Des nœuds dans l’ADN

L’ADN (ou acide désoxyribonucléique) est le support de l’hérédité. Cette molécule, présente dans chaque cellule, prend la forme d’une double hélice, qui s’enroule sur elle-même, formant ainsi un nœud.

Molécule d’ADN formant un nœud. Sa réplication demande de le dénouer. Image réalisée au moyen d’un microscope électronique.

Duplication des molécules

La duplication des informations contenues dans une molécule d’ADN se fait au moyen d’enzymes. Pour « voir » le processus, imaginez une longue fermeture éclair qu’on ouvre avant de la séparer en deux. Cela n’est possible que si le nœud peut être dénoué. Certains virus attaquent les molécules d’ADN en les coupant et en les recollant de sorte qu’ils soient impossibles à dénouer. Le type de nœud obtenu après l’attaque virale est caractéristique de chaque virus. La signature de ces virus est de nature topologique !

Par ailleurs, cette question du dénouement est au cœur de la théorie mathématique des nœuds. Certains sont faciles à dénouer, d’autres bien plus compliqués, voire impossible (voir la figure ci-dessous). À l’envers de celle des virus, la seule méthode est celle qu’Alexandre le Grand employa pour dénouer le nœud gordien : couper la corde !

Deux nœuds. Pour défaire le vert, il suffit de faire glisser la boucle de gauche. Le second requière la méthode d’Alexandre et des virus, non autorisée en théorie des nœuds.

Nœuds et mathématiques

Mathématiquement, les nœuds sont des courbes fermées de l’espace de dimension trois, que l’on représente souvent comme une courbe plane. Elle a alors des points doubles, où il faut distinguer la branche « au-dessus » de celle « en-dessous ». Si en essayant de démêler un nœud, on passe à un autre, les deux nœuds sont dits équivalents. La théorie des nœuds consiste donc à étudier si un nœud est équivalent à une courbe non nouée, comme le cercle, et plus généralement si deux nœuds sont équivalents. Pour étudier ce type de problème, on essaye d’introduire des invariants, c’est-à-dire des objets mathématiques invariants quand on passe d’un nœud à un nœud équivalent. Henri Poincaré (1854 – 1912) en a trouvé un particulièrement subtil, que l’on appelle le groupe du nœud, malheureusement son étude est délicate.

Stephen Smale (né en 1930), William Thurston (1946 – 2012) et Mikhaïl Gromov (né en 1943) réunis lors de la conférence Clay sur la résolution de la conjecture de Poincaré, en 2010.

William Thurston a découvert une réalisation concrète de ce groupe, liée à la géométrie des espaces de dimension trois, ce qui lui a valu la médaille Field en 1982, et explique son implication en biologie ainsi que celles de Stephen Smale ou de Mikhail Gromov, spécialistes de ce domaine, souvent présenté très loin de toute application.

Cercle qui roule se quarre

La quadrature du cercle consiste à construire un carré de même aire qu’un cercle donné. Si le cercle a pour rayon R, il s’agit donc de construire un carré de côté R multiplié par la racine carrée du nombre Pi. On peut donc réaliser la quadrature du cercle avec une règle graduée à la précision que l’on veut.

Des règles qui changent tout

Quand le problème est apparu dans l’Antiquité, il n’était pas question d’approximations, la règle était que la construction devait être exacte. Il en existe plusieurs. L’une d’entre elle demande de faire rouler un cercle sur une droite. La voici sous forme de tableau :

Le cercle part de la position à gauche (en rouge) pour arriver à celle de droite (en jaune) ce qui permet de définir le carré de droite, de même aire que le cercle initial.

En utilisant uniquement le théorème de Pythagore, on démontre que le carré est de côté racine de Pi, ce qui prouve que le carré et le cercle ont même aire (voir à la fin pour une démonstration).

Cette utilisation d’un procédé mécanique (faire rouler le cercle) ne convenait pas aux anciens, il fallait construire le carré à la règle (non graduée) et au compas. Dans ces conditions, le problème devient impossible, ce qui n’a été prouvé qu’au XIX-ième siècle en démontrant que le nombre Pi est transcendant c’est-à-dire qu’il n’est pas solution d’une équation algébrique à coefficients entiers.

De façon étonnante, un problème purement géométrique et très conditionné par des visions antiques a eu des conséquences importantes en algèbre et en analyse.

Un peu de géométrie

La figure essentielle est la suivante :

Il s’agit de montrer que HC a pour longueur la racine carrée de Pi.

