Archives pour la catégorie Sciences

Les Chroniques de l’espace illustrées (4) : Spoutnik, Pioneer, Lunik et les autres

Ceci est la quatrième de mes « Chroniques de l’espace illustrées ». Si vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

Spoutnik, Pioneer, Lunik et les autres

« À toute chose malheur est bon », dit le proverbe. La course à l’espace des années 1960 en est une illustration. Conséquence d’un terrible conflit politique entre les États-Unis et l’Union soviétique, elle aurait probablement été remplacée par une guerre nucléaire si les deux superpuissances n’avaient pas trouvé l’arène spatiale pour croiser symboliquement le fer.

Dans cette rivalité technologique, les premières victoires sont russes. Le 4 octobre 1957, un satellite de 85 kilos est mis en orbite autour de la Terre par le puissant lanceur mis au point par Korolev. Dédié à la géophysique il se nomme Spoutnik 1, ce qui signifie « voyageur 1 ». C’est le premier engin à atteindre la vitesse de satellisation, il va tourner plusieurs mois dans l’espace.

Préparation de Spoutnik 1 dans son laboratoire soviétique (image colorisée). C’est une petite sphère en aluminium de 58 centimètres de diamètre pesant 84 kg, dotée de quatre antennes. La sphère est constituée de deux coques concentriques, la coque externe servant de protection thermique, la seconde formant une enceinte pressurisée dans laquelle étaient placés les différents équipements.

À peine un mois plus tard, Spoutnik 2 crée à son tour la sensation. Non seulement sa masse atteint la demi-tonne, mais il a embarqué la chienne Laïka. Elle restera vivante quelques heures avant de mourir par arrêt du système permettant la survie à bord. Le sacrifice de l’animal est caché par les autorités russes, mais l’information essentielle passe : un être humain pourra vivre au moins quelques jours dans l’espace.

La chienne Laïka positionnée dans son habitacle Spoutnik 2 avant le lancement, ne se doutant certainement pas ce qu’elle allait subir… .

Pour les Américains, qui ne croyaient pas l’URSS aussi avancée, c’est un choc, une blessure d’orgueil, un Pearl Harbor technologique. Ils tentent de riposter aussitôt, mais le lancement de leur minisatellite Pamplemousse est un désastre. C’est finalement le 31 janvier 1958 que, grâce à la fusée Jupiter, de l’ex-ingénieur nazi Wernher von Braun – entre-temps naturalisé américain –, ils réussissent à mettre en orbite un petit satellite de 14 kilos, Explorer 1.

L’échec américain du lancement de la fusée Pamplemousse est en première page du journal La Liberté du 07/12/1957
Devancé par Spoutnik, Explorer 1 a malgré tout lancé les Etats-Unis dans la course à l’espace et réussi une première collecte de données scientifiques. Sur la photo, W. H. Pickering, J. Van Allen et W. Von Braun célèbrent le succès du satellite.

Dès lors, la compétition bat son plein. En mai 1958, l’énorme Spoutnik 3, soviétique, 1 400 kilos, découvre une zone de fortes radiations située entre 700 et 10 000 kilomètres d’altitude, invivable pour les humains s’ils doivent y rester sans protection : les ceintures de Van Allen.

Schéma des ceintures dites de Van Allen, mises pour la première fois en évidence par Spoutnik 3 et structurées par les lignes du champ magnétique terrestre. La ceinture intérieure contient des atomes lourds issus du rayonnement cosmique et des protons issus du soleil. La ceinture extérieure est constituée d’électrons solaires.

Continuer la lecture

Les Chroniques de l’espace illustrées (3) : Quitter le berceau

Ceci est la troisième de mes « chroniques de l’espace illustrées ». Si toutefois vous souhaitez acquérir mon livre dans sa version papier non illustrée (édition d’origine 2019 ou en poche 2020), ne vous privez pas !

Quitter le berceau

« La Terre est le berceau de l’humanité, mais nul ne reste éternellement dans son berceau. »

Vous avez probablement déjà entendu cette phrase célèbre. On la doit à Konstantin Tsiolkovski, un instituteur russe du début du xxe siècle, ardent partisan de l’exploration et de la colonisation de l’espace : « L’Homme ne restera pas sur Terre à jamais, mais, toujours en quête de lumière et d’espace, il se hasardera d’abord timidement hors de l’atmosphère, puis fera la conquête du système solaire tout entier », ajoute-t-il. En 1903, il publie le premier traité de fuséologie et explique comment quitter la gravité terrestre pour atteindre le vide de l’espace. Véritable père de l’astronautique moderne, il imagine les fusées à étages, les stations spatiales et l’utilisation de combustibles liquides en remplacement de la poudre qui ne peut pas brûler dans le vide de l’espace.

Deux études de Tsiolkovski. A gauche : Projet de vaisseau spatial comprenant un système de gyroscopes et figurant l’apesanteur à laquelle seront soumis les astronautes. A droite : Evolution de la conception d’un vaisseau spatial de 1903 à 1915

Quelques années plus tard, un professeur d’université américain nommé Robert Goddard passe à la pratique et s’attache à la réalisation de fusées à propulsion liquide. Il dépose des brevets, on le prend pour un fou, sa première fusée s’élève néanmoins avec élégance vers le ciel en 1932.

Robert Goddard et sa fusée

En Europe centrale, Hermann Oberth, après s’être passionné pour les romans de Jules Verne, rédige en 1923 une thèse intitulée « La Fusée dans les espaces interplanétaires », pour un doctorat qui lui est refusé. En 1935, il réussit pourtant le lancement d’une fusée à combustible liquide.

Oberth en 1923
Hermann Oberth (au centre, de profil) fait la démonstration d’une fusée à carburant liquide à Berlin en 1930. En second à partir de la droite, Wernher von Braun.

L’armée nazie l’engage pour travailler sur les missiles balistiques, aux côtés de jeunes ingénieurs allemands passionnés. Wernher von Braun est le plus brillant d’entre eux. Le 3 octobre 1942, il réussit le tir de la première fusée militaire. Baptisée V2, elle franchit pour la première fois le seuil du domaine spatial, c’est-à-dire 80 kilomètres d’altitude. Mais c’est une arme de destruction. Durant la guerre, 3 000 exemplaires sont lancés contre les populations de Londres et de Belgique, tuant des milliers de civils.

Missile V2 monté sur un dispositif permettant de le placer à la verticale sur une embase de lancement.

