Arithmancie, numérologie et astrologie

La numérologie moderne est également nommée arithmancie, mot qui vient du grec et signifie la prophétie par les nombres. Les normes numérologiques ne sont guère fixées. La plus fréquente prétend prédire l’avenir d’une personne en se servant de ses noms et prénoms … pour les transformer en nombres entre 1 et 9. La règle la plus courante est attribuée à un certain Septimus Tripoli, vers 1350. Chaque lettre de A à I se voit attribuer son numéro d’ordre (de 1 à 9), puis on recommence avec les lettres de J à R puis celle de S à Z. Les numérologues déterminent alors trois nombres : le nombre d’expression, le nombre intime et le nombre de réalisation. Le premier est la somme de toutes les lettres de vos noms et prénoms, ramenés à 9, comme dans la preuve par neuf. Le second se détermine de même, mais en ne considérant que les voyelles, tandis que le dernier n’utilise que les consonnes.

Un peu de calcul

Ainsi HERVE LEHNING donne : 8 + 5 + 9 + 4 + 5 + 3 + 5 + 8 + 5 + 9 + 5 + 7, soit 73 donc 7 + 3, soit 10 donc 1. Le nombre d’expression est 1. Pour les voyelles, on obtient 5 + 5 + 5 + 9 soit 24, c’est-à-dire 6. Le nombre intime est 6. Pour les consonnes, on obtient 73 – 24 = 49, soit 4. Le nombre de réalisation est 4.

Un portrait flatteur

Portait flatteur de l’auteur.

Ces calculs faits, les numérologues fonctionnent comme les astrologues, ils proposent une étude de personnalité que personne ne contestera, en voici un exemple :

Vous avez besoin d’être aimé et admiré, et pourtant vous êtes critique avec vous-même. Vous avez certes des points faibles dans votre personnalité, mais vous savez généralement les compenser. Vous avez un potentiel considérable que vous n’avez pas tourné à votre avantage. À l’extérieur vous êtes discipliné et vous savez vous contrôler, mais à l’intérieur vous tendez à être préoccupé et pas très sûr de vous-même. Parfois vous vous demandez sérieusement si vous avez pris la bonne décision ou fait ce qu’il fallait. Vous préférez une certaine dose de changement et de variété, et devenez insatisfait si on vous entoure de restrictions et de limitations. Vous vous flattez d’être un esprit indépendant ; et vous n’acceptez l’opinion d’autrui que dûment démontrée. Mais vous avez trouvé qu’il était maladroit de se révéler trop facilement aux autres. Par moments, vous êtes très extraverti, bavard et sociable, tandis qu’à d’autres moments vous êtes introverti, circonspect, et réservé. Certaines de vos aspirations tendent à être assez irréalistes.

L’effet Barnum

Phineas Barnum (1810 – 1894) se définissait comme le prince des charlatans.

Un psychologue, Bertram Forer (1914 – 2000), après avoir fait remplir un test de personnalité à ses étudiants, leur avait donné à tous ce même compte-rendu, sans même lire leurs tests, et leur avait demandé de le noter de 1 à 5, 5 signifiant qu’il était excellent. La moyenne des résultats fut 4,26 ! Ce test a souvent été répété, le résultat a toujours été le même. Les numérologues, comme les astrologues ou autres voyants, utilisent ce même procédé. Ce défaut qui nous pousse à accepter si facilement une description, même fausse, de nous-même à condition qu’elle soit flatteuse est souvent appelé effet Barnum, en hommage au maître de la manipulation psychologique que fut l’homme de cirque, Phineas Barnum.

 

Galilée, Cosme II de Médicis et le paradoxe de Toscane

Cosme II de Médicis, Grand-duc de Toscane, avait remarqué qu’en jetant trois dés, le total dix sortait plus souvent que le neuf. Pourtant, il existait autant de façons de décomposer neuf et dix en somme de trois nombres entre un et six, ce qui lui semblait contradictoire.

Une façon de décomposer dix en somme de trois nombres.

Ce paradoxe est connu sous le nom de paradoxe de Toscane.

La solution de Galilée

Galilée (1564 – 1642), qui fut le précepteur de Cosme II, trouva la raison de cette bizarrerie. On peut comprendre son mécanisme en considérant le jeu de pile ou face. Si la pièce n’est pas pipée, la probabilité d’obtenir pile est égale à ½ et de même celle d’obtenir face. Si on joue deux fois de suite, chacune des possibilités PP, PF, FP et FF est équiprobable donc leurs probabilités sont toutes égales à ¼. Si on jette les deux pièces à la fois, les probabilités d’avoir deux piles ou deux faces sont égales à ¼ mais celle d’avoir un pile et un face est égale à ½ car elle regroupe les deux cas PF et FP. Il en va exactement de même dans le paradoxe de Toscane. Les décompositions de neuf et dix ne sont pas équivalentes de ce point de vue. La différence tient en la décomposition de neuf en trois fois le même nombre, ce qui est impossible pour dix. Le calcul permet d’établir que la probabilité d’obtenir neuf est égale à 25/216 alors que celle d’obtenir dix est égale à 27 / 216 soit 1/8. Ces deux nombres montrent que Cosme était fin observateur, et vraiment très grand joueur, car les probabilités ne diffèrent que de 1 %.