En appliquant le théorème de Pythagore dans les trois triangles rectangles HBC, HC et ABC, on obtient :

HC² + 1 = BC², HC²+ Pi² = AC² et BC² + AC² = (Pi + 1)²

En faisant la somme des deux premières expressions puis un peu d’algèbre, il vient que HC² est égal à Pi ce qu’il fallait démontrer.

Une lampe pour une idée lumineuse

Cette quadrature du cercle, dont l’auteur initial nous est inconnu, m’a inspiré la lampe suivant :

Cercle qui roule se quarre par Hervé Lehning.

Les pesées de Leibniz et de Bachet

Voici une question autrefois pratique, qui reste aujourd’hui ludique. Elle suppose l’utilisation d’une balance de Roberval, qui fut inventée par Gilles Personier de Roberval (1602 –  1675). Nous en donnons le schéma mais, pour comprendre l’usage que l’on en fait, il suffit de savoir que les deux plateaux s’équilibrent quand les masses qui s’y trouvent sont égales.

Schéma d’une balance de Roberval. Le parallélogramme articulé aux quatre sommets (en rouge) peut pivoter autour du point marqué (en blanc) sur la figure. L’aiguille est dirigée verticalement quand les poids sur les plateaux s’équilibrent.

Pesée binaire de Leibniz

Leibniz a montré que, si on dispose d’une série de poids dont chacun est le double du précédent, on peut réaliser toutes les pesées possibles. Pour voir comment, imaginons un objet de 713 grammes à peser avec des poids de 1, 2, 4, 8, 16, 32, 64, 128, 256 et 512 grammes. L’objet étant dans un plateau, nous commençons par placer le plus gros poids possible, c’est-à-dire celui de 512 grammes dans l’autre. Nous recommençons ensuite itérativement jusqu’à l’équilibre.

Voyons les étapes de ce processus. Le déficit est de 713 – 512 = 201 grammes. Nous utilisons alors le poids de 128 grammes (le plus gros possible). Il reste 201 – 128 = 73 grammes. Après le poids de 64 grammes, il ne reste plus que 9 grammes. Nous terminons en décomposant 9 en 8 + 1. Finalement, nous avons équilibré le poids de 713 grammes avec les poids prévus. D’un point de vue arithmétique, cela s’écrit :

713 = 512 + 128 + 64 + 8 + 1.

Ce résultat correspond à l’écriture de 713 en base deux : 713 = 29 + 27 + 26 + 23 + 20 ce que l’on peut noter : 1011001001. En base dix, nous écrivons : 713 = 7.102+ 101+ 3.100. La différence apparente est que l’écriture en base deux n’implique que des additions, pas de multiplication. En fait, il n’en est rien puisque les chiffres en base deux sont seulement 0 et 1 au lieu de 0, 1, …, 9. La propriété est générale, notre démarche prouve d’ailleurs que tout nombre s’écrit en binaire.

Pesée ternaire de Bachet

À l’occasion d’une récréation mathématique, Claude Bachet de Mériziac (1581 – 1638) a montré que, à condition d’utiliser les deux plateaux, on peut peser n’importe quel objet à l’aide d’une série de poids dont chacun est le triple du précédent. Voyons comment sur l’exemple précédent et des poids de 1, 3, 9, 27, 81, 243 et 729 grammes. L’idée précédente fonctionne si on dispose de deux poids de chaque sorte. Il suffit d’écrire 713 en ternaire. On commence par retrancher deux fois 243 à 713, il reste 227. On recommence avec deux fois 81, il reste 65. On retranche alors deux fois 27, il reste 11 ce qui fait 9 plus deux fois 1. Cette suite d’opérations fournit l’écriture ternaire : 222102 ce que l’on peut écrire : 713 = 2.35 + 2.34 + 2.33 + 32 + 2.30. Pour conclure, l’idée essentielle est d’éliminer les 2 du membre de droite de cette égalité en remarquant que : 3 = 2 + 1. Plus précisément : 713 + 35 + 34 + 33 + 30 = 36 + 35 + 34 + 32 + 31 ce qui se simplifie en : 713 + 33 + 30 = 36 + 32 + 31, c’est-à-dire en : 713 + 27 + 1 = 729 + 9 + 3. Il suffit donc de disposer des poids de 27 et 1 grammes dans le plateau de gauche et de 729, 9 et 3 grammes dans celui de droite.

L’art du défilement, Vauban et Gaspard Monge

L’un des problèmes pour construire des fortifications à l’époque de Vauban (1633 – 1707) était  :

Comment défiler une fortification des tirs de l’ennemi ?

