L’inversion et la chasse au lion

Hector Pétard, gendre du divin Bourbaki, mathématicien de génie, sut appliquer les transformations géométriques les plus abstraites à des domaines aussi concrets que la cynégétique.

La chasse au lion

Le lion est un animal constamment sur ses gardes. Comment l’attraper vivant sans éveiller ses soupçons ? Hector Pétard, illustre mathématicien du XXe siècle, apporta des réponses magistrales à ce problème. La principale concerne la géométrie.

L’idée géniale d’Hector Pétard pour chasser le lion sans danger est de disposer d’une cage dans laquelle il s’enferme seul. A l’instant initial, le lion est donc à l’extérieur. Il opère alors une transformation échangeant intérieur et extérieur de la cage. De ce fait, le lion se trouve dans la cage et lui à l’extérieur. L’idée générale étant trouvée, quelle cage et quelle transformation utiliser ?

L’étude des transformations géométriques donne la solution : la cage doit être sphérique et la transformation, une inversion, dont on comprend à ce propos le nom. Il s’agit d’inverser cage et monde extérieur !

La transformation qui à M associe M’ vérifiant : OM.OM’=R² échange extérieur (en vert) et intérieur (en orange) de la sphère de centre O et de rayon R.

Capture du lion

Prenez une inversion à effet limité afin d’éviter la surpopulation dans votre cage. Placez-la à proximité du lion, avec vous à l’intérieur. Opérez l’inversion. Vous vous trouvez à l’extérieur, et le lion à l’intérieur. Malgré la simplicité de la méthode, nous vous conseillons toutefois de l’essayer d’abord sur un chat domestique avant de vous lancer dans la chasse au lion. Je décline toute responsabilité en cas d’accident de chasse.

Cette méthode fait honneur à l’esprit mathématique le plus abstrait. Mais le génie d’Hector Pétard ne s’arrêtait pas là. Il sut imaginer des méthodes purement physiques, par exemple celle-ci que nous vous conseillons : un lion est de masse non nulle si bien qu’il a des moments d’inertie. Attendez l’un d’eux. Quand il se produira, vous n’aurez aucun mal à l’attraper !

L’humour mathématique

 

Ralph P. Boas (1912-1992), chasseur de lions

Cet article sur la chasse au lion est un exemple caractéristique d’humour mathématique. Celui-ci frise souvent l’absurde. Hector Pétard est le pseudonyme de Ralph P. Boas. Ses articles les plus cocasses ont été rassemblés par la Mathematical Association of America dans Lion hunting & other mathematical pursuits. Contemporain de la grande époque Bourbachique (1930-1960), il s’est imaginé converger en justes noces avec la fille du maître polycéphale. Son faire-part de mariage évoque ce temps béni des structures abstraites. Ma vocation de vulgarisateur des mathématiques est née de leurs dégâts collatéraux, quand leurs prosélytes ont créé un enseignement « moderne » des mathématiques, oubliant leurs applications. Nous dédions cette sonnerie aux morts à notre magistral chasseur de lions.

Faire-part de mariage de Betti Bourbaki

Monsieur NICOLAS BOURBAKI, Membre Canonique de l’Académie Royale de Poldévie, Grand Maître de l’Ordre des Compacts, Conservateur des Uniformes, Lord Protecteur des Filtres, et Madame, née BIUNIVOQUE, ont l’honneur de vous faire part du mariage de leur fille BETTI avec Monsieur HECTOR PETARD, Administrateur Délégué de la Société des Structures Induites, Membre Diplômé de l’Institute of Class Field Archeologist, secrétaire de l’Œuvre du Sou du Lion.

Monsieur ERSATZ STANISLAS PONDICZERY, Complexe de Recouvrement de Première Classe en retraite, Président du Home de Rééducation des Faiblement Convergents, Chevalier des Quatre U, Grand Opérateur du Groupe Hyperbolique, Knight of the Total Order of the Golden Mean, L.U.B., C.C., H.L.C., et Madame, née COMPACTENSOI, ont l’honneur de vous faire part du mariage de leur pupille HECTOR PETARD avec Mademoiselle BETTI BOURBAKI, ancienne élève des Bien Ordonnées de Besse.