 

Les lois de Mendel et le principe de Hardy

Gregor Mendel (1822 – 1884) est connu pour avoir posé les premières lois de la génétique. Elles sont de nature si mathématique que Godfrey Hardy, le grand mathématicien britannique du début XXe siècle, connu pour sa critique des mathématiques appliquées, les a prolongées. Imaginons qu’une fleur vienne en deux couleurs : blanche et noire, jamais grise ou autre et que ces deux variétés puissent s’hybrider, c’est-à-dire se mélanger. Imaginons que deux parents à fleurs blanches donnent toujours des enfants à fleurs blanches, alors que les parents à fleurs noires peuvent donner des blanches comme des noires.

Né Johann Mendel en 1822, Mendel prendra le prénom de Gregor à son entrée au monastère de Brunn (Tchéquie), en Autriche à l’époque. Il y trouva un milieu intellectuel stimulant et put y installer un jardin expérimental, où il fit ses recherches sur l’hybridation. En 1866, il devint supérieur de son couvent, ce qui mit fin à ses recherches en botanique. Il se consacra alors à l’administration du monastère ainsi qu’à des recherches en météorologie, pour lesquelles il fut reconnu par ses contemporains … davantage que pour ses apports à la génétique.

La mathématique de l’hybridation

Gregor Mendel a étudié ces lois de l’hybridation en pollinisant artificiellement des pois, qui se présentent sous deux formes facilement discernables. Nous ne décrirons pas ses expériences en détail. Son premier résultat est d’ordre statistique. En croisant une fleur noire et une fleur blanche, à la première génération, on obtient des fleurs blanches et, à la seconde, trois quarts de fleurs blanches et un quart de fleurs noires.

Deux premières générations d’un croisement blanche / noire.

Pour le mathématicien, une explication logique est de penser que le gène de la couleur des fleurs se divise en deux moitiés, ses deux allèles : blanc et noir. A priori, il existe donc quatre combinaisons possibles de ces deux allèles : blanc / blanc, blanc / noir, noir / blanc et noir / noir. Cette propriété est cachée car seuls les porteurs du gène blanc / blanc ont des fleurs blanches, tous les autres ont des fleurs noires. C’est pourquoi on parle de caractère dominant pour la couleur noire, et de caractère récessif pour la couleur blanche. Cette domination est cependant très relative car les combinaisons se faisant de façon équiprobable, à la seconde génération, nous trouvons une fois sur quatre la combinaison blanc / blanc, donc des fleurs blanches.

Cette théorie de Mendel ne fut pas comprise en son temps. Les biologistes pensaient que les caractères dominants devaient forcément augmenter dans la population, ce que les calculs précédents nient. Plus étrangement encore, on ne vit pas immédiatement le lien avec la théorie de l’évolution de Darwin, pourtant contemporaine de celle de Mendel.

Le principe de Hardy

À l’opposé de Mendel, qui était prêtre, Godfrey Hardy était un athée convaincu. Son athéisme comprenait cependant une étrange part d’autodérision, si on en croît l’anecdote suivante. La peur d’un naufrage lui fit écrire à un collègue pour lui annoncer qu’il avait démontré l’hypothèse de Riemann. Il aurait ensuite justifié son envoi en disant que Dieu, qu’il tenait pour son ennemi intime, n’allait pas le laisser mourir et laisser croire ainsi qu’un tel impie avait réussi à démontrer cette conjecture, encore ouverte de nos jours. Il est tout aussi étrange qu’un mathématicien pur aussi convaincu ait publié un article de biologie. Il le serait encore davantage si, un jour, il était plus connu pour son apport à la génétique que pour ses théorèmes mathématiques. Le moteur de recherche Google laisse penser que ce jour viendra puisque « théorème Hardy » donne 56 700 résultats alors que « principe Hardy » en donne 4 450 000. Godfrey Hardy y verrait sans doute une revanche de son ennemi.

Si les mathématiques appliquées ont pu un jour être vues comme « impures » par certains mathématiciens « purs », ce fut le cas de Godfrey Hardy. On s’étonnera alors de voir son nom mêlé à une question de biologie. C’est pourquoi il s’excusa presque de s’immiscer dans ce domaine. En 1908, au cours d’un dîner, on lui demanda s’il était possible de déterminer mathématiquement la proportion d’allèles dominants permettant l’évolution dans une population. Hardy étant un mathématicien pur, sa réponse réclama quelques hypothèses. Tout d’abord, la population devait être de grande taille, sans migration, estimée infinie, les individus s’y croiseraient aléatoirement mais les générations seraient séparées. Enfin, il n’y aurait ni mutation, ni sélection. Tout ceci assure la rigueur du raisonnement suivant.

Considérons un gène à deux allèles A et a possédant les fréquences p et q = 1 – p  dans une certaine génération. Quelles sont les fréquences à la génération suivante ?

Pour le déterminer, comptons d’abord les fréquences des diverses combinaisons à la génération suivante : AA, Aa et aa. Il s’agit d’une question élémentaire de probabilité. Pour qu’un individu soit AA, il doit avoir reçu l’allèle A de ses deux parents, supposés aléatoires d’après l’hypothèse de Hardy. La fréquence de chacun étant égale à p, la probabilité est égale à p2. De même, celle de aa est q2. Pour Aa, deux cas sont possibles puisque cela peut provenir d’un A de la mère et d’un a du père, comme du contraire. On obtient donc 2 pq.

