinataire. Par exemple, si la clef est sel, pour chiffrer la première lettre, on utilise la ligne dont la première colonne est ST, D est alors changé en N (et N en D), E en O, etc. Pour chiffrer la seconde, on utilise la ligne dont la première colonne est EF.

Utilisation correcte

Pour chiffrer une phrase comme je vous aime, on peut construire un tableau à 10 lignes et 3 colonnes :

J E V O U S A I M E
S E L S E L S E L S
S T D E F B X Z Q O

 

Le message chiffré est donc stdefbxzqo. Si vous essayez de chiffrer une lettre ainsi, vous verrez la difficulté d’éviter les erreurs. C’est pour cela que, on ne sait quel cryptologue avait conseillé à Marie-Antoinette de ne chiffrer qu’une lettre sur deux ce qui, en fournissant des repères, simplifie grandement le chiffrement mais l’affaiblit tout aussi grandement. Nous allons voir pourquoi.

Utilisation par Marie-Antoinette

Le tableau devient ainsi :

J E V O U S A I M E
S E L S E
J O V M U B A S M T

 

Le message chiffré est maintenant jovmubasmt. On peut examiner des lettres chiffrées ainsi par Marie-Antoinette aux Archives nationales, comme la suivante :

Lettre de Marie-Antoinette au comte de Fersen où on voit qu’elle ne chiffrait qu’une lettre sur deux. @ Archives nationales

Décryptement

Le décryptement sans connaître la clef est ainsi facilité, surtout si on connaît le tableau de chiffrement. C’est ici que des talents de cruciverbiste sont utiles. En effet, on peut deviner un mot si on en connaît une lettre sur deux comme ici J-V-U-A-M, qui est transparent pour tout amateur de mots croisés. Ensuite, on sait que la première lettre de la clef transforme E en O ce qui ne se produit que pour ST, en continuant ainsi, on décrypte le message quel que soit sa longueur.