L’isomorphisme trivial leur sera donné par le P. Adique, de l’Ordre des Diophantiens, en la Cohomologie principale de la variété universelle le 3 Cartembre, an VI, à l’heure habituelle.

L’orgue sera tenu par Monsieur Modulo, Assistant Simplexe de la Grassmannienne (lemme chanté par la Schola Cartanorum). Le produit de la quête sera versé intégralement à la maison de retraite des Pauvres Abstraits. La convergence sera assurée. Après la congruence, Monsieur et Madame BOURBAKI recevront dans leurs domaines fondamentaux. Sauterie avec le concours de la fanfare du 7e Corps Quotient. Tenue canonique (idéaux à gauche à la boutonnière)

C.Q.F.D.

 

Loi des petits nombres vs loi des grands nombres

Dans leurs calculs, les statisticiens utilisent la loi des grands nombres. La française des jeux n’opère pas autrement pour gagner de l’argent ! Le hasard n’intervient que pour les joueurs, pas pour elle ! Les compagnies d’assurance agissent de même. Si elles assurent cent mille voitures, elles savent d’avance combien auront d’accidents et quel en sera le coût. La prime d’assurance est calculée en fonction de ce risque qui n’en est plus un dès que l’on applique la loi des grands nombres ! Si 5% des automobilistes ont un accident chaque année, vous ne pouvez prévoir si vous en aurez un. En revanche, votre compagnie d’assurance sait que, sur ses cent mille assurés, cinq mille auront un accident.

La loi des petits nombres

Les particuliers ne raisonnent pas ainsi. Si un événement malheureux mais peu probable se produit deux fois de suite à une année d’intervalle, ils se diront que jamais deux sans trois et prévoiront un troisième pour l’année suivante. A l’inverse, plusieurs années sans accident leur feront croire que plus rien ne peut leur arriver. Autrement dit, ils utilisent une loi des petits nombres et non la loi des grands nombres. Bien entendu, il ne s’agit pas de mathématique mais de psychologie !

Une question de psychologie

Pour un mathématicien, cette loi des petits nombres peut passer pour un canular. C’est pourtant de manière tout à fait scientifique et en utilisant correctement la loi des grands nombres que Daniel Kahneman l’a mise en évidence. Plus précisément, il a étudié expérimentalement le comportement moyen des américains devant l’assurance ! Il apparaît que plusieurs années sans accident pousse la moyenne des américains à résilier ses contrats d’assurance ! Pour cette étude, ce professeur de psychologie à Princeton a obtenu le Prix Nobel d’économie en 2002.

Il semblerait que certains états appliquent cette loi des petits  nombres et suppriment des équipements de précaution, comme des masques de protection, quand ils se sont révélés inutiles plusieurs années de suite. D’autres, dans l’affolement, feront des tests de médicaments sur des petits nombres pour en déduire avoir trouvé le traitement miracle.

(Henri) Quatre sur (le pont) Neuf

Prenez un mot de neuf lettres, comme « minutieux », brouillez-les, vous obtenez par exemple XNIIMTUEU. Écrivez-le dans ce nouvel ordre dans un carré 3 par 3 :

Une grille de quatre sur neuf.

Nous avons ainsi formé une grille de notre jeu quatre sur neuf. Le but est maintenant de trouver un maximum de mots français de quatre lettres contenant la lettre centrale (en bleu, ici M) en un minimum de temps. Les accents ne comptent pas, ainsi mute et muté sont considérés comme le même mot.

Si on commence par les mots dont la première lettre est M, nous trouvons rapidement : mite, mine, mixe, mute, muni, muet, meut, etc. Nous pouvons continuer en essayant de placer M dans une autre position : émut, etc.