À la chute de Hitler, les Alliés mettent la main sur les stocks de V2 et la documentation technique. Désireux de rattraper leur retard sur l’Allemagne dans le domaine spatial, les États-Unis exfiltrent von Braun pour le faire travailler à leur compte. Sans lui, le programme Apollo n’aurait pas réussi à poser des hommes sur la Lune ! Continuer la lecture

Les Chroniques de l’espace illustrées (2) : La conquête imaginaire de l’espace

L’an dernier (2019), à l’occasion du cinquantième anniversaire de la mission Apollo 11 qui avait déposé pour la première fois des hommes sur la Lune, j’avais entrepris de retracer la fabuleuse épopée de l’exploration spatiale à travers quarante chroniques, diffusées tout l’été sur les ondes de France Inter.

Un livre était paru dans la foulée, se contentant de reprendre le texte de mes chroniques. Compte tenu de l’état déplorable du “marché”, une version illustrée a peu de chance d’être un jour publiée, ce qui est bien regrettable tant l’iconographie liée au sujet est d’une extrême richesse. Mon blog me permet de pallier ce manque.  Voici donc la seconde de ces « chroniques de l’espace illustrées ». Ceci dit, si vous souhaitez acquérir mon livre dans sa version papier d’origine, ne vous privez pas !

La conquête imaginaire de l’espace

Loin de la vision spatiale que nous en avons aujourd’hui, les premières fusées ont été des armes, inventées en Chine aux alentours du XIIIe siècle. Ce ne sont alors que des tubes de carton contenant de la poudre, dont les tirs très aléatoires sont dangereux même pour ceux qui les allument.

C’est en 1500 qu’aurait eu lieu la première tentative de lancement d’un être humain à l’aide de fusées. Wan-Hu, un fonctionnaire chinois, serait monté sur une chaise équipée de 47 fusées dans l’espoir d’atteindre la Lune. Il n’en est évidemment pas sorti vivant ! Par la suite, les Chinois améliorent la technique des fusées en leur ajoutant des baguettes de guidage et des ailettes de stabilisation, ou en utilisant des cylindres de fer plutôt que du carton, ce qui les rend plus sûres, stables et puissantes. Mais les développements de l’artillerie classique conduisent à des armes plus efficaces, et les fusées ne servent plus qu’à faire de jolis feux d’artifice.

Fonctionnaire de la cour impériale, Wan Hu rêvait de se rendre sur Lune; c’est en regardant un feu d’artifice qu’il a eu l’idée d’utiliser la propulsion de fusées pour s’élever dans le ciel. Il a équipé une planche de bois d’un système de 47 fusées. Le jour du lancement, vêtu de ses plus beaux atours, Wan-Hu a grimpé sur la chaise et ses assistants ont allumé en même temps les fusées. Après une énorme explosion, le navire et Wan Hu ont disparu… Son nom a été donné à un cratère lunaire.

C’est à la fin du XVIIIsiècle qu’en Occident la science et la technique triomphantes laissent entrevoir la possibilité concrète d’explorer le ciel, à l’aide d’appareils plus légers que l’air. L’aventure commence en France avec Pilâtre de Rozier. En 1783, il est le premier être humain à s’envoler à 1 000 mètres de hauteur et à revenir sain et sauf, à bord du ballon à air chaud inventé par les frères Montgolfier.

Le premier vol véritable en Montgolfière a lieu en novembre 1783 à Paris, avec Pilâtre de Rozier et le marquis François Laurent d’Arlandes ; il a duré une vingtaine de minutes. Pilâtre tente en 1785 de traverser la Manche en compagnie du scientifique Pierre-Ange Romain, mais le ballon se dégonfle et s’écrase sur le sol, provoquant la mort des deux aéronautes.
Cartes postales commémoratives du premier voyage aérien de Pilâtre de Rozier et du marquis d’Arlandes (à gauche), de la mort de Pilâtre de Rozier et de Pierre-Ange Romain (à droite). Imprimées entre 1890 et 1900.

Dès lors, la conquête de l’air se développe, les auteurs rivalisent d’imagination pour concevoir des moyens techniques de se rendre dans l’espace interplanétaire.

Les romans de Jules Verne en constituent les premiers exemples. Dans De la Terre à la Lune, publié en 1865, le héros, Michel Ardan, et deux amis américains sont lancés dans l’espace à l’aide d’un canon géant de 300 mètres de long. Si Jules Verne fait l’erreur de ne pas se rendre compte que les voyageurs seraient tués par l’énorme accélération due au tir, il explique à juste titre que le corps du chien accompagnant les spationautes, largué du vaisseau en mouvement dans l’espace, continue à se déplacer sur une trajectoire parallèle. Ce phénomène, exact mais peu intuitif, montre l’approche scientifique du sujet.

À gauche, portrait de Jules Verne par Félix Nadar. À droite, De la Terre à la Lune. L’arrivée du projectile à Stone-Hill, (gravure de François Pannemaker, dessin de Henri de Montaut).

Jules Verne poursuit avec Autour de la Lune, roman étonnamment prémonitoire par rapport à la mission Apollo 8, qui se déroulera exactement un siècle plus tard : l’initiative du voyage sur la Lune a bien été prise par les Américains, le départ de la mission a eu lieu à cap Canaveral, à quelques centaines de kilomètres seulement de l’endroit choisi par Jules Verne en Floride, il y a bien eu trois astronautes à bord de la capsule et la mission a duré un peu moins d’une semaine. Enfin, au retour, l’engin s’est bien retrouvé dans l’océan après avoir effectué un contournement lunaire !

A gauche, une illustration prémonitoire : chez Jules Verne la capsule où flotte le drapeau américain est récupérée dans l’océan. A droite: amerrissage de la capsule de la mission Apollo 11.

En 1901, le Britannique Herbert George Wells, le célèbre auteur de La Machine à explorer le temps, publie Les Premiers Hommes dans la Lune, où il imagine que le voyage dans l’espace est permis grâce à un matériau annulant les effets de la pesanteur, la « cavorite ». Cette forme de matière aux propriétés antigravitantes, à l’époque totalement fantaisiste, nous fait aujourd’hui penser à la mystérieuse énergie sombre qui serait responsable de l’accélération de l’expansion de l’Univers.

A gauche, une des premières éditions d’art du roman de Wells. A droite, illustration par E. Hering (1901) montrant les deux héros du livre, Cavor et Bedford, à bord de la sphère antigravitante en cavorite.

Les romans de Jules Verne, Wells, Robida et quelques autres marquent les véritables débuts de la littérature d’anticipation, rebaptisée « science-fiction ».