Le verbe « défiler » doit s’entendre ici au sens commun de « se défiler ». Comment cacher l’intérieur d’un ouvrage aux vues et aux tirs de l’agresseur ? Bien entendu, il suffit de bâtir partout des remparts assez hauts. L’ennui est que la hauteur fragilise les remparts. Le tout doit rester équilibré. Sur le terrain, les bons ingénieurs comme Vauban savaient défiler leurs ouvrages mais comment s’y prendre à partir d’un simple plan côté ?

La géométrie descriptive

Gaspard Monge (1746 – 1818) inventa la géométrie descriptive pour résoudre ce problème. De façon générale, elle permettait d’étudier certains objets de l’espace comme l’intersection de deux tores dans l’épure qui suit. Le résultat pouvait être très esthétique, comme on peut le voir dans ce cas.

Dessin se trouvant dans Objets mathématiques, Institut Henri Poincaré, livre que nous recommandons fortement.

Les déblais et remblais

Le même Monge, sans doute également motivé par la construction de fortifications, publia un Mémoire sur la théorie des déblais et des remblais où il se proposait de résoudre un problème très concret : comment déplacer des tas de sable vers un certain nombre de destinations de la manière la plus économique possible ?

Dessin explicatif du problème dans le mémoire de Monge.

Ici il s’agit de déblayer la zone de gauche pour remblayer celle de droite (ou l’inverse puisque les deux problèmes sont équivalents). Dans son mémoire, Monge étudie ce problème mais ne le résout pas dans sa généralité. Voir l’article d’Étienne Ghys dans Image des mathématiques.

Le transport optimal

Ce problème se généralise en problème du transport optimal : comment un fournisseur peut-il livrer un certain nombre de points de vente de façon à minimiser ses coûts ? Le problème de Monge a ainsi été redécouvert par Léonid Kantorovitch (1912 – 1986) qui obtint le prix Nobel d’économie en 1975 pour ses avancées sur la question en ouvrant un nouveau domaine, celui de la programmation linéaire. Plus récemment, Cédric Villani (né en 1973) a obtenu la médaille Fields en revisitant le problème du transport optimal en le rapprochant du problème de la diffusion des gaz. Cette capacité de rapprochement entre des domaines a priori différents est un marqueur des grands mathématiciens.

 

Une astroïde dans un autobus

La notion d’enveloppe de droites recouvre deux notions en général équivalentes. D’un côté, il s’agit d’une courbe séparant deux domaines entre eux, de l’autre une courbe tangente à toutes les droites. La seconde se prête mieux au calcul.

Exemple d’une porte d’autobus

Prenons un exemple concret, celui d’une porte d’autobus coulissante à deux battants s’ouvrant selon le schéma :

Porte d’autobus à deux battants se repliant. Au sol, on obtient deux segments de droite. Celui de gauche pivote pour décrire un quart de disque. Celui de droite est plus intéressant à étudier.

La projection sur le sol de la porte de droite (sur la figure) est un segment qui définit une droite coupant deux droites perpendiculaires selon un segment AB de longueur constante (celle de la porte entière).

La projection de la porte sur le sol de l’autobus est constituée des deux segments égaux AI et IO. Comme IO = IB, le segment AB est de longueur constante.

Apparition d’une enveloppe

Il est facile de tracer un grand nombre de segments AB en faisant varier l’angle t de 0 à 90° on voit alors apparaître une courbe en négatif : leur enveloppe.

Les segments AB restent tangents à une même courbe. Cette courbe est leur enveloppe.

Si on fait varier l’angle t de 0 à 360°, on obtient une courbe en forme d’astre, appelée pour cela astroïde.

L’astroïde en entier.

Point de Monge

Gaspard Monge (1746 – 1818), l’un des créateurs de l’école polytechnique et de l’école normale supérieure où il a ensuite enseigné a trouvé un moyen de décrire l’enveloppe d’une famille de droites dépendant d’un paramètre D (t) comme le lieu d’un point mobile, appelé depuis point de Monge en son hommage, ou simplement point caractéristique de D (t). Il se définit comme la limite du point d’intersection de  D (t) et D (t + dt) quand dt tend vers zéro, ce qui permet son calcul à travers la notion de dérivée : le point de Monge est à l’intersection de  D (t) et  D’ (t) qui s’obtient en dérivant l’équation de  D (t) par rapport à  t.

Pour les férus de calculs, si a est le longueur de la porte, l’équation de D (t) est  x sin t + y cos t = a cos t sin t donc les coordonnées du point de Monge est solution du système :

On en déduit ses coordonnées :

ce qui permet de tracer l’enveloppe de la famille de droites D.