Quelle est la meilleure stratégie possible ? Chacun la sienne sans doute mais le jeu demande manifestement des qualités de lecture d’un pavé de trois lettres sur trois. Comment voir les chemins intéressants ? Il demande aussi de considérer les digrammes selon leurs fréquences. Par exemple, ici, « en » et « un » sont fréquents donc à considérer pour gagner du temps.

Combien existe-t-il de solutions pour cette grille ? La question est ouverte et la réponse dépend du dictionnaire utilisé. Peut-on trouver une grille sans solution ? Avec une seule ? Deux, etc. ? Toutes ces questions sont ouvertes cher lecteur… et attendent vos réponses. On comprendra, par exemple, que de partir d’un mot de neuf lettres assure la présence de lettres, digrammes et trigrammes relativement fréquents… et donc augmente le nombre de solutions.

Pour vous exercer

Il est facile de créer d’autres grilles, et de même de créer un logiciel pour jouer à ce jeu en français.

On part d’une liste de mots de neuf lettres (il en existe plus de 50 000), d’un générateur de permutations aléatoires d’un ensemble à neuf éléments puis d’un dictionnaire pour vérifier les solutions trouvées. Il reste à ajouter une horloge pour augmenter le stress du joueur. Attention avant de créer ce jeu : il est hautement addictif et son abus peut provoquer de graves ennuis de santé !

Le jeu de la vie et celui des épidémies

Le jeu de la vie, inventé en 1970 par John Conway, n’est pas vraiment un jeu. Ce terme est cependant moins rébarbatif que celui d’automate cellulaire, qui est pourtant plus exact. Il trouve ses origines dans des travaux conduits par John von Neumann dans les années 1940. Nous garderons la métaphore du jeu pour en parler, même si certains trouveront le terme mal adapté quand il s’agit de maladies potentiellement mortelles. L’essentiel est d’aider la compréhension. Voyons quelles en sont les règles.

Les règles du jeu de la vie

Pour jouer, prenez un damier et des pions. Les cases sont considérées comme des cellules ; elles peuvent être mortes ou vivantes. On utilise les pions pour matérialiser les cellules vivantes. Au début du jeu, on place des pions sur n’importe quelle case. On joue ensuite par étapes selon les règles suivantes :

— une cellule morte entourée de trois cellules vivantes ressuscite, sinon elle reste morte ;

— une cellule vivante reste en vie si elle a deux ou trois voisines vivantes, sinon elle meurt.

Bien que l’évolution du jeu soit complètement déterminée par la disposition initiale des cellules, on n’en assiste pas moins à quelques situations qui peuvent paraître surprenantes. Ainsi, en alignant tout simplement trois cellules vivantes les unes à côté des autres, on obtient une situation où les trois cellules se reproduisent, alignées horizontalement puis verticalement et ainsi de suite.

Lorsque trois cellules vivantes sont contiguës, on assiste à une oscillation entre trois cellules en ligne et trois en colonne.

Le jeu des épidémies

 

Ce jeu est loin d’être un simple amusement : il s’agit d’un exemple de ce que l’on nomme « automate cellulaire », particulièrement utile pour modéliser les processus d’expansion des épidémies comme des épizooties. En préalable à ce type d’application, il est nécessaire d’étendre le damier à l’infini. Au départ, toutes les cellules sont saines. On place une cellule infectée puis on « joue » avec la règle probabiliste suivante :

— les cellules voisines de la cellule infectée sont infectées au coup suivant avec la probabilité ;

— la cellule meurt ou est immunisée le coup suivant.

Comment les cellules infectées (en rouge) se multiplient-elles au détriment des cellules saines (en vert) ? Dans cet exemple, la probabilité qu’une cellule voisine d’une cellule infectée soit infectée à son tour est de 25 %. Les cellules mortes ou immunisées sont représentées en bleu.