La Sortie de l’opéra en l’an 2000, lithographie d’Albert Robida (vers 1882)

Le cinéma muet n’est pas en reste dans cette exploration imaginaire de l’espace. Le très célèbre Voyage dans la Lune, de Georges Méliès, date de 1903. En Allemagne, Fritz Lang réalise en 1929 Une femme dans la Lune. Il a pour conseiller technique un certain Hermann Oberth, ingénieur roumain qui perd son œil gauche lors de l’explosion de la fusée devant faire la publicité du film. Quelques années plus tard, le même Oberth mettra au point les fusées V2, utilisées par l’armée allemande lors de la Seconde Guerre mondiale, prototypes des futurs lanceurs américains et russes. On passera alors du rêve à une inquiétante réalité…

Image extraite du film de Fritz Lang montrant la fusée Friede (la Paix) sur sa rampe de lancement. Les maquettes de la fusée furent détruites ultérieurement par les nazis « comme étant de nature à nuire au secret qui devait entourer la conception des V2″. Le film est également à l’origine du compte à rebours utilisé en astronautique lors du lancement d’une fusée. Fritz Lang a expliqué « Quand j’ai tourné le décollage de la fusée, je me disais : ” Si je compte un, deux, trois, quatre, dix, cinquante, cent, le public ne sait pas quand le décollage aura lieu. Mais si je compte à rebours dix, neuf, huit, sept, six, cinq, quatre, trois, deux, un — cela devient très clair ».

Les Chroniques de l’espace illustrées (1): Utopies célestes

L’an dernier (2019), à l’occasion du cinquantième anniversaire de la mission Apollo 11 qui avait déposé pour la première fois des hommes sur la Lune, j’avais entrepris de retracer la fabuleuse épopée de l’exploration spatiale à travers quarante chroniques, diffusées tout l’été sur les ondes de France Inter.

Un livre était paru dans la foulée, se contentant de reprendre le texte de mes chroniques. Mes éditeurs espéraient que le succès attendu de ce petit livre accessible à tous et qui avait fait l’objet d’une forte promotion radiophonique, leur donneraient l’occasion de publier ultérieurement une version « de luxe », c’est-à-dire illustrée par une riche iconographie. Or, contrairement aux attentes et pour des raisons encore obscures, mon livre a été le pire bide commercial de toute ma production littéraire (25 ouvrages) alors qu’il aurait normalement dû en être le sommet ! Une version illustrée n’a donc aucune chance de voir le jour, et c’est bien dommage car l’iconographie, je  le répète, est d’une extrême richesse. Ce blog va me permettre de rattraper un peu cette déception. Voici donc la première de ces « chroniques de l’espace illustrées ». Ceci dit, si vous souhaitez acquérir mon livre dans sa version papier d’origine, ne vous privez pas !

Utopies célestes

Le rêve de quitter la Terre et de voyager dans l’espace a toujours existé. Souvenez-vous du mythe d’Icare, le premier homme à s’élever dans les airs pour s’évader du labyrinthe. Mais son orgueil le fait se rapprocher trop près du Soleil : ses ailes collées à la cire se mettent à fondre, et Icare retombe vertigineusement… Profonde et cruelle métaphore de la condition humaine !

Deux représentations picturales de la Chute d’Icare. A gauche : “Chute d’Icare” de Carlo Saraceni (1580-1620), Musée Capodimonte de Naples. A droite : “Pleurs pour Icare” de Herbert Draper, 1898, Tate Britain.

Dans deux romans rédigés au IIsiècle, le Grec Lucien de Samosate conte de manière fantaisiste des voyages sur la Lune, mais à aucun moment les trajets relatés n’ont recours à une technologie vraisemblable. Ce n’est pas encore de la science-fiction, c’est une utopie, exercice philosophique permettant de prendre du recul pour critiquer la société de son époque.

A gauche : gravure du buste de Lucien de Samosate par William Faithorne. A droite: une édition moderne des œuvres de Lucien comprenant notamment “Histoire véritable”, où le personnage voyage sur la Lune.

Au Moyen-Âge, le voyage céleste devient un exercice mystique. Il s’agit de rejoindre l’empyrée – la demeure des dieux et des bienheureux. Voilà pourquoi dans sa Divine Comédie, le poète Dante traverse le ciel sans même le regarder…

A gauche : une édition illustrée de la Divine Comédie datant du XVe siècle. A droite : une représentation du système cosmographique de Dante, conforme à la conception chrétienne médiévale

   À la Renaissance, l’attitude de l’Homme face au ciel se fait plus hardie. Le philosophe Giordano Bruno exprime pour la première fois l’ivresse du vol, la joie du voyage sans retour : « C’est donc vers l’air que je déploie mes ailes confiantes. Ne craignant nul obstacle, je fends les cieux et m’érige à l’infini. Et tandis que de ce globe je m’élève vers d’autres globes et pénètre au-delà par le champ éthéré, je laisse derrière moi ce que d’autres voient de loin », écrit-il avant d’être brûlé vif par l’Inquisition en l’an de grâce 1600.

Ce numéro de la revue Europe auquel j’ai participé compare les conceptions cosmologiques de Giordano Bruno et de son contemporain Galilée, très différentes en ce qui concerne la question de l’infinité de l’univers.

Voir ici le long billet de blog que j’ai récemment consacré à Giordano Bruno.

Peu après, Galilée découvre à la lunette astronomique le relief de la Lune, prouvant qu’elle est de même nature que la Terre. Son contemporain, le génial Johannes Kepler, s’enthousiasme et entrevoit les voyages interplanétaires. Il lui écrit : « Créons des navires et des voiles adaptés à l’éther, et il y aura un grand nombre de gens pour n’avoir pas peur des déserts du vide. En attendant, nous préparerons, pour les hardis navigateurs du ciel, des cartes des corps célestes ; je le ferai pour la Lune et toi, Galilée, pour Jupiter. » Continuer la lecture

Les nuits étoilées de Vincent Van Gogh (4) : La Nuit étoilée de Saint-Rémy-de-Provence (2/2)

Suite du billet précédent  La Nuit étoilée de Saint-Rémy-de-Provence (1/2)

Au mois de septembre 2016 je me rends au monastère Saint-Paul-de-Mausole, chef d’œuvre de l’art roman provençal construit dans le voisinage de la cité gallo-romaine Glanum, au Sud de Saint-Rémy de Provence. Une partie du bâtiment demeure aujourd’hui un établissement sanitaire à vocation psychiatrique. Van Gogh y a séjourné du 8 mai 1889 au 16 mai 1890. Au premier étage, la chambre où il était interné a été reconstituée.