Jean-Henri Fabre, un précurseur

Jean-Henri Fabre est connu pour son observation des insectes. Excellent vulgarisateur, il est de ceux qui savent communiquer leurs passions. Les mathématiques en font partie.

Jean-Henri Fabre

Jean-Henri Fabre (1823 – 1915)

Bien que titulaire d’une licence de mathématiques, d’un doctorat en sciences naturelles et de plusieurs autres diplômes, Jean-Henri Fabre est un autodidacte comme il le rappelle lui-même :

Apprendre sous la direction d’un maître m’a été refusé. J’aurais tort de m’en plaindre. L’étude solitaire a sa valeur ; elle ne vous coule pas dans un moule officiel, elle vous laisse votre pleine originalité. Le fruit sauvage, s’il arrive à maturité, a une autre saveur que le produit de serre chaude ; il laisse aux lèvres qui savent l’apprécier un mélange d’amertume et de douceur dont le mérite s’accroît par le contraste.

Son côté autodidacte le rend attachant pour certains et agaçant pour d’autres. Quelques modernes lui reprochent aussi de ne pas avoir épousé les thèses de Darwin qui, en revanche, reconnaissait en lui un observateur incomparable. Il s’explique lui-même dans une de ses lettres à Darwin :

Vous vous étonnez de mon peu de goût pour les théories, si séduisantes qu’elles soient. Ce travers d’esprit, si c’en est un, tient un peu à mes longues études mathématiques qui m’ont habitué à ne reconnaître la vérité qu’à la lueur d’un irrésistible faisceau de lumière. Ne jurant par aucun maître, libre d’idées préconçues, peu enclin aux séductions des théories, je cherche avec passion la vérité, près à l’admettre quelle qu’elle soit et de quelque fait qu’elle vienne. Et comme moyen de recherche, je ne connais qu’une chose : l’expérience.

Par ailleurs, Darwin l’avait chargé d’expériences sur les insectes retournant à leurs nids. Les résultats se trouvent dans l’œuvre de Fabre. De façon générale, on trouvera la plupart des écrits de Fabre sur internet.

Fabre créationniste ?

Parmi les critiques modernes faites à Jean-Henri Fabre, certains le stigmatisent comme créationniste car il ne croyait pas à la théorie de Darwin, qu’il comparait à celle de la génération spontanée. À la défense de Fabre, il faut noter que la théorie originelle de Darwin n’était pas celle qui porte son nom aujourd’hui. Il s’agissait plutôt d’une transposition de la sélection des espèces domestiques, pratiquée depuis longtemps par les éleveurs, en une sélection naturelle sous l’effet de modifications du milieu. Autrement dit, il lui manquait l’explication qui viendra avec la découverte des gênes, par Gregor Mendel au début du XXe siècle. La théorie de l’évolution telle que nous la connaissons est postérieure de vingt ans à la mort de Fabre ! Comment peut-on lui reprocher de ne pas l’avoir reconnue ?

Mais l’essentiel n’est pas là, il est dans deux choses, sans parler de l’inélégance d’attaquer les morts, qui ne peuvent se défendre. Premièrement, il faut savoir ne pas se tromper d’adversaires. Les obscurantistes que sont les créationnistes ne sont pas les disciples de Jean-Henri Fabre. Ils sont dans des religions qui refusent la science, et malheureusement pas la violence. Deuxièmement, de Jean-Henri Fabre retenons plutôt l’exceptionnel talent de vulgarisateur. Pour finir sur une note poétique et liée à la question de l’évolution, voici l’un de ses commentaires sur la parade nuptiale des scorpions languedociens : La colombe a, dit-on, inventé le baiser. Je lui connais un précurseur : c’est le scorpion.

Parade amoureuse de scorpions languedociens. Dans un cas sur deux au moins, le mâle (à droite) finira dévoré par la femelle (à gauche), ce qui atténue l’impression romantique donnée par Fabre.

Jean-Henri Fabre a réussi à me faire regarder les scorpions autrement, c’est pourquoi je me souviens de cette remarque. Aujourd’hui, elle me fait m’interroger : selon la théorie créationniste, parler de précurseur d’une espèce a-t-il un sens ?

Descriptions et mathématiques chez Fabre

Dans ses souvenirs entomologiques, Jean-Henri Fabre dépeint les mœurs des insectes de manière vivante, en les ramenant souvent aux nôtres. Il décrit ainsi le carabe doré en nous emmenant d’abord visiter les abattoirs de Chicago pour comparer ensuite leur efficacité à celles des carabes dont on saisit mieux ainsi la férocité comme la voracité.