La question qui intéresse autant les épidémiologistes que le grand public est donc : « Pour quelles valeurs de p, la maladie se propage-t-elle au monde entier ? »

Un modèle probabiliste

Le modèle est ici « probabiliste », et donc on ne peut prédire à l’avance ce qui va se produire dans un cas particulier. Pour avoir une idée rapide de l’évolution moyenne du système, le mieux est de procéder à une simulation. Pour cela, on « joue » selon les règles énoncées ci-dessus en utilisant un générateur de nombres pseudo-aléatoires et on comptabilise le nombre de cellules infectées. En jouant cent fois de suite et en faisant la moyenne des résultats, on obtient une mesure de l’expansion moyenne de l’épidémie.

Taux critique

En dessous d’un certain taux de contamination p, l’épidémie ne s’étend pas. En revanche, au dessus de ce taux, elle envahit le monde entier. Dans le cadre de notre modèle simplifié, le taux critique se situe entre 30 % et 40 %. Une maladie ne devient épidémique que si ce taux est dépassé. Comment ce modèle peut-il être adapté pour bien modéliser différents types d’épidémies ou d’épizooties ? Tout d’abord, on peut modifier le voisinage de chaque cellule, composé ici de huit cellules — les spécialistes parlent de voisinage de Moore, du nom d’Edward Moore, l’un des fondateurs de la théorie des automates. On utilise souvent un voisinage plus simple, dit de von Neumann, constitué des quatre cellules partageant un côté avec la cellule considérée. Avec ce nouveau modèle, le taux critique pour lequel une maladie devient épidémique se situe aux alentours de 60 %. On peut également améliorer le modèle en tenant compte du temps pendant lequel une cellule infectée est contagieuse puis du taux de mortalité et d’immunité ainsi que du temps d’immunité. On arrive ainsi à retrouver la façon dont se sont propagées des épidémies comme la peste dans l’Europe médiévale. Une première vague a tué le tiers de la population en se propageant à partir d’un épicentre situé dans un port, suivie de plusieurs répliques plus faibles, toutes partant du même point. Ces répliques correspondent à la fin de certaines immunités.

La confrontation avec les données épidémiologiques a permis de montrer que ce type de modèles a une certaine pertinence pour toutes les maladies qui se propagent par contact direct : grippe, tuberculose, coronavirus ou même sida. En revanche, il ne fonctionne plus lorsque la maladie se propage via un agent infectieux, comme dans le cas du paludisme ou du chikungunya.

Géométrie des contagions

Comment considérer maintenant la notion de « cellule voisine » dès que l’on évoque les réseaux de transports aériens, maritimes ou terrestres ? Dans le cas d’une épidémie de grippe humaine, l’aéroport de Paris est voisin de celui de Hong-Kong. Dans le cas d’une épizootie de grippe aviaire, deux élevages fréquentant le même marché aux bestiaux sont voisins. On doit de plus tenir compte des migrations naturelles des oiseaux sauvages. Dans tous ces cas, on retrouve la notion de réseaux.

En modifiant le modèle du jeu, on peut passer du cas où chaque cellule représente un individu à celui où elle représente un domaine où les individus sont en relation constante : un élevage de volaille dans le cas de la grippe aviaire, une ville dans le cas de la tuberculose, du sida ou de la grippe humaine. Ces domaines sont reliés entre eux pour former un réseau. Dans chaque cellule, la modélisation suit une autre logique, celle du modèle « SIR » dû à William Kermack et Anderson Mac Kendrick en 1927 (voir l’article correspondant sur ce blog). Ce modèle compartimente la population en trois classes : S, la classe des individus susceptibles d’attraper la maladie, I, celle de ceux qui en sont infectés (et contagieuses) et R, ceux qui en sont guéris (et immunisés) ou décédés.

Seuil de propagation

On considère l’évolution de ces trois classes dans le temps en fonction de deux taux mesurables expérimentalement. Le premier (a) est le taux de contagion de la maladie pour un infecté, c’est-à-dire la probabilité pour qu’un individu susceptible attrape la maladie après contact avec un individu infecté. Le second taux (b) mesure le passage de l’état I à l’état R.