Si la population totale de cette nouvelle génération est égale à N, le nombre d’allèles y est égal à 2N. L’allèle A se trouve deux fois dans AA et une fois dans Aa, son nombre est donc égal à 2 p2 N + 2 pq N. Sa fréquence est ainsi égale à p2 + pq = p (p + q) = p puisque p + q = 1. Il en est de même de l’allèle a. Autrement dit, sous les hypothèses énoncées plus haut, la fréquence des allèles ne se modifie pas d’une génération à l’autre.

Ainsi, les relations de dominance entre allèles n’influent pas sur leurs fréquences. Autrement dit, l’évolution est impossible sous les hypothèses de Hardy … il faut tenir compte des mutations.

 

La spirale logarithmique, une courbe zoologique ?

La même courbe se retrouve-t-elle dans les galaxies, certains mollusques et les toiles d’araignées ? Enquête sur la spirale logarithmique.

La spirale d’Archimède

Imaginez ! Une droite tourne à vitesse angulaire constante autour d’un point O. Si, partant de O, un point M parcourt cette droite à vitesse constante, on obtient une spirale d’Archimède. On démontre facilement que les spires y sont régulièrement espacées.

Spirale d’Archimède. Elle est engendrée par un point mobile M partant d’un point O, à vitesse constante sur une droite tournant à vitesse angulaire constante autour de O.

La spirale logarithmique

Si, toujours partant de O, le point M parcourt la droite à une vitesse proportionnelle à la longueur OM, il dessine une autre courbe, appelée spirale logarithmique depuis Pierre Varignon (1654 – 1722) mais étudiée auparavant par René Descartes (1596 – 1650) avant d’être choisie par Jacques Bernoulli (1654 – 1705) pour orner sa tombe. Malheureusement, le sculpteur ignorait cette courbe et grava une spirale d’Archimède.

 

Spirale logarithmique. Elle est engendrée par un point mobile M partant d’un point O, à vitesse proportionnelle à OM sur une droite tournant à vitesse angulaire constante autour de O.

Au lieu d’être régulièrement espacées, les spires suivent une progression géométrique de raison constante. Autre propriété de la spirale : elle coupe le rayon OM suivant un angle constant.

Inscription sur la tombe de Jacques Bernoulli, avec la spirale en bas.
Sur cet agrandissement, on voit que le sculpteur a gravé une spirale d’Archimède et non une spirale logarithmique. L’inscription latine « eadem mutata resurgo » signifie « déplacée, je réapparais à l’identique ».

Le développement du nautile

Le nautile est un mollusque marin dont la coquille est en forme de spirale. L’espace entre les spires étant triplé à chaque enroulement, elle évoque une spirale logarithmique. Pour examiner si cette forme est fortuite ou non, il est nécessaire d’en comprendre la provenance.

Coupe d’un nautile faisant apparaître une forme de spirale logarithmique.

La coquille du nautile est divisée en chambres closes, l’animal n’occupant que la dernière. Les autres sont remplies d’un mélange de liquide et de gaz, toutes communiquent entre elles au moyen d’un siphon.

Nautile vivant. L’animal n’occupe que la dernière chambre. Il se déplace d’avant en arrière en expulsant de l’eau du côté de sa bouche.

Ces chambres correspondent à l’évolution progressive du mollusque. Quand il grossit, ne pouvant agrandir la chambre où il se trouve, il en crée une autre dans son prolongement, un peu plus grosse mais semblable.

Pour montrer que cette idée mène effectivement à une spirale logarithmique, prenons comme modèle de la coquille une suite de triangles rectangles d’angle au sommet constant égal à 30°. Le rapport entre un triangle et son suivant est de 115 % (l’inverse du cosinus de 30° soit 2  divisé par racine de 3 pour être précis), ce qui correspond bien à une spirale logarithmique. L’idée correspond à un accroissement progressif de la taille de l’animal. Il n’est pas besoin d’imaginer de plans compliqués inscrits dans les gènes du nautile pour cela, juste une façon de croître.

Suite de triangles rectangles formant une (approximation de) spirale logarithmique.

La spirale logarithmique se retrouve pour les mêmes raisons dans d’autres animaux, comme la planorbe, un escargot marin très utilisé dans les aquariums car il se nourrit d’algues et de plantes à la limite du pourrissement.

Une coquille de planorbe en forme de spirale logarithmique.

Les toiles d’araignées

La toile d’araignée est avant tout un piège destiné à attraper des insectes. Certaines espèces tissent des toiles où il est bien difficile de reconnaître la moindre régularité.

Il n’est pas facile de reconnaître la moindre courbe mathématique dans cette toile d’araignée. En revanche, sans le soleil en contre jour, il est difficile de la détecter.

Les espèces les plus communes en France, les épeires, fabriquent cependant des toiles en forme de spirales. Après avoir bâti un cadre entre quelques branches, l’araignée tisse un réseau régulier de segments rectilignes partant tous d’un même point. Un fois ce travail fini, elle forme une spirale en les reliant. Le célèbre entomologiste Jean-Henri Fabre (1823 – 1915) a voulu y reconnaître une spirale logarithmique, tout en remarquant que l’action de la pesanteur transformait chaque segment en chaînette, la forme que prend naturellement un fil pesant comme les câbles électriques ou les chaînes que l’on porte autour du cou.