Le carabe doré, qui sera l’occasion d’une digression sur les mœurs humaines pour Jean-Henri Fabre.

Il conclut alors sur nos origines et notre avenir, avec l’abolition de l’esclavage et l’instruction des femmes, les deux voies du progrès moral selon lui. Cette façon de généraliser sera parfois critiquée plus tard, comme peu scientifique. Il est vrai que, par moments, Fabre concluait un peu vite. Par exemple, voici comment il décrit la toile d’une araignée, l’épeire :

Nous reconnaîtrons d’abord que les rayons sont équidistants ; ils forment de l’un à l’autre des angles sensiblement égaux […] les divers tours de spire […] avec les deux rayons qui les limitent, forment d’un côté un angle obtus et de l’autre un angle aigu […] d’un secteur à l’autre, ces mêmes angles, l’obtus comme l’aigu, ne changent pas de valeur, autant que peuvent en juger les scrupules du regard seul.

Fabre reconnaît alors une propriété caractéristique de la spirale logarithmique et en conclut que la toile de l’épeire épouse cette forme, ce qui est rapide surtout quand la mesure a été faite à l’œil. Ceci dit, cela n’enlève rien à la qualité de son travail, et il n’en reste pas moins que, du fait de sa construction, la toile prend une forme de spirale.

Scarabée sacré en train de confectionner une boule.

De même, c’est de manière très mathématique qu’il explique la forme de poire que le scarabée sacré donne à la bouse dans laquelle il dépose son œuf : une sphère pour minimiser la surface externe afin de réduire la dessiccation, qui rendrait la bouse immangeable pour la larve, coiffée d’une sorte de cylindre contenant l’œuf, qui se trouve ainsi dans un endroit plus aéré.

 

Arithmancie, numérologie et astrologie

La numérologie moderne est également nommée arithmancie, mot qui vient du grec et signifie la prophétie par les nombres. Les normes numérologiques ne sont guère fixées. La plus fréquente prétend prédire l’avenir d’une personne en se servant de ses noms et prénoms … pour les transformer en nombres entre 1 et 9. La règle la plus courante est attribuée à un certain Septimus Tripoli, vers 1350. Chaque lettre de A à I se voit attribuer son numéro d’ordre (de 1 à 9), puis on recommence avec les lettres de J à R puis celle de S à Z. Les numérologues déterminent alors trois nombres : le nombre d’expression, le nombre intime et le nombre de réalisation. Le premier est la somme de toutes les lettres de vos noms et prénoms, ramenés à 9, comme dans la preuve par neuf. Le second se détermine de même, mais en ne considérant que les voyelles, tandis que le dernier n’utilise que les consonnes.

Un peu de calcul

Ainsi HERVE LEHNING donne : 8 + 5 + 9 + 4 + 5 + 3 + 5 + 8 + 5 + 9 + 5 + 7, soit 73 donc 7 + 3, soit 10 donc 1. Le nombre d’expression est 1. Pour les voyelles, on obtient 5 + 5 + 5 + 9 soit 24, c’est-à-dire 6. Le nombre intime est 6. Pour les consonnes, on obtient 73 – 24 = 49, soit 4. Le nombre de réalisation est 4.

Un portrait flatteur

Portait flatteur de l’auteur.

Ces calculs faits, les numérologues fonctionnent comme les astrologues, ils proposent une étude de personnalité que personne ne contestera, en voici un exemple :

Vous avez besoin d’être aimé et admiré, et pourtant vous êtes critique avec vous-même. Vous avez certes des points faibles dans votre personnalité, mais vous savez généralement les compenser. Vous avez un potentiel considérable que vous n’avez pas tourné à votre avantage. À l’extérieur vous êtes discipliné et vous savez vous contrôler, mais à l’intérieur vous tendez à être préoccupé et pas très sûr de vous-même. Parfois vous vous demandez sérieusement si vous avez pris la bonne décision ou fait ce qu’il fallait. Vous préférez une certaine dose de changement et de variété, et devenez insatisfait si on vous entoure de restrictions et de limitations. Vous vous flattez d’être un esprit indépendant ; et vous n’acceptez l’opinion d’autrui que dûment démontrée. Mais vous avez trouvé qu’il était maladroit de se révéler trop facilement aux autres. Par moments, vous êtes très extraverti, bavard et sociable, tandis qu’à d’autres moments vous êtes introverti, circonspect, et réservé. Certaines de vos aspirations tendent à être assez irréalistes.