Après un laps de temps t, on compte a I S t infectés supplémentaires et R augmente de b t. La variation du nombre d’infectés est donc égale à a S – b multiplié par I t. La condition pour que la maladie se propage (et donc donne lieu à une épidémie) est que le nombre de malades infectés augmente, c’est-à-dire que : a S – b > 0. Le quotient b / a a donc valeur de seuil. Si le nombre de sujets susceptibles est strictement inférieur à ce seuil, la maladie ne s’étend pas. Sinon, elle donne lieu à une épidémie (ou à une épizootie).

D’une façon qui peut paraître paradoxale, l’apparition d’une épidémie ne dépend donc pas du nombre de personnes infectées mais du nombre de personnes susceptibles d’attraper la maladie ! Cette remarque justifie à elle seule les politiques de vaccination, même avec un vaccin peu efficace.

John et Alicia Nash … et la course aux armements

Le mathématicien John Nash (né en 1928) est mort le 23 Mai 2015 en compagnie de son épouse Alicia (née en 1933) dans un accident de taxi dans le New Jersey. Ils revenaient d’Oslo où John avait reçu le prix Abel, considéré comme le prix Nobel des mathématiques, le 19 Mai en compagnie de Louis Nirenberg (né en 1925) pour leurs contributions fondamentales et absolument remarquables à la théorie des équations aux dérivées partielles non linéaires, et à ses applications à l’analyse géométrique.

Théorie des jeux

Les jeux de la théorie des jeux ne sont pas tous ludiques.

John Nash est plus connu pour son apport à la théorie des jeux pour lequel il a obtenu le prix Nobel d’économie en 1994. Pour simplifier, la théorie des jeux est l’étude des comportements rationnels des individus en situation de conflit d’où ses applications en économie, stratégie et politique. Les équilibres de Nash sont les issues du jeu où aucun joueur ne regrettera son choix a posteriori. Prenons l’exemple de la course aux armements du temps de la guerre froide. Les États-Unis comme la Russie gagnent à ne pas dépenser leur argent inutilement mais ils perdent d’arrêter la course si l’autre la poursuit. Le jeu a ainsi deux équilibres de Nash : les deux pays courent ou les deux s’arrêtent.

Une femme d’exception

John et Alicia Nash en 2015.

John Nash est également connu pour le film qui lui a été consacré dont le titre français est Un homme d’exception, qui décrit son combat contre la schizophrénie dans lequel son épouse Alicia fut véritablement une femme d’exception.

La psychologie des nombres

Quelle est la différence entre 98 € et 100 € ? Mathématiquement parlant, la réponse est 2 €. Au niveau psychologique ou émotionnel, la différence est bien plus importante. Pour ne pas en être victime, la méthode est simple : arrondissez ! Si on vous dit 98 €, traduisez en 100 € et vous ne serez pas piégé.

Vision psychologique des prix

Dans l’esprit de l’acheteur, 98 € signifie 90 € plus quelques euros. Il raisonne en logique additive. Sauf pour les produits de prestige, qui doivent être chers, il vaut mieux afficher ses prix dans la dizaine inférieure. Plusieurs expériences ont été menées aux États-Unis. En particulier, l’envoi de deux catalogues identiques, l’un affichant des prix ronds comme 10 $ et l’autre des prix minorés de 1 cent, comme 9,99 $, a montré que le second catalogue apportait plus de ventes.

Le meilleur prix psychologique

De façon plus étonnante sans doute, le meilleur prix pour maximiser le profit sur un produit n’est ni le plus petit, ni le plus grand possible.

Détermination graphique du prix psychologique. La courbe du dessus représente le pourcentage d’acheteurs potentiels estimant le produit de qualité suffisante, celle du bas, le pourcentage l’estimant trop cher. Le prix psychologique correspond au point où l’écart est le plus grand.