Cette toile d’épeire laisse plus penser à une spirale d’Archimède qu’à une spirale logarithmique. On y remarque également les segments transformés en chaînette sous l’effet de la pesanteur.

Les mathématiques des épidémies

Le passé a connu des épidémies terribles comme les pestes du Moyen-Âge. Avant qu’on comprenne leur mode de transmission, les hommes étaient incapables de s’en prémunir. Quand on le comprit, on put opérer des mises en quarantaine. Enfin, la solution vint avec les vaccinations, qui permettent de réduire le nombre de gens susceptibles de contacter une maladie. Cela suffit pour éviter une épidémie, comme l’explique le modèle SIR.

Le modèle SIR

William Kermack (1898 – 1970) et Anderson Mac Kendrick (1876 – 1943).

William Kermack et Anderson Mac Kendrick ont modélisé les épidémies en 1927. Leur modèle compartimente la population en trois classes : S, la classe des individus susceptibles d’attraper la maladie, I, celle de ceux qui en sont infectés (et contagieux) et R, ceux qui en sont revenus ou morts. Dans les deux cas, ces derniers sont immunisés et ne contamineront plus personne. Le modèle SIR considère l’évolution de ces trois classes dans le temps en fonction de deux taux mesurables expérimentalement. Le premier (a) est le taux de contagion de la maladie pour un infecté, c’est-à-dire la probabilité pour qu’un individu susceptible attrape la maladie après contact avec un individu infecté. Le second taux (b) mesure le passage de l’état I à l’état R. Après un laps de temps Δt, on compte a I S Δt infectés supplémentaires et R augmente de b I Δt. La variation du nombre d’infectés est donc égale à a S – b multiplié par I Δt. La condition pour que la maladie se propage (et donc donne lieu à une épidémie) est que le nombre de malades infectés augmente, c’est-à-dire que a S – b > 0. Le quotient b / a a donc valeur de seuil. Si le nombre de sujets susceptibles est inférieur à ce seuil, la maladie ne s’étend pas. Sinon, elle donne lieu à une épidémie (ou à une épizootie).

Un effet de seuil

D’une façon qui peut paraître paradoxale, l’apparition d’une épidémie ne dépend donc pas du nombre de personnes infectées, mais du nombre de personnes susceptibles d’attraper la maladie !

La vaccination permet de passer en dessous du seuil qui permet une épidémie.

Cette remarque justifie à elle seule les politiques de vaccination, même avec un vaccin peu efficace. Pour éviter une épidémie, c’est le nombre d’individus susceptibles d’attraper la maladie qu’il faut diminuer ! Ce nombre dépend de chaque maladie. Pour la rougeole, pour éviter l’épidémie, une couverture vaccinale de 95 % est nécessaire, ce qui n’est plus assuré en France du fait de campagnes obscurantistes antivaccins. La France a donc la honte d’exporter la rougeole dans des pays comme la Suisse ou le Costa Rica.

Le théorème du moustique

Cela justifie aussi le théorème du moustique découvert par Ronald Ross (1857 – 1932) en 1911, et selon lequel il n’est pas besoin d’éliminer tous les moustiques pour éradiquer le paludisme, il suffit d’en faire passer la population sous un certain seuil. Cette découverte a précédé sa justification théorique au moyen du modèle SIR. Auparavant, le lien entre les marécages et le paludisme était connu, comme le montrent les tentatives de drainage des marais Pontins près de Rome de l’Antiquité jusqu’au XIXe siècle. De même, le paludisme a disparu de France, où il était autrefois endémique dans les régions humides comme la Sologne, le marais Poitevin et même autour de Port-Royal des Champs, au cours du XIXe siècle grâce au drainage et non à la consommation de Quinquina, un apéritif à base de Quinine, un préventif du paludisme, comme cela a été parfois affirmé !

 

Sornettes sur la planète

Les scientifiques essayent d’expliquer le monde dans lequel ils vivent, en utilisant du mieux qu’ils le peuvent leurs connaissances, fondées sur l’observation. Cela n’a pas été toujours sans difficultés, erreurs et tâtonnements en fonction des savoirs du moment. Ainsi en a-t-il été de la forme de la Terre ou de sa position et de son mouvement dans le système Solaire.

Le goût des métaphores

Aux époques où l’érudition, et le savoir en général, était, dans chaque pays, détenu par les autorités religieuses, les débats se sont souvent enlisés dans des joutes stériles entre rationnel et irrationnel. Les religions se sont, en général, construites sur des écrits d’époques reculées ou l’emploi de métaphores était courant. Ainsi l’affirmation que l’on trouve au chapitre 5 de l’évangile de Matthieu « vous êtes le sel de la Terre » n’indique pas que les disciples de Jésus étaient faits en sel et non en chair et en os ! Il en est de même des quatre coins de la Terre !

Le géocentrisme fait de la résistance

Représentation géocentrique de l’univers. La Bible le justifie par un court verset du livre de Josué (10-13) où le soelil s’arrête pour permettre la victoire d’Israël.