Vue aérienne de l’asile Saint-Paul-de-Mausole et orientation de la fenêtre de la chambre de Van Gogh

Par la fenêtre, orientée plein Est, on y voit le paysage que Van Gogh pouvait contempler. Même si celui-ci a été transformé depuis un peu plus d’un siècle, on n’y aperçoit nullement les collines représentées dans sa peinture. Il y a dans la réalité le mur du parc de l’asile qui enserre un champ de blé, lequel s’étend entre l’asile et le mur. Et pas de grand cyprès en vue, et encore moins le village de Saint-Rémy.

De fait la petite chaîne des Alpilles est en direction du Sud. Quant au village de Saint-Rémy et son clocher d’église, assez loin dans la direction du Nord, il est tout autant invisible depuis la fenêtre. On en conclut que Van Gogh n’a pas peint la partie terrestre de sa Nuit étoilée d’après ce qu’il voyait de sa fenêtre.

Il a dû forcément sortir. Mais quand ?
L’ami Philippe André, psychiatre et amateur d’art qui a étudié à fond la correspondance de Van Gogh avant de publier en 2018 son roman Moi, Van Gogh, artiste peintre, m’écrit l’an dernier que dans les premiers jours suivant son internement le 8 mai : « La nuit, il est enfermé dans sa chambre et son matériel est sous clef dans une autre chambre vide qu’on a bien voulu lui allouer à cet usage. De plus il est très angoissé et ne parvient qu’à repeindre ses propres œuvres (Tournesols, Joseph Roulin…) ou à peindre des éléments très proches qui sont dans le parc de l’asile (Iris, Lilas…). Aucune force, durant ces premières semaines, pour peindre de profonds paysages ! »

De fait, lorsque j’ai enfin pu consulter la correspondance complète de Van Gogh, je lis que le 9 mai, lendemain de son arrivée, il écrit à sa belle-sœur « Jo » (l’épouse de Théo donc) : « Quoiqu’ici il y ait quelques malades fort graves, la peur, l’horreur que j’avais auparavant de la folie s’est déjà beaucoup adoucie. Et quoique continuellement on entende ici des cris et des hurlements terribles comme des bêtes dans une ménagerie, malgré cela les gens d’ici se connaissent très bien entre eux et s’aident les uns les autres quand ils tombent dans des crises. En travaillant dans le jardin ils viennent tous voir et je vous assure sont plus discrets et plus polis pour me laisser tranquille que par exemple les bons citoyens d’Arles. Il se pourrait bien que je reste ici assez longtemps, jamais j’ai été si tranquille qu’ici et à l’hospice à Arles pour pouvoir enfin peindre un peu. Tout près d’ici il y a des petites montagnes grises ou bleues ayant à leur pied des blés très très verts et des pins. » D’après la première phrase, il ressort que son angoisse n’était peut-être pas aussi forte que cela, et la suite confirme qu’il a malgré tout commencé à peindre, sans toutefois pouvoir dépasser les lieux fermés de sa chambre ou du petit jardin.
Le 23 mai, il écrit à son frère Théo : « Le paysage de St Rémy est très beau et peu à peu je vais y faire des étapes probablement. Mais en restant ici naturellement le médecin a mieux pu voir ce qui en était, & sera j’ose espérer plus rassuré sur ce qu’il peut me laisser peindre. […] A travers la fenêtre barrée de fer j’aperçois un carré de blé dans un enclos, une perspective à la v. Goyen au-dessus de laquelle le matin je vois le soleil se lever dans sa gloire. Avec cela – comme il y a plus de 30 chambres vides j’ai une chambre encore pour travailler. […] Ce mois ci j’ai 4 toiles de 30 et deux ou trois dessins. »
Cela montre que Vincent envisage de pouvoir très bientôt se promener dans la campagne, hors du monastère. Les quatre toiles qu’il a en train ont été peintes dans le jardin.
Entre le 31 mai et le 6 juin il écrit à Théo pour lui demander de lui envoyer des toiles, des couleurs et des brosses, sa réserve arlésienne étant épuisée. Il ajoute : « Ce matin j’ai vu la campagne de ma fenêtre longtemps avant le lever du soleil avec rien que l’étoile du matin laquelle paraissait très grande. […] Lorsque j’aurai reçu la nouvelle toile & les couleurs je m’en vais un peu voir la campagne. »
Et enfin le 9 juin, après qu’il ait reçu les toiles et les couleurs envoyées par Théo qu’il remercie chaleureusement : « J’en ai été bien content car je languissais un peu après le travail. Aussi est-il que depuis quelques jours je sors dehors pour travailler dans les environs.[…] J’ai en train deux paysages (toiles de 30) de vues prises dans les collines. […] Dans le paysage d’ici bien des choses font souvent penser à Ruysdael. »

Nous avons donc la réponse : Ce n’est que la première semaine de juin que Vincent a pu sortir du monastère et commencer à peindre les paysages vus depuis la campagne environnante. Commençons avec les collines des Alpilles. Comme dit plus haut, elles sont invisibles depuis sa chambre, elles ont donc forcément été peintes à l’extérieur. On retrouve le même profil dans d’autres toiles de la période :

Champ de blé après la tempête (détail), juin 1889.
Le faucheur (détail), juin 1889

Le profil des collines est assez fidèlement restitué, comme j’ai pu le constater en retrouvant l’emplacement approximatif où Van Gogh a posé son chevalet (aujourd’hui un champ de vignes) :

Continuer la lecture

Les nuits étoilées de Vincent Van Gogh (3) : La Nuit étoilée de Saint-Rémy-de-Provence (1/2)

Suite des billets Terrasse de café à Arles et  La Nuit étoilée sur le Rhône

Nous avons quitté Vincent Van Gogh en septembre 1888, après qu’il ait peint à Arles sa Nuit étoilée sur le Rhône. Le 23 octobre, Paul Gauguin le rejoint dans la « Maison Jaune » qu’il loue et où il va rester deux mois. La cohabitation entre ces deux génies de la peinture n’est pas facile. Outre les querelles de nature domestique, les choses se gâtent le 23 décembre 1888, après une discussion sur la peinture lors de laquelle Gauguin soutient qu’il faut travailler d’imagination, et Van Gogh d’après la nature. Selon la thèse classique, Vincent menace Paul d’un couteau ; ce dernier, effrayé, quitte les lieux. Se retrouvant seul, pris d’un accès de folie, Vincent se coupe un morceau de l’oreille gauche à l’aide d’un rasoir, l’enveloppe dans du papier journal et l’offre à une employée du bordel voisin. Ensuite il se couche. La police ne le trouve que le lendemain, la tête ensanglantée, l’esprit embrouillé. Gauguin leur explique les faits et quitte Arles. Il ne reverra plus son ami.