Ce prix, qui peut être déterminé au moyen d’un sondage, est appelé le « prix psychologique ». En dessous de ce prix, le produit semble de qualité insuffisante à l’acheteur potentiel. Au-dessus, il paraît trop cher.

En revanche, si vous voulez écrire un livre de conseils pour réussir, mieux vaut en proposer 31 que 29 car ce nombre sera perçu comme bien plus grand.

Les vestiges de la base vingt

La façon de dire les nombres en français a des variantes locales. Ainsi comment doit-on lire, ou écrire en toutes lettres, le nombre 283 ? La logique du français voudrait : deux cent huitante-trois… pourtant cela ne s’écrit ainsi que dans certaines régions de l’Est de la France et dans quelques cantons suisses. Les Belges préfèrent : deux cent octante-trois et la majorité des Français, comme des Canadiens : deux cent quatre-vingt-trois. Ces quatre-vingts viendraient d’une ancienne façon de compter en usage autrefois en France et dont nous aurions hérité des Celtes. En effet, on la retrouve en Bretagne comme au pays de Galles et en Irlande. Le principe est partout le même, il s’agit d’un usage partiel de la base vingt. Il nous en reste le quatre-vingts de nos comptes mais aussi un hôpital parisien : celui des Quinze-Vingts, fondé par saint Louis (1214 – 1270) pour accueillir 15 fois 20, c’est-à-dire 300, vétérans aveugles. Il est toujours spécialisé en ophtalmologie.

Des traces chez Molière …

Portrait de Molière (1622 – 1673)

Cette façon de compter se retrouvait autrefois plus souvent qu’aujourd’hui, ainsi, dans L’avare de Molière, à la scène 5 de l’acte II, Frosine dit à Harpagon :

Par ma foi ! Je disais cent ans ; mais vous passerez les six vingts.

Six vingts signifiait 120. Pour 100 cependant, Frosine ne dit pas cinq vingts.

… Et chez Victor Hugo

Dans Notre-Dame de Paris, Victor Hugo (1802 – 1885) nous fait découvrir une autre trace de ce système quand il relate l’assaut de Notre-Dame par les truands (au livre X, chapitre 4) :

Clopin Trouillefou, arrivé devant le haut portail de Notre-Dame, avait en effet rangé sa troupe en bataille. Quoiqu’il ne s’attendît à aucune résistance, il voulait, en général prudent, conserver un ordre qui lui permît de faire front au besoin contre une attaque subite du guet ou des onze vingts.

Au Moyen-Âge, les onze vingts étaient un corps de police de 11 fois 20, c’est-à-dire 220, membres.

Que dit la grammaire (d’époque) ?

La grammaire des grammaires de Charles-Pierre Girault-Duvivier.

Cet usage de compter par vingtaines était alors plus général que le montre ces quelques vestiges, comme Charles-Pierre Girault-Duvivier (1765 – 1832) le note dans sa grammaire des grammaires :

Six vingts vieillit ; on dit plus ordinairement cent-vingt ; on disait encore dans le siècle passé sept vingts ans, huit vingts ans : depuis six ou sept vingts ans que l’église calvinienne a commencé (Bossuet) – Des femmes enceintes au nombre de huit vingts et plus – l’Académie ne condamnait pas autrefois cette manière de s’exprimer, et en permettait l’usage jusqu’à dix-neuf vingts en excluant seulement deux vingts, trois vingts, cinq vingts et dix vingts.

Une fois admis ce compte particulier en vingtaine pour la quatrième, il est logique de continuer jusqu’au seuil de la cinquième, c’est-à-dire jusqu’à 99. Nonante est ainsi devenu quatre-vingts dix, écrit depuis quatre-vingt-dix. En revanche, en Belgique, 90 est resté nonante sauf pour parler du roman de Victor Hugo : Quatre-vingt Treize. Une étrangeté reste et concerne le pluriel mis à vingt. On écrit quatre-vingts mais quatre-vingt-un et non quatre-vingts et un comme le voudrait l’imitation des cas de vingt à soixante, de plus vingt perd son pluriel et se trouve au singulier alors que le nombre a augmenté ! Ce problème de choix ou non du pluriel est bien singulier !