Ces époques lointaines devraient être révolues car si la fabrication du savoir est entre les mains de scientifiques de plus en plus performants, la connaissance que l’on a de ce savoir est maintenant l’affaire de chacun, de sa propre culture et de son accès à l’information. Quelques cas resteront cependant irréductibles : en 1999, année de l’éclipse totale de Soleil en France, j’ai été pris à parti un jour dans un café, par un consommateur qui croyait encore et doit croire toujours que le Soleil tourne autour de la Terre. Mais, hélas, la crédulité des uns fait le bonheur des autres.

La Terre est plate !

Les peuples de marins peuvent difficilement ignorer que la Terre est ronde. Même par ciel dégagé, les bateaux disparaissent graduellement derrière l’horizon. Ceci ne s’expliquerait pas si la Terre était plate. En revanche, si elle est sphérique, c’est logique. De nos jours, nous disposons d’une preuve qui semble incontournable : les photographies prises de l’espace.

 

Photographie de la Terre prise de l’espace.

Pour certains, cela prouve simplement l’existence d’un complot international pour faire croire que la Terre est ronde ! L’obscurantisme a toujours fait recette à travers les siècles. D’autres sont des personnes cultivant un sens de l’humour atypique. Ainsi, on peut lire sur internet, plaisanterie ou délire ?

La Terre est plate, elle a la forme d’un disque avec, au centre, le Pôle Nord et les continents groupés autour de lui sauf l’Antarctique qui correspond en fait à la circonférence du disque. Personne n’est jamais tombé du disque car personne n’a jamais pu traverser l’Antarctique…

La Terre plate avec le pôle nord en son centre et le pôle sud comme montagne frontière empêchant les océans de se déverser à l’extérieur.

Les expériences d’un ingénieur anglais

Au XIXe siècle, un ingénieur anglais et original, Samuel Rowbotham (1816 – 1864) décida de réaliser des expériences pour décider si la Terre était ronde ou plate. L’idée était de vérifier, en utilisant un télescope, si une rivière, la Bedford, en l’occurrence s’incurvait ou pas. Si la Terre est bien ronde, on ne peut voir un bateau plat sur une rivière à plus de cinq kilomètres… or Rowbotham réussit à en voir un à plus de dix kilomètres ! Preuve que la Terre est plate ? Non, sans doute mais l’expérience est troublante… En fait, elle s’explique par la réfraction de la lumière, le phénomène qui explique les mirages dans le désert. Même si notre ingénieur était animé d’un esprit malicieux, sa démarche était sans contexte de nature scientifique… et son expérience ne fait que raffermir la théorie selon laquelle la Terre est ronde.

La Terre est creuse !

L’existence de vastes cavernes souterraines est une évidence. Tous les spéléologues peuvent en témoigner. Les théories selon lesquelles certaines seraient occupées par des animaux fantastiques ou des civilisations intra-terrestres sont plus hasardeuses. C’est parfait quand elles ne sont que l’occasion d’œuvres littéraires fantastiques, comme chez Jules Verne et son Voyage au centre de la Terre et chez Edgar Jacobs et L’énigme de l’Atlantide.

C’est beaucoup plus ennuyeux quand certains commencent à croire à une Terre réellement creuse et habitée à l’intérieur. Au XVIIe siècle, l’astronome Edmund Halley, celui qui prédit correctement le retour de la comète qui depuis porte son nom, a envisagé une Terre creuse faite de plusieurs coquilles séparées par des atmosphères. Son but était d’expliquer des anomalies dans le champ magnétique. L’hypothèse d’une atmosphère lumineuse à l’intérieur de la Terre expliquait de plus les aurores boréales en s’échappant vers l’extérieur… d’où l’hypothèse d’entrées au niveau des pôles. Halley alla jusqu’à émettre l’hypothèse que ces trois mondes intérieurs pouvaient être habités.

Modèle de Terre creuse.

Cette hypothèse n’a pas convaincu ses collègues scientifiques de l’époque… mais plaît davantage à toutes sortes d’ésotériques modernes. Certains voient même un soleil intérieur et des habitants vivants dans un monde concave, donc les pieds en l’air, ce miracle ayant lieu grâce à la force centrifuge. Bien entendu, la physique nous apprend que c’est impossible !

L’annulation du champ magnétique

Le champ magnétique terrestre s’inverse avec une période fluctuant entre quelques milliers et quelques millions d’années, c’est-à-dire que le pôle nord magnétique est parfois au pôle nord géographique, parfois au pôle sud. La polarité des roches magmatiques, qui dépend du champ magnétique à l’époque de leur solidification, montre que celui-ci s’est inversé plusieurs fois. Que se passe-t-il entre ces deux phases ? Si un champ passe de la valeur –1 à la valeur +1 de manière continue, il semble clair qu’il doit passer par 0 entre les deux. Quand le champ est annulé, le pire devient probable sinon certain, car le magnétisme terrestre est une protection contre les bombardements cosmiques ! On ne peut cependant pas attribuer les principales extinctions de masse (celle du Permien, celle des Dinosaures ou celle des Mammouths) à une inversion du champ magnétique terrestre, comme certains l’ont proposé, car les dates ne correspondent pas ! De plus, un champ continu sur une sphère peut s’inverser sans jamais s’annuler. Il s’agit d’un résultat mathématique. En revanche, il est exact qu’une valeur réelle continue ne peut changer de signe sans s’annuler. Le danger de l’annulation du champ magnétique terrestre est un mythe.