La Maison jaune (« La Rue »), 1888, huile sur toile, 72 × 89 cm, New Haven, Yale University Art Gallery.

Le lendemain de sa crise, Van Gogh est admis à l’hôpital. Une pétition signée par trente personnes demande son internement ou son expulsion de la ville. En mars 1889, il est interné d’office à l’hôpital d’Arles sur ordre du maire tout en continuant à peindre, et le 8 mai il quitte Arles, ayant décidé de suivre un traitement psychiatrique à l’asile d’aliénés Saint-Paul-de-Mausole, un peu au sud de Saint-Rémy-de-Provence. Il y restera une année (jusqu’en mai 1890), sujet à trois crises de démence, mais entre lesquelles sa production picturale sera d’une extraordinaire richesse : il y réalisera 143 peintures à l’huile et plus de 100 dessins en l’espace de 53 semaines.

L’une des œuvres phares de cette période est la Nuit étoilée, aujourd’hui au Museum of Modern Art à New York.

J’ai toujours été fasciné par cette toile nocturne, avec son ciel tourmenté très présent à l’arrière-plan, composé de volutes, de tourbillons, d’étoiles énormes et d’un croissant de lune entourée d’un halo de lumière. Au second plan, un village au clocher d’église exagérément étiré vers le ciel, qu’au premier abord on pense être le village de Saint-Rémy-de-Provence. De par la position de la lune, l’orientation des cornes de son croissant et le filet de brume blanchâtre au-dessus des collines, il ne faut pas être très grand clerc pour voir au premier coup d’œil que la Nuit étoilée représente un ciel un peu avant l’aube. Peut-on aller plus loin ?

En 1995, fouinant en librairie, je tombe par hasard sur un petit livre intitulé La Nuit étoilée : l’histoire de la matière et la matière de l’histoire. C’est la traduction française d’un opuscule publié en 1989 aux Etats-Unis par Albert Boime (1933-2008), professeur d’histoire de l’art à l’Université de Californie à Los Angeles.

Le livre est passionnant. L’auteur soulève de nombreuses interrogations auxquelles il tente de répondre, notamment en ce qui concerne la date d’exécution du tableau et la nature des objets astronomiques représentés.

J’ai dit dans les billets précédents que Van Gogh peignait d’après nature, et entendait donc reproduire les cieux nocturnes tels qu’il les voyait au moment précis où il commençait ses toiles. J’ai montré combien son Café le soir et sa Nuit étoilée au-dessus du Rhône, peints à Arles, montraient l’étonnant réalisme dont il faisait preuve dans la transposition picturale du firmament. Ce réalisme est moins évident dans la Nuit étoilée de Saint-Rémy, avec son ciel immense chargé d’objets lumineux, cette lune et ces étoiles bien trop grosses éparpillées parmi de vastes volutes tourbillonnantes. Ses représentations du ciel auraient-elles glissé du réalisme à l’imagination la plus folle, voire au délire devant le chevalet, au rythme de sa propre détérioration psychique ?

Pour y répondre, il faut enquêter sur la genèse précise de l’œuvre. Si, grâce à une reconstitution astronomique, on retrouve un ciel identique ou proche de celui représenté dans le tableau – comme c’était le cas pour ses œuvres nocturnes arlésiennes –, alors on aura prouvé le réalisme du tableau, en plus d’en avoir daté l’esquisse au jour et à l’heure près. Continuer la lecture

De la libre invention

Au début du XXe siècle, le poète et philosophe Paul Valéry a écrit dans ses Cahiers « Les événements sont l’écume des choses. Mais c’est la mer qui m’intéresse ».

L’aphorisme est vertigineux. Il dit tout de ce que cherche le physicien sous la chair aride des équations. Ce que cherche aussi le poète sous la cape de velours de ses mots. Symbole de la profondeur, la mer est dépositaire de l’essentiel. Mais qu’est-ce que l’essentiel ? Pour le scientifique ordinaire, c’est la « réalité » du monde – si tant est que l’expression fasse sens. Mais pour le physicien théoricien, tout comme pour l’artiste et le créateur en général, la vraie réalité du monde n’est-elle pas plutôt la vie de l’esprit, elle qui s’écarte de toute sollicitation passagère liée aux événements extérieurs ?

Dans la pensée de Valéry, la profondeur de la vitalité marine est suffisamment riche pour accueillir les manifestations les plus ténues et les plus éphémères de l’expérience. « Un petit fait d’écume, un événement candide sur l’obscur de la mer », note-t-il encore. Le contraste entre la mer et l’écume exprime le décalage saisissant entre l’unité associée à la permanence et l’accident associé à l’évanescence. Dans d’autres contextes, comme celui sur lequel je travaille actuellement, à savoir la physique théorique moderne qui tente d’unifier les lois de la gravitation et de la mécanique quantique, il traduit plutôt une complémentarité par laquelle les parties constituantes ne sont plus décalées, mais concordantes.

Je prends pour exemple une brillante hypothèse avancée par le grand physicien John Wheeler dans les années 1950. Les esprits les plus créatifs fonctionnent souvent par analogie. Wheeler imagine donc qu’au niveau microscopique, la géométrie même de l’espace-temps n’est pas fixe mais en perpétuel changement, agitée de fluctuations d’origine quantique. On peut la comparer à la surface d’une mer agitée. Vue de très haut, la mer paraît lisse. À plus basse altitude, on commence à percevoir des mouvements agitant sa surface, qui reste cependant continue. Mais, examinée de près, la mer est tumultueuse, fragmentée, discontinue. Des vagues s’élèvent, se brisent, projettent des gouttes d’eau qui se détachent et retombent. De façon analogue, l’espace-temps paraîtrait lisse à notre échelle, mais scruté à un niveau ultramicroscopique, son « écume » deviendrait perceptible sous forme d’événements  évanescents : des particules élémentaires, des micro-trous de ver, voire des univers entiers. Tout comme la turbulence hydrodynamique fait naître des bulles par cavitation, la turbulence spatio-temporelle ferait surgir en permanence du vide quantique ce que nous prenons pour la réalité du monde.