 

 

Le jour où le dogme de Pythagore s’écroula

Pythagore pensait que tout était nombre, nombre entier plus précisément ou rapport de nombres entiers. De nos jours, on dit nombres rationnels, du latin ratio qui, dans ce contexte signifie rapport.

La duplication du carré

Dans le Ménon de Platon, le problème de Socrate est celui de la duplication du carré, c’est-à-dire de trouver un carré d’aire double d’un carré donné.

Le grand carré orange duplique le carré représenté de travers. Pour le démontrer, il suffit de compter les triangles.

La solution pour dupliquer un carré est d’en construire un dont le côté est la diagonale du premier. Selon le théorème de Pythagore, 2 = 2 2a est le côté du carré et d sa diagonale. Si tout est nombre, a et d sont deux nombres entiers naturels (en choisissant bien l’unité).

Un raisonnement par l’absurde

Ici commence un raisonnement mathématique subtil, l’un des plus anciens de ce type. Bien que nous ne connaissions aucun de ces deux nombres, nous imaginons la factorisation de 2 = 2 2 et y comptons les occurrences du facteur 2 en utilisant chacune des formes à droite et à gauche du signe égal. Ce nombre est pair dans 2 puisque chaque apparition dans d est doublée par l’effet de la multiplication par lui-même. Le même phénomène se produit dans 2. En multipliant cette quantité par 2, on en ajoute un. Le nombre de 2 dans 2 2 est donc impair. L’égalité 2 = 2 2 conduit à une absurdité : le nombre de 2 est à la fois pair (dans 2) et impair (dans 2 2). L’hypothèse de l’existence d’une commune mesure entre les côtés des deux carrés aboutit à une absurdité, elle est donc fausse.

L’écroulement du dogme de Pythagore

L’idée de Pythagore s’écroule, il existe des longueurs incommensurables. Son dogme « tout est nombre » ne retrouvera vie que dans les temps modernes, quand d’autres « objets » seront admis dans le champ des nombres, en particulier, le rapport de la diagonale au côté du carré, racine de 2 que nous disons irrationnel, non pas parce que ce nombre ne serait pas raisonnable mais parce qu’il ne s’agit pas d’un rapport d’entiers.

 

L’unité est-elle un nombre?

Les Grecs anciens refusaient de considérer l’unité comme un nombre, comme on peut le lire dans La Métaphysique d’Aristote :

Il est, d’ailleurs, de toute évidence que c’est l’unité qui exprime la mesure ; […] le nombre est une pluralité mesurée […] Aussi, n’a-t-on pas moins raison de dire que l’unité n’est pas un nombre.

Un ne fait pas nombre

Ce refus de considérer « un » comme un nombre vient de l’assimilation du concept de nombre à ceux de pluralité ou de multiplicité. Cette confusion se retrouve en français ou « nombreux » ne peut signifier « un ».

Une reconnaissance tardive

En 1585, Simon Stevin écrit dans les premières pages de La pratique d’arithmétique :

Comme l’unité est nombre par lequel la quantité d’une chose expliquée se dit un.

Alors que cela nous semble aujourd’hui naturel, Simon Stevin se sent obligé de défendre cette position dans un long raisonnement de plusieurs pages, preuve que cette notion n’est pas admise comme naturelle à son époque. Pourquoi ? Tout simplement parce qu’elle s’oppose à la tradition philosophique du Moyen-Âge pour qui il n’est point de vérité en dehors d’Aristote, d’où le discours étonnant :

Il est notoire que l’on dit vulgairement que l’unité n’est pas nombre, mais seulement son principe […] ce que nous nions. Nous pouvons argumenter de la sorte : La partie est de même matière qu’est son entier, unité est partie de multitude d’unités, donc l’unité est de même matière qu’est la multitude d’unités. Mais la matière de multitude d’unités est nombre donc la matière d’unité est nombre.