La Terre, être vivant !

Le souffle de Gaïa par Josephine Wall.

1979, un chimiste, James Lovelock, puisant dans la mythologie, assimila la Terre à un organisme vivant, qu’il nomma Gaïa, du nom de la déesse grecque qui personnifie notre planète. En fait, son idée personnelle n’était pas aussi radicale. Il voyait plutôt l’atmosphère terrestre comme un système autorégulé, pas comme un être vivant. Malheureusement, comme on pouvait s’y attendre, cette idée a suscité un bon nombre de dérives mystiques aussi dangereuses qu’inconséquentes. Nous voyons les dangers d’une déification de notre planète ! Respecter notre environnement est une chose, sacrifier l’humanité à une soi-disant déesse en est une autre.

Si le fragile vaisseau Terre doit être préservé, c’est essentiellement pour offrir à l’humanité qui y vit la meilleure chance de se développer.

L’os d’Ishango

Au musée des sciences naturelles de Bruxelles, se trouve un os strié de nombreuses entailles, découvert dans les années 1950 à Ishango au Congo belge (devenu RDC) par Jean de Heinzelin de Braucourt (1920 – 1998). Cet os daté de 20000 ans avant notre ère n’est pas le plus ancien artefact de ce type connu, mais le nombre de ses entailles a donné un grand nombre d’hypothèses.

Compter les entailles

L’os d’Ishango est couvert de stries.

Si on sait chercher, on y trouve le nombre 60 qui, depuis les Mésopotamiens, est lié à l’astronomie, des nombres premiers comme 11, 13, 17 et 19, etc. Certains en ont déduit qu’il s’agissait d’un calendrier lunaire car 60 correspond presqu’au nombre de jours de deux lunaisons. La somme des nombres de deux colonnes se retrouvant parfois ailleurs, d’autres y voient l’ancêtre de la calculatrice. Une autre hypothèse proposée est qu’il s’agirait d’un jeu mathématique qu’aurait pratiqué l’homme d’Ishango.

Calcul des probabilités

La multiplicité des hypothèses montre que leur origine commune réside dans le calcul des probabilités : plus vous considérez de nombres, plus vous y trouverez de relations entre eux et avec d’autres. Il est cependant probable que l’os d’Ishango n’ait été destiné qu’à compter, peut-être du gibier. C’est le plus important car cela prouve que l’homme d’Ishango savait compter, même s’il n’était pas le premier.

Les carnets à spirales sont-ils à hélices ?

En grec ancien, speirao signifiait « enrouler », de bandelettes en particulier, mot qui rapprochait les langes des enfants de ceux des momies. Notre mot « spirale » en dérive… pourtant, de ce temps, « spirale » se disait éliks  … qui a donné notre « hélice ». Les deux mots viennent donc de l’idée d’enrouler, mais les spirales sont tombées dans le monde à deux dimensions tandis que les hélices se sont élevées dans celui à trois dimensions. Hélas, les spirales de la violence comme celles du chômage, ou d’autres encore, nous enfoncent sans cesse et sont donc plutôt des hélices que des spirales.

De façon plus gaie, nous devons à cette confusion première, entre hélice et spirale, les carnets à spirales, si chers à William Sheller, qui pourtant sont à hélices, pas celles des avions, celles plus prosaïques des mathématiques.

Les hélices, des mathématiques aux bateaux et aux avions

Quel rapport entre les hélices des mathématiciens et celles des avionneurs ? A priori, aucun. Pourtant, le premier engin destiné à mouvoir un liquide était la vis d’Archimède, qui est bien construite sur une hélice circulaire. Cette origine explique l’utilisation du terme « hélice » pour tous les engins destinés à mouvoir un fluide, ou à mouvoir un objet dans un fluide.

La vis d’Archimède est une hélice, dans le sens des mathématiques comme de la mécanique des fluides.

Le déclin de l’art de chiffrer sous Napoléon Ier

Sous l’impulsion de la dynastie Rossignol, la cryptographie française a connu une première apogée aux XVIIe et XVIIIe siècles.

La régression de la Révolution et de l’Empire

L’excellence française en matière de cryptographie se perdit à la Révolution. Une des raisons pour cela est sans doute la dissolution du cabinet noir, ce qui était une des doléances importantes de 1789. Une expertise qui se transmettait de génération en génération semble alors s’être perdue. En particulier, la faiblesse de ne chiffrer que les parties qu’on veut garder secrètes devint presque systématique dans l’armée révolutionnaire et dans l’armée impériale qui lui succéda. On y distinguait deux types de chiffres, les petits et les grands, même s’il ne serait pas exagéré de dire qu’ils étaient tous rendus petits par leurs utilisateurs, comme cela ressort des papiers de George Scovell , le décrypteur du général britannique Wellington au Portugal et en Espagne.