L’effet Barnum

Phineas Barnum (1810 – 1894) se définissait comme le prince des charlatans.

Un psychologue, Bertram Forer (1914 – 2000), après avoir fait remplir un test de personnalité à ses étudiants, leur avait donné à tous ce même compte-rendu, sans même lire leurs tests, et leur avait demandé de le noter de 1 à 5, 5 signifiant qu’il était excellent. La moyenne des résultats fut 4,26 ! Ce test a souvent été répété, le résultat a toujours été le même. Les numérologues, comme les astrologues ou autres voyants, utilisent ce même procédé. Ce défaut qui nous pousse à accepter si facilement une description, même fausse, de nous-même à condition qu’elle soit flatteuse est souvent appelé effet Barnum, en hommage au maître de la manipulation psychologique que fut l’homme de cirque, Phineas Barnum.

 

Galilée, Cosme II de Médicis et le paradoxe de Toscane

Cosme II de Médicis, Grand-duc de Toscane, avait remarqué qu’en jetant trois dés, le total dix sortait plus souvent que le neuf. Pourtant, il existait autant de façons de décomposer neuf et dix en somme de trois nombres entre un et six, ce qui lui semblait contradictoire.

Une façon de décomposer dix en somme de trois nombres.

Ce paradoxe est connu sous le nom de paradoxe de Toscane.

La solution de Galilée

Galilée (1564 – 1642), qui fut le précepteur de Cosme II, trouva la raison de cette bizarrerie. On peut comprendre son mécanisme en considérant le jeu de pile ou face. Si la pièce n’est pas pipée, la probabilité d’obtenir pile est égale à ½ et de même celle d’obtenir face. Si on joue deux fois de suite, chacune des possibilités PP, PF, FP et FF est équiprobable donc leurs probabilités sont toutes égales à ¼. Si on jette les deux pièces à la fois, les probabilités d’avoir deux piles ou deux faces sont égales à ¼ mais celle d’avoir un pile et un face est égale à ½ car elle regroupe les deux cas PF et FP. Il en va exactement de même dans le paradoxe de Toscane. Les décompositions de neuf et dix ne sont pas équivalentes de ce point de vue. La différence tient en la décomposition de neuf en trois fois le même nombre, ce qui est impossible pour dix. Le calcul permet d’établir que la probabilité d’obtenir neuf est égale à 25/216 alors que celle d’obtenir dix est égale à 27 / 216 soit 1/8. Ces deux nombres montrent que Cosme était fin observateur, et vraiment très grand joueur, car les probabilités ne diffèrent que de 1 %.

 

Les lois de Mendel et le principe de Hardy

Gregor Mendel (1822 – 1884) est connu pour avoir posé les premières lois de la génétique. Elles sont de nature si mathématique que Godfrey Hardy, le grand mathématicien britannique du début XXe siècle, connu pour sa critique des mathématiques appliquées, les a prolongées. Imaginons qu’une fleur vienne en deux couleurs : blanche et noire, jamais grise ou autre et que ces deux variétés puissent s’hybrider, c’est-à-dire se mélanger. Imaginons que deux parents à fleurs blanches donnent toujours des enfants à fleurs blanches, alors que les parents à fleurs noires peuvent donner des blanches comme des noires.

Né Johann Mendel en 1822, Mendel prendra le prénom de Gregor à son entrée au monastère de Brunn (Tchéquie), en Autriche à l’époque. Il y trouva un milieu intellectuel stimulant et put y installer un jardin expérimental, où il fit ses recherches sur l’hybridation. En 1866, il devint supérieur de son couvent, ce qui mit fin à ses recherches en botanique. Il se consacra alors à l’administration du monastère ainsi qu’à des recherches en météorologie, pour lesquelles il fut reconnu par ses contemporains … davantage que pour ses apports à la génétique.

La mathématique de l’hybridation

Gregor Mendel a étudié ces lois de l’hybridation en pollinisant artificiellement des pois, qui se présentent sous deux formes facilement discernables. Nous ne décrirons pas ses expériences en détail. Son premier résultat est d’ordre statistique. En croisant une fleur noire et une fleur blanche, à la première génération, on obtient des fleurs blanches et, à la seconde, trois quarts de fleurs blanches et un quart de fleurs noires.

Deux premières générations d’un croisement blanche / noire.