Tout ceci est superbement poétique, mais n’implique pas pour autant que ce soit physiquement correct. Cinquante ans après sa formulation, le concept d’écume du vide quantique posé par Wheeler fait toujours débat ; d’autres approches de la « gravitation quantique » se sont développées (gravité à boucles, cordes, géométrie non commutative, etc.)  proposant des visions différentes de l’espace-temps à son niveau le plus profond – la mer – et de ses manifestations à toutes les échelles de grandeur et d’énergie – l’écume. Même si aucune d’entre elles n’a encore abouti à une description cohérente, ces diverses théories ont au moins le mérite de montrer combien l’investigation scientifique de la nature est une prodigieuse aventure de l’esprit. Déchiffrer les fragments de réel sous l’écume des astres, c’est se détacher des limites du visible, se déshabituer des représentations trompeuses, sans jamais oublier que la fécondité de l’approche scientifique est souterrainement irriguée par d’autres disciplines de l’esprit humain comme l’art, la poésie, la philosophie.

Ceci nous ramène à Paul Valéry. La prescience de son propos n’a pas lieu de nous étonner lorsqu’on connaît son parcours. Curieux de tout, Valéry s’intéressait notamment à la façon dont les grands scientifiques travaillaient mentalement. Lui-même fourmillait d’idées, et pour n’en laisser échapper aucune il noircissait à longueur de temps les pages de son carnet. Au cours des années 1920, il rencontra à plusieurs reprises Albert Einstein, qu’il admirait, et réciproquement. Le facétieux père de la théorie de la relativité s’est souvenu plus tard d’un débat public au Collège de France en présence de Paul Valéry et du philosophe Henri Bergson : « Au cours de la discussion, raconte-t-il, [Valéry] m’a demandé si je me levais la nuit pour noter une idée. Je lui ai répondu : ‘’Mais, des idées, on n’en a qu’une ou deux dans sa vie’’ ».

Lorsque ce fut au tour d’Einstein d’interroger un autre poète, Saint-John Perse, sur la façon dont il travaillait, l’explication qu’il reçut ne manqua pas de le satisfaire : « Mais c’est la même chose pour le savant. Le mécanisme de la découverte n’est ni logique ni intellectuel. […] Au départ, il y a un bond de l’imagination ». Dans son discours de remise du prix Nobel de Littérature en 1960, Saint-John Perse a appelé cela le « mystère commun ».

Continuer la lecture

Hommage à Giordano Bruno : l’ivresse de l’infini

Le 17 février 1600, Giordano Bruno est brûlé vif à Rome par l’Inquisition : la liberté d’esprit face à la pensée unique. L’article qui suit lui rend hommage. Je le reprends d’une de mes publications parue en mai 2007 dans la Revue Europe n°937.

Bruno et Galilée au regard de l’infini

« Qui est là ? Ah très bien : faites entrer l’infini »
Louis Aragon, Une vague de rêves (1924)

Une des questions les plus anciennes à propos de l’univers est de savoir quelle est son étendue. Est-il fini ou infini ? Il va de soi que la question n’est pas seulement d’ordre scientifique, mais qu’elle a suscité nombre de débats philosophiques et théologiques. Selon les époques et les cultures, la réponse a oscillé, telle une valse hésitante, entre ces deux visions radicalement opposées du monde. On ne peut analyser les positions respectives de Giordano Bruno et de Galileo Galilei face à cette question sans remonter aux sources mêmes de la pensée cosmologique occidentale.

Détail de la fresque de Raphaël “L’école d’Athènes”, censé représenter Anaximandre de Milet.

Dès le VIe siècle avant notre ère, dans la Grèce antique, les premières écoles de savants et de philosophes, dites «présocratiques », tentent chacune à leur façon d’expliquer rationnellement le «monde », c’est-à-dire l’ensemble formé par la Terre et les astres conçu comme un système organisé. Pour Anaximandre, de l’école de Milet, le monde matériel où se déroulent les phénomènes accessibles à nos investigations est nécessairement fini. Il est toutefois plongé dans un milieu qui l’englobe, l’apeiron, correspondant à ce que nous considérons aujourd’hui comme l’espace. Ce terme signifie à la fois infini (illimité et éternel) et indéfini (indéterminé). Pour son contemporain Thalès, le milieu universel est constitué d’eau et le monde est une bulle hémisphérique flottant au sein de cette masse liquide infinie. On retrouve cette conception intuitive d’un monde matériel fini baignant dans un espace-réceptacle infini chez d’autres penseurs : Héraclite, Empédocle, les stoïciens notamment, qui ajoutent l’idée d’un monde en pulsation, passant par des phases de déflagrations et d’explosions périodiques.

Buste de Démocrite

L’atomisme, fondé au Ve siècle par Leucippe et Démocrite, prône une tout autre version de l’infini cosmique. Il soutient que l’univers est construit à partir de deux éléments primordiaux : les atomes et le vide. Indivisibles et insécables (atomos signifie « qui ne peut être divisé »), les atomes existent de toute éternité, ne différant que par leur taille et leur forme. Ils sont en nombre infini. Tous les corps résultent de la coalescence d’atomes en mouvement; le nombre de combinaisons étant infini, il en découle que les corps célestes sont eux-mêmes en nombre infini : c’est la thèse de la pluralité des mondes. La formation des mondes se produit dans un réceptacle sans bornes : le vide (kenon). Cet « espace » n’a d’autre propriété que d’être infini, de sorte que la matière n’influe pas sur lui : il est absolu, donné a priori.

Schéma du cosmos atomiste
Détail d’une fresque de l’Université Nationale d’Athènes représentant Anaxagore. Artiste : Eduard Lebiedzki, d’après un dessin de Carl Rahl (vers 1888).

La philosophie atomiste est fermement critiquée par Socrate, Platon et Aristote. De plus, en affirmant que l’univers n’est pas gouverné par les dieux, mais par de la matière élémentaire et du vide, elle entre inévitablement en conflit avec les autorités religieuses. Au IVe siècle avant notre ère, Anaxagore de Clazomènes est le premier savant de l’histoire à être accusé d’impiété – en quelque sorte le malheureux précurseur de Bruno et Galilée; toutefois, défendu par des amis puissants (Périclès !), il est acquitté et peut s’enfuir loin de l’hostilité d’Athènes. Grâce à ses deux plus illustres porte-parole, Épicure (341-270 av. J.-C.) – qui fonde la première école admettant des femmes pour étudiantes –, et Lucrèce (Ier siècle av. J.-C.), auteur d’un magnifique poème cosmologique, De la nature des choses, l’atomisme n’en demeure pas moins florissant jusqu’à l’avènement du christianisme.