George Scovell (1774 – 1861)

Comme ils le feront ensuite au cours des deux guerres mondiales, les Britanniques systématisèrent l’interception et le décryptement des messages en créant, sous les ordres de Scovell, un corps d’éclaireurs chargé, en plus de la mission habituelle de guider l’armée, de porter les messages, d’intercepter ceux de l’ennemis et de les décrypter. Bien entendu, ces éclaireurs étaient choisis pour leur connaissance du français, de l’espagnol et de l’anglais, en plus de leurs qualités proprement militaires. En ce qui concerne l’interception, les éclaireurs de Scovell furent aidés par la guérilla qui rendit les routes peu sûres pour l’armée française, si elle ne se déplaçait pas en nombre. Les petits chiffres pouvaient être de simples substitutions alphabétiques.

Un exemple lors de la campagne d’Allemagne en 1813

Les dépêches de la Grande Armée étaient envoyées en plusieurs exemplaires. L’ennemi récupérait souvent plusieurs exemplaires du même message ce qui aurait pu ne pas être grave s’ils avaient tous étaient chiffrés de façon identique. La reproduction se faisait apparemment à partir de l’original non chiffré ce qui donne, par exemple, ces deux exemplaires chiffrés différemment de la même dépêche du Maréchal Berthier en septembre 1813, un mois avant la bataille de Leipzig.

Dépêche chiffrée

Péterswald, ce 17 septembre 1813,

Monsieur le Maréchal,

L’empereur ordonne que 175. 138. 167. 164. 90. 138. 167. 152. 169. 145. 53. 166. 117. 137. 103. 157. 176. 152. 167. 134. 37. 37. 117. 174. 169. 106. 171. 15. 117. 15. 132. 6. 175. 176. 126. 48. 164. 153. 126. 32. 50. 175. 176. 126. 25. 68. 94. 105. 122. 171. 115. 176. 15. 164. 118.169. 166. 35. 138. 169. 81. 136. 20. 173. 138. 53. 171. 107. 87. 82. 131.. 15. 52. 134. 81. 94. 137. 90. 138. 169. 106. 51. 169. 116. 168. 115. 175. 176. 126. 137. 148. 115. 6. 119. 156. 90. 3. 176. 177. 146. 146.52.169. 82. 131. 169. 107. 92. 126. 52. 167. 23. 53. 35. 138. 6. 61. 167. 52. 106. 171. 39. 53. 50. 52. 6. 72. 167. 177. 169. 117. 167. 137. 22. 145. 171. 115. 167.68.154. 107. 94. 138. 164. 126. 115. 176. 16. 115. 167. 20. 176. 131. 67. 126. 6. 145. 175. 138. 167. 126. 115. 23. 126. 68. 23. 159. 92. 53. 93. 81. 94. 137. 22. 6. 90. 35. 138. 169.81. 174. 169. 119.53. 115.15.

Le Prince Vice-Connétable, Major Général,

Berthier

Dépêche partiellement chiffrée

Péterswald, ce 17 septembre 1813,

Monsieur le Maréchal,

L’empereur ordonne que vous vous portiez le plus tôt possible 167. 138. 169. 106. 171. 15. 117 avec son infanterie, sa cavalerie et son artillerie, en ne laissant 15. 164. 138. 169. 176. 166. 35. 138. 169. 81 que ce que Sa Majesté a désigné pour 106. 78. Son principal but sera de rester 107. 87. 176. 169. 53. 52. 167. 52. 35. 138. 6. 85. 82. 52. 106. 171. 171. 15. 117 et de chasser 117. 107. 156. 169. 145. 171. 115. 167. 68 qui manœuvrent dans 20. 176. 131. 75. Vous pouvez vous rendre en droite ligne 156. 169. 40. 35. 138. 169. 81. 167. 138. 169. 87. 53. 91.

Le Prince Vice-Connétable, Major Général,

Berthier

Conséquences

Grâce à cette maladresse, si les deux messages sont interceptés, l’ennemi peut commencer à les décrypter. Par exemple, la première phrase « L’empereur ordonne que vous vous portiez le plus tôt possible » appelle en suite « sur une ville ou un lieu. Il est vraisemblable que 167 signifie S, 138, U et 169, R. De même, « en ne laissant » appelle « à » donc 15 signifie probablement A. En reportant ceci dans le texte, on découvre à la fin de la dépêche :

« Vous pouvez vous rendre en droite ligne 169. R. 40. 35. UR. 81. S U R 87. 53. A. » ce qui signifie vraisemblablement : Vous pouvez vous rendre en droite ligne par telle ville (40. 35. UR. 81.) sur telle autre (87. 53. A). Le nom de la première ville, qui est allemande, finit sans doute par « burg » donc 35 signifie B et 81, G.

La partie entièrement chiffrée commence alors à se dévoiler. Par exemple, le « vous vous » a été chiffré en 175. U. S. 164. 90. U. S. donc 175 signifie VO, 164, V et 90, O. Ces équivalences permettent de progresser au point que l’avant dernière ville se dévoile, il s’agit de Coburg. Une carte d’Allemagne nous permet alors de penser que la dernière ville, dont le nom finit par A, est Iéna. En continuant ainsi, on finit par découvrir la dépêche de Berthier :

L’empereur ordonne que vous vous portiez le plus tôt possible sur la Saale, avec son infanterie, sa cavalerie et son artillerie, en ne laissant à Wurtzburg que ce que sa Majesté a désigné pour la garnison. Son principal but sera de rester maître des débouchés de la Saale et de chasser les partisans ennemis qui manœuvrent dans cette direction. Vous pouvez vous rendre en droite ligne par Coburg sur Iéna.