Pour le mathématicien, une explication logique est de penser que le gène de la couleur des fleurs se divise en deux moitiés, ses deux allèles : blanc et noir. A priori, il existe donc quatre combinaisons possibles de ces deux allèles : blanc / blanc, blanc / noir, noir / blanc et noir / noir. Cette propriété est cachée car seuls les porteurs du gène blanc / blanc ont des fleurs blanches, tous les autres ont des fleurs noires. C’est pourquoi on parle de caractère dominant pour la couleur noire, et de caractère récessif pour la couleur blanche. Cette domination est cependant très relative car les combinaisons se faisant de façon équiprobable, à la seconde génération, nous trouvons une fois sur quatre la combinaison blanc / blanc, donc des fleurs blanches.

Cette théorie de Mendel ne fut pas comprise en son temps. Les biologistes pensaient que les caractères dominants devaient forcément augmenter dans la population, ce que les calculs précédents nient. Plus étrangement encore, on ne vit pas immédiatement le lien avec la théorie de l’évolution de Darwin, pourtant contemporaine de celle de Mendel.

Le principe de Hardy

À l’opposé de Mendel, qui était prêtre, Godfrey Hardy était un athée convaincu. Son athéisme comprenait cependant une étrange part d’autodérision, si on en croît l’anecdote suivante. La peur d’un naufrage lui fit écrire à un collègue pour lui annoncer qu’il avait démontré l’hypothèse de Riemann. Il aurait ensuite justifié son envoi en disant que Dieu, qu’il tenait pour son ennemi intime, n’allait pas le laisser mourir et laisser croire ainsi qu’un tel impie avait réussi à démontrer cette conjecture, encore ouverte de nos jours. Il est tout aussi étrange qu’un mathématicien pur aussi convaincu ait publié un article de biologie. Il le serait encore davantage si, un jour, il était plus connu pour son apport à la génétique que pour ses théorèmes mathématiques. Le moteur de recherche Google laisse penser que ce jour viendra puisque « théorème Hardy » donne 56 700 résultats alors que « principe Hardy » en donne 4 450 000. Godfrey Hardy y verrait sans doute une revanche de son ennemi.

Si les mathématiques appliquées ont pu un jour être vues comme « impures » par certains mathématiciens « purs », ce fut le cas de Godfrey Hardy. On s’étonnera alors de voir son nom mêlé à une question de biologie. C’est pourquoi il s’excusa presque de s’immiscer dans ce domaine. En 1908, au cours d’un dîner, on lui demanda s’il était possible de déterminer mathématiquement la proportion d’allèles dominants permettant l’évolution dans une population. Hardy étant un mathématicien pur, sa réponse réclama quelques hypothèses. Tout d’abord, la population devait être de grande taille, sans migration, estimée infinie, les individus s’y croiseraient aléatoirement mais les générations seraient séparées. Enfin, il n’y aurait ni mutation, ni sélection. Tout ceci assure la rigueur du raisonnement suivant.

Considérons un gène à deux allèles A et a possédant les fréquences p et q = 1 – p  dans une certaine génération. Quelles sont les fréquences à la génération suivante ?

Pour le déterminer, comptons d’abord les fréquences des diverses combinaisons à la génération suivante : AA, Aa et aa. Il s’agit d’une question élémentaire de probabilité. Pour qu’un individu soit AA, il doit avoir reçu l’allèle A de ses deux parents, supposés aléatoires d’après l’hypothèse de Hardy. La fréquence de chacun étant égale à p, la probabilité est égale à p2. De même, celle de aa est q2. Pour Aa, deux cas sont possibles puisque cela peut provenir d’un A de la mère et d’un a du père, comme du contraire. On obtient donc 2 pq.

Si la population totale de cette nouvelle génération est égale à N, le nombre d’allèles y est égal à 2N. L’allèle A se trouve deux fois dans AA et une fois dans Aa, son nombre est donc égal à 2 p2 N + 2 pq N. Sa fréquence est ainsi égale à p2 + pq = p (p + q) = p puisque p + q = 1. Il en est de même de l’allèle a. Autrement dit, sous les hypothèses énoncées plus haut, la fréquence des allèles ne se modifie pas d’une génération à l’autre.

Ainsi, les relations de dominance entre allèles n’influent pas sur leurs fréquences. Autrement dit, l’évolution est impossible sous les hypothèses de Hardy … il faut tenir compte des mutations.

 

La spirale logarithmique, une courbe zoologique ?

La même courbe se retrouve-t-elle dans les galaxies, certains mollusques et les toiles d’araignées ? Enquête sur la spirale logarithmique.

La spirale d’Archimède

Imaginez ! Une droite tourne à vitesse angulaire constante autour d’un point O. Si, partant de O, un point M parcourt cette droite à vitesse constante, on obtient une spirale d’Archimède. On démontre facilement que les spires y sont régulièrement espacées.