Le « un » est donc devenu nombre à l’époque de Simon Stevin même si certains, comme Diophante, un célèbre mathématicien grec du IIIe siècle après Jésus-Christ, l’utilisaient déjà comme tel… mais après avoir donné les définitions usuelles à l’époque, comme en sorte d’hommage à la tradition.

 

 

Boby Lapointe et le bibi-binaire

Boby Lapointe (1922 – 1972) est connu comme chanteur humoriste, le seul chanteur français jamais sous-titré en France. Pourquoi ? Pas à cause de son élocution aléatoire mais parce que l’apprécier demandait une sacrée gymnastique intellectuelle ! Voici le début d’une de ses chansons les plus faciles pour en montrer le style.

Le poisson Fa

Il était une fois
Un poisson fa.
Il aurait pu être poisson-scie,
Ou raie,
Ou sole,
Ou tout simplement poisseau d’eau,

Ou même un poisson un peu là,
Non, non, il était poisson fa :
Un poisson fa,
Voilà.

et cela continue avec toutes les notes…

Une formation mathématique

Pas étonnant diront certains car la formation de Boby Lapointe  était fortement marquée par les mathématiques. Il aurait pu faire partie de l’Oulipo, comme adepte des littératures à contraintes ! Après un bac MathElem en 1940, il suivit les cours d’une classe de MathSpé et aurait intégré SupAero s’il n’avait pas été requis par le STO (service du travail obligatoire) en Autriche, dont il s’est évadé pour vivre dans la clandestinité. Boby Lapointe était donc un matheux et on le voit dans une de ses inventions.

L’hexadécimal

Revenons aux mathématiques avant de revenir à Boby Lapointe ! Vous avez sans doute remarqué que les clefs Wifi sont formées de chiffres décimaux entrecoupés de quelques lettres, entre A et F, comme par exemple : 9A8356D713058F4569C54039A0.

Il s’agit en fait d’un nombre écrit en base seize, en hexadécimal autrement dit. Dans cette base, les chiffres sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Les cinq derniers représentent les nombres décimaux de 10 à 15. Ce système permet d’écrire les nombres binaires de façon raccourcie. Par exemple, pour écrire le nombre binaire 1 100 101 en hexadécimal, il suffit de grouper les bits par quatre : 110 0101 et de traduire ces groupes : 110 vaut 6 et 0101, 5. Ce nombre s’écrit donc 65 en base seize. De même, un milliard, qui s’écrit 11 1011 1001 1010 1100 1010 0000 0000 en binaire, s’écrit 3B 9AC A00 en hexadécimal, ce que l’on obtient en traduisant chaque groupe de quatre bits.

Signification des chiffres hexadécimaux, c’est-à-dire des chiffres du système de base 16. En plus des chiffres usuels, ce système utilise les chiffres A, B, C, D, E et F qui représentent 10, 11, 12, 13, 14 et 15.

Le système bibi-binaire

Boby Lapointe inventa une notation pour les chiffres hexadécimaux où chaque chiffre se voit attribuer un symbole et une prononciation.

Système bibi-binaire de Boby Lapointe. Chaque chiffre du système hexadécimal se voit attribuer un graphisme et une prononciation dépendant de son écriture en base deux. L’ordre de l’écriture est indiqué pour le chiffre 0.

Ainsi 2019, qui s’écrit 7E3 en hexadécimal puisque 2019 vaut         7 x 16² + 14 x 16 + 3, se dit “bidehi” en bibi-binaire et s’écrit :

Comment comprendre le monde moderne sans culture mathématique ? Accéder à celle-ci n’exige cependant pas d’apprendre à résoudre la moindre équation.