Généralité de l’erreur

Cette erreur de chiffrer de deux façons différentes la même dépêche se retrouve à d’autres époques. Ainsi, la machine de Lorenz utilisée par les Allemands pour les dépêches entre le quartier général à Berlin et les armées fut décryptée suite à une erreur de procédure de ce type. Même si les méthodes ont changées, les leçons du passé restent valables.

 

Comment peut-on chiffrer avec une courbe ?

Vous avez peut-être entendu d’une méthode de cryptographie utilisant des courbes, des courbes elliptiques plus précisément. Mais comment peut-on chiffrer, c’est-à-dire transformer un message clair en un message caché, avec une courbe ?

Les courbes elliptiques

Les courbes en question sont les courbes elliptiques, c’est-à-dire des courbes d’équation y2 = x3 + a x + ba et b sont des nombres, par exemple y2 = x3 – 2 x + 1 ce qui peut se dessiner. On obtient la figure suivante.

La courbe est l’ensemble des points M de coordonnées x et y vérifiant l’équation ci-dessus, c’est-à-dire y2 = x3 – 2 x + 1.

Le rapport avec les ellipses, qui sont des cercles « aplatis » sur l’un de leur diamètre, est indirect puisqu’il concerne le calcul de leurs longueurs. Nous n’insisterons pas sur ce point car il n’a aucun rapport avec la cryptographie. L’intérêt est qu’on peut définir des opérations transformant les points de cette courbe en un autre. On s’approche de l’idée de chiffrement … sans encore l’avoir atteinte toutefois.

Loi de groupe sur une courbe elliptique

L’avantage des courbes elliptiques est qu’on peut y définir une loi. La figure suivante montre comment, à deux points P et Q de la courbe, on associe un point que l’on note P + Q.

Dans le cas général, on trace la droite PQ. Elle coupe la courbe en un point R, P + Q est le symétrique de R par rapport à l’axe des abscisses. Si P = Q, PQ est la tangente en P à la courbe. Pour que cette définition fonctionne dans tous les cas, nous devons adjoindre à la courbe un point à l’infini, que nous notons 0. Si PQ est verticale, P + Q = 0.

On montre que cette loi + a les propriétés habituelles de l’addition des nombres, soit l’associativité, la commutativité, l’existence d’un point neutre (le point à l’infini) et d’un symétrique pour tout point (le symétrique par rapport à l’axe des abscisses justement).

Remarque : on trouvera les détails des calculs sur mon site : ici

Chiffrement

Pour chiffrer, on ne considère pas les courbes elliptiques sur le corps des nombres réels mais sur un corps fini comme Z / N où N est un nombre premier. La courbe a alors un nombre fini de points. L’idée de départ est qu’un texte peut être transformé en une suite de points de la courbe. Cela revient à écrire dans un alphabet ayant autant de signes que la courbe a de points. Notons que le problème sous-jacent n’a rien de simple mais, théoriquement, le chiffrement consiste alors à transformer un point de la courbe. La clef secrète est constituée d’un point P de la courbe et d’un nombre entier, comme 3 par exemple. On calcule ensuite P ’ = 3 P. La clef publique est alors le couple de points (P, P ’). Pour crypter un point M, le chiffreur choisit un entier, 23 par exemple, et transmet le couple (U, V) défini par : U = 23 P et V = M + 23 P ’. La connaissance du premier nombre, ici 3, suffit pour retrouver M car M = V – 3 U.

Logarithme discret

Pour retrouver le nombre choisi, 3 dans notre exemple, connaissant P et P ’, il suffit de savoir résoudre l’équation : P ’ = 3 P. L’utilisation du verbe « suffir » ne doit pas tromper. Cela ne signifie absolument pas que cela soit facile mais que, si vous savez le faire, vous savez décrypter. Le nombre 3 est alors appelé un logarithme discret ce qui n’est guère intuitif si on utilise la notation additive ci-dessus. Avec une notation multiplicative de l’opération de groupe, cela devient plus habituel puisque l’équation s’écrit alors : P ’ = P3. Dans l’ensemble des nombres usuels, 3 correspondrait au logarithme de base P de P ’ d’où le nom dans le cadre d’un groupe fini. À l’heure actuelle, ce problème est considéré comme très difficile. On estime qu’une clef de 200 bits pour les courbes elliptiques est plus sûre qu’une clef de 1024 bits pour la méthode R.S.A. Comme les calculs sur les courbes elliptiques ne sont pas compliqués à réaliser, c’est un gros avantage pour les cartes à puces où on dispose de peu de puissance, et où la taille de la clef influe beaucoup sur les performances. Les inconvénients sont de deux ordres. D’une part, la théorie des fonctions elliptiques est complexe et relativement récente. Il n’est pas exclu que l’on puisse contourner le problème du logarithme discret. D’autre part, la technologie de cryptographie par courbe elliptique a fait l’objet du dépôt de nombreux brevets à travers le monde. Cela pourrait rendre son utilisation coûteuse !

Comment comprendre le monde moderne sans culture mathématique ? Accéder à celle-ci n’exige cependant pas d’apprendre à résoudre la moindre équation.