Spirale d’Archimède. Elle est engendrée par un point mobile M partant d’un point O, à vitesse constante sur une droite tournant à vitesse angulaire constante autour de O.

La spirale logarithmique

Si, toujours partant de O, le point M parcourt la droite à une vitesse proportionnelle à la longueur OM, il dessine une autre courbe, appelée spirale logarithmique depuis Pierre Varignon (1654 – 1722) mais étudiée auparavant par René Descartes (1596 – 1650) avant d’être choisie par Jacques Bernoulli (1654 – 1705) pour orner sa tombe. Malheureusement, le sculpteur ignorait cette courbe et grava une spirale d’Archimède.

 

Spirale logarithmique. Elle est engendrée par un point mobile M partant d’un point O, à vitesse proportionnelle à OM sur une droite tournant à vitesse angulaire constante autour de O.

Au lieu d’être régulièrement espacées, les spires suivent une progression géométrique de raison constante. Autre propriété de la spirale : elle coupe le rayon OM suivant un angle constant.

Inscription sur la tombe de Jacques Bernoulli, avec la spirale en bas.
Sur cet agrandissement, on voit que le sculpteur a gravé une spirale d’Archimède et non une spirale logarithmique. L’inscription latine « eadem mutata resurgo » signifie « déplacée, je réapparais à l’identique ».

Le développement du nautile

Le nautile est un mollusque marin dont la coquille est en forme de spirale. L’espace entre les spires étant triplé à chaque enroulement, elle évoque une spirale logarithmique. Pour examiner si cette forme est fortuite ou non, il est nécessaire d’en comprendre la provenance.

Coupe d’un nautile faisant apparaître une forme de spirale logarithmique.

La coquille du nautile est divisée en chambres closes, l’animal n’occupant que la dernière. Les autres sont remplies d’un mélange de liquide et de gaz, toutes communiquent entre elles au moyen d’un siphon.

Nautile vivant. L’animal n’occupe que la dernière chambre. Il se déplace d’avant en arrière en expulsant de l’eau du côté de sa bouche.

Ces chambres correspondent à l’évolution progressive du mollusque. Quand il grossit, ne pouvant agrandir la chambre où il se trouve, il en crée une autre dans son prolongement, un peu plus grosse mais semblable.

Pour montrer que cette idée mène effectivement à une spirale logarithmique, prenons comme modèle de la coquille une suite de triangles rectangles d’angle au sommet constant égal à 30°. Le rapport entre un triangle et son suivant est de 115 % (l’inverse du cosinus de 30° soit 2  divisé par racine de 3 pour être précis), ce qui correspond bien à une spirale logarithmique. L’idée correspond à un accroissement progressif de la taille de l’animal. Il n’est pas besoin d’imaginer de plans compliqués inscrits dans les gènes du nautile pour cela, juste une façon de croître.

Suite de triangles rectangles formant une (approximation de) spirale logarithmique.

La spirale logarithmique se retrouve pour les mêmes raisons dans d’autres animaux, comme la planorbe, un escargot marin très utilisé dans les aquariums car il se nourrit d’algues et de plantes à la limite du pourrissement.

Une coquille de planorbe en forme de spirale logarithmique.

Les toiles d’araignées

La toile d’araignée est avant tout un piège destiné à attraper des insectes. Certaines espèces tissent des toiles où il est bien difficile de reconnaître la moindre régularité.

Il n’est pas facile de reconnaître la moindre courbe mathématique dans cette toile d’araignée. En revanche, sans le soleil en contre jour, il est difficile de la détecter.

Les espèces les plus communes en France, les épeires, fabriquent cependant des toiles en forme de spirales. Après avoir bâti un cadre entre quelques branches, l’araignée tisse un réseau régulier de segments rectilignes partant tous d’un même point. Un fois ce travail fini, elle forme une spirale en les reliant. Le célèbre entomologiste Jean-Henri Fabre (1823 – 1915) a voulu y reconnaître une spirale logarithmique, tout en remarquant que l’action de la pesanteur transformait chaque segment en chaînette, la forme que prend naturellement un fil pesant comme les câbles électriques ou les chaînes que l’on porte autour du cou.

Cette toile d’épeire laisse plus penser à une spirale d’Archimède qu’à une spirale logarithmique. On y remarque également les segments transformés en chaînette sous l’effet de la pesanteur.

Comment comprendre le monde moderne sans culture mathématique ? Accéder à celle-ci n’exige cependant pas d’apprendre à résoudre la moindre équation.