Une édition anglaise du poème de Lucrèce

Parménide, au Ve siècle avant notre ère, est peut-être le premier représentant du finitisme cosmologique. Selon lui, le Monde, image de l’Etre Parfait, est pareil à une « balle bien ronde » et possède nécessairement des limites. Dans Le Timée, Platon (428-347) introduit un terme spécifique, khora, pour désigner l’étendue ou espace en tant que réceptacle de la matière, et défini par elle. Il le considère comme fini, clos par une sphère ultime contenant les étoiles. De la même façon, Aristote (384-322) prône une Terre fixe au centre d’un monde fini, circonscrit par la sphère qui contient tous les corps de l’univers. Mais cette sphère extérieure n’est « nulle part », puisque au-delà il n’y a rien, ni vide ni étendue.

Platon et Aristote au centre de la fresque de Raphaël, “l’Ecole d’Athènes” (1511)

Il existe ainsi, dans l’Antiquité grecque, trois grandes écoles de pensée cosmologique. L’une, qui rassemble les milésiens, les stoïciens, etc., fait la distinction entre le monde physique (l’univers matériel) et l’espace : l’univers est considéré comme un îlot de matière fini plongé dans un espace extracosmique infini et sans propriété, qui l’englobe et le contient. Les deux autres, atomiste et aristotélicienne, considèrent que l’existence même de l’espace découle de l’existence des corps; le monde physique et l’espace coïncident; ils sont infinis pour les atomistes, finis pour les aristotéliciens.

La conception stoïcienne du cosmos

Les premiers théologiens du christianisme ne s’y trompent pas : ils rejettent violemment la philosophie atomiste, qui est matérialiste, mais aussi la doctrine aristotélicienne, qui implique un temps éternel et un univers non créé. Les modèles cosmologiques du Haut Moyen-Âge reviennent aux conceptions archaïques des milésiens, à savoir un cosmos fini baignant dans le vide, à la distinction près que le cosmos revêt maintenant la forme d’un tabernacle, ou celle d’un cœur !

L’univers en forme de tabernacle, selon le moine byzantin Cosmas Indicopleustes

La cosmologie d’Aristote, perfectionnée par l’astronomie de Claude Ptolémée (vers 150 de l’ère chrétienne), est toutefois réintroduite en Occident au XIe siècle, grâce aux traductions et aux commentaires arabes, et aménagée pour satisfaire aux exigences des théologiens. Notamment, ce qui se situe au-delà de la dernière sphère matérielle du monde acquiert le statut d’espace, sinon physique, du moins éthéré ou spirituel. Baptisé «Empyrée », il est considéré comme le lieu de résidence de Dieu, des anges et des saints. Ce cosmos médiéval aristotélo-chrétien, si bien illustré par La divine comédie de Dante, est non seulement fini et centré sur la Terre fixe, mais il est très petit : la distance de la Terre à la sphère des étoiles fixes est estimée à 20 000 rayons terrestres, de sorte que le paradis, à sa frontière, est raisonnablement accessible aux âmes des défunts. Le chrétien trouve naturellement sa place au centre de cette construction.

Système du monde médiéval dans la Cosmographie d’Apianus)

Si ce modèle d’univers s’impose rapidement, il n’empêche pas la résurgence d’idées atomistes. Après la redécouverte du manuscrit de Lucrèce, le cardinal allemand Nicolas de Cues (1401-1464) plaide en faveur de l’infinité de l’Univers, de la pluralité des mondes habités et du mouvement de la Terre dans son Traité de la Docte Ignorance (vers 1440). Mais son argumentation reste principalement métaphysique : l’univers est infini parce qu’il est l’œuvre de Dieu, lequel ne saurait être limité dans ses œuvres.

La docte ignorance, de Nicolas de Cuse

Un siècle plus tard, le chanoine polonais Nicolas Copernic (1473-1543) réintroduit l’héliocentrisme, vieille hypothèse déjà formulée au IIIe siècle avant notre ère par Aristarque de Samos mais restée en sommeil, malgré la tentative de Nicolas de Cues. Son De Revolutionibus (1543) pose les hypothèses que la Terre n’est pas le centre de l’Univers ; que toutes les sphères tournent autour du Soleil, centre de l’Univers ; que tout mouvement céleste est produit par le mouvement de la Terre et non par celui du firmament ; que la Terre effectue une rotation complète autour de ses pôles en un jour et une révolution complète autour du Soleil dans le plan de l’écliptique en une année.

Copernic conserve toutefois la conception aristotélicienne d’un univers fini, enclos à l’intérieur de la sphère des étoiles fixes. Il le déclare seulement immense, et renvoie la balle aux philosophes. Néanmoins, l’héliocentrisme porte en germe une révolution fondamentale : tant que l’univers était en rotation autour de la Terre fixe, il était difficile d’imaginer qu’il puisse être infini. La difficulté disparaît dès qu’il est reconnu que le mouvement apparent du ciel est dû au mouvement terrestre. En outre, Copernic élargit le Monde médiéval. Son modèle est 2000 fois plus grand que celui de Ptolémée : il constitue un tout petit pas vers l’infini, mais en est encore loin …

Le système de Copernic, dans le De Revolutionibus de 1543

En 1572, une « étoile nouvelle »[1] observée par l’astronome danois Tycho Brahe (1546-1601) fournit un premier élément observationnel propre à accélérer la chute de la cosmologie aristotélicienne. C’est en effet dans la sphère des étoiles fixes qu’elle apparaît, c’est-à-dire dans le Monde supra-lunaire jusqu’alors réputé immuable.

Dès 1576, Thomas Digges, l’un des plus habiles observateurs de son temps et leader des coperniciens anglais, démantèle la sphère des fixes et en éparpille les étoiles dans l’espace infini. Son manifeste, A Perfit Description of the Caelestial Orbes (1576), contient un schéma héliocentrique montrant explicitement, pour la première fois dans l’histoire, des étoiles non plus fixées sur une couche mince, à la surface de la dernière sphère du monde, mais disséminées à l’infini. Ce nouveau modèle fait brutalement passer du monde clos des Anciens à un univers, sinon infini, du moins extrêmement vaste, peuplé d’étoiles innombrables qui sont autant de soleils. Toutefois, Digges ne propose pas de conception véritablement physique de l’espace infini. Pour lui, le ciel et ses étoiles constituent toujours l’Empyrée, la demeure de Dieu, et, à ce titre, n’appartiennent pas vraiment à notre monde sensible.

Système du monde de Digges (1576)

Giordano Bruno, ou l’ivresse de l’infini

La vraie rupture épistémologique est déclenchée par deux philosophes italiens. En 1587, Francesco Patrizi (1529-1597) fait paraître De l’espace physique et mathématique[2], où il émet l’idée révolutionnaire que le véritable objet de la géométrie est l’espace en tant que tel, et non les figures, comme on le considérait depuis Euclide. Patrizi inaugure un nouveau concept d’espace physique homogène et infini, obéissant à des lois mathématiques – donc accessible à l’entendement.

Mais c’est surtout à son contemporain Giordano Bruno (1548-1600) que doit être attribuée la paternité de la cosmologie infinitiste. Continuer la lecture

Transit de Mercure : l’histoire méconnue de Remus Quietanus

Le 11 novembre 2019, Mercure va passer une nouvelle fois devant le disque solaire. On pourra observer en France le début du passage, puis le maximum (minimum de distance entre le centre de Mercure et le centre du Soleil), mais la suite du passage et sa fin ne seront pas observables car le Soleil sera couché. L’observation d’un tel passage, appelé plus précisément transit, n’est pas difficile mais est relativement rare, se répétant à des intervalles de 13 ou 33 ans en mai ou tous les 7, 13 ou 33 ans en novembre. Le transit de Mercure constitue donc une aubaine pour les milliers d’astronomes amateurs intéressés par les phénomènes célestes.

Lors du précédent transit qui s’est déroulé le 9 mai 2016, j’avais rédigé sur ce même blog deux billets assez détaillés sur le phénomène et l’historique de ses observations. Je vous invite à prendre le temps de relire ces billets ici et si vous voulez  mieux suivre celui de ce jour. Je ne vais en effet pas répéter les choses déjà dites et écrites, mais au contraire compléter la partie historique avec un étonnant personnage nommé Remus Quietanus.

Dans le premier billet de 2016, je décrivais en détail comment le transit de Mercure du 7 novembre 1631, prédit peu avant sa mort par le génial Johann Kepler dans son « Admonitio ad Astronomos » de 1629, avait été observé et soigneusement décrit pour la première fois par Gassendi, à Paris.  Je savais que le transit avait également été observé par le jésuite Jean-Baptiste Cysat  à Innsbruck et par un anonyme à  Ingolstadt. En revanche j’ignorais complètement, à l’instar des autres historiens de l’astronomie, l’existence d’une quatrième observation effectuée dans la ville alsacienne de Rouffach et assortie d’un compte-rendu précis. De fait c’est un lecteur de mon blog, Jacques Mertzeisen, qui a attiré mon attention sur ce fait en m’écrivant ce commentaire : “J’ai appris incidemment que le transit de Mercure de 1631 avait également été observé par Remus Quietanus à Rouffach. Habitant à quelques kilomètres de là, j’ai entrepris de rédiger un article consacré à notre gloire locale. Sa correspondance avec Kepler fournit beaucoup de données. Aux archives de Rouffach, on a quelques éléments concernant le médecin, mais de l’astronome, on a tout oublié. Accepteriez-vous de jeter un œil critique sur mon travail quand il sera avancé ?

J’ai répondu avec enthousiasme à cette proposition, et en 2017 j’ai pu collaborer avec cet ancien professeur de mathématiques passionné par l’astronomie et son histoire, pour rédiger en anglais un “Homage to Quietanus“, article publié dans la revue internationale Inference.

Jacques a poursuivi ses travaux sur la vie et l’œuvre de ce personnage oublié de l’histoire de l’astronomie – qui a tout de même entretenu une correspondance suivie avec Kepler, Galilée et autres astronomes réputés  de son temps -, et il a récemment rédigé la page de Wikipedia consacrée à notre “héros”. Surtout, Jacques Mertzeisen vient de publier dans le numéro d’octobre 2019 de la revue L’Astronomie, éditée par la Société Astronomique de France, un formidable article intitulé “Johannes Remus Quietanus, médecin et astronome”. Avec sa permission, je reprends dans ce billet nombre d’éléments d’histoire qu’il a retrouvés.

Voici la traduction française du  compte-rendu par Remus Quietanus de l’observation du transit de Mercure du 7 novembre 1631,  extrait du Liber Duodecimus de Historia Coelestis accessible en ligne à ETH-Zürich, pages 954 & 955. Il s’agit d’une lettre  en latin adressée à Léopold V de Habsbourg , archiduc d’Autriche-Tyrol.

Lettre de Quietanus adressée à l’Archiduc Léopold

“Le 7 novembre à 9h 42’ 30’’du matin, j’ai aperçu subitement une petite tache à peine le tiers d’un scrupule [pièce de monnaie romaine] au –delà du centre du Soleil, de couleur presque noire d’acier, très différente des autres taches. Son diamètre était d’environ 18’’ et déjà à 11 heures AM, elle avait dépassé le quart depuis l’observation précédente de Mercure. Par le calcul j’ai donc déduit que le début de son incursion a eu lieu à Rouffach la nuit à 5h35 ¾ après minuit à la latitude 0°0’0’’ [???], le milieu de la rencontre à 8h 10’AM et donc que Kepler se trompait de 4h48’, lui qui posait le milieu de la conjonction pour 12h 58’ à Rouffach.
J’ai donc corrigé les calculs de Mercure et aussi de Vénus comme mes tables des mouvements célestes l’attesteront car il faut ajouter quelque chose aux mouvements moyens de Mercure, et retrancher quelque chose à son excentricité dans les Rudolphines.
Dès lors, mon opinion au sujet des diamètres des corps célestes est confortée, à savoir celui de Saturne est presque 10 fois celui de la Terre, 100 fois en superficie (du disque) et 1000 fois en volume. Pour Jupiter, c’est 5 fois, 25 fois et 125 fois en volume, pour Mars 1,5 etc. quant à Vénus et Mercure, ils n’égalent pas le volume de la Terre, car Vénus est à peine le tiers et Mercure le douzième. Le Soleil, lui, occupe 60 diamètres terrestres, son disque 3600 et son volume 21600 (le volume de la Terre), de sorte que l’espace occupé par le Soleil égale précisément toute la sphère de la course de la Lune autour de la Terre, ce qui chez Ptolémée n’était que de 166 fois.
La proportion des sphères est donc exactement la même, pour moi (aussi), que celle des diamètres des globes planétaires si quelqu’un les voyait toutes alignées à partir du centre du Soleil, il les verrait toutes sous le même angle, à savoir 30 minutes.”

Remus ajoute ensuite : “Kepler considère le diamètre de l’orbite lunaire comme moyenne proportionnelle entre le Soleil et la Lune, c’est-à-dire le diamètre de la Terre est au diamètre de l’orbite lunaire ce que le diamètre de l’orbite lunaire est au diamètre de l’orbite de la Terre.  Moi, je dirais plutôt : le diamètre de la Lune est au diamètre de l’orbite lunaire ce que le diamètre de l’orbite lunaire est au diamètre de l’orbite terrestre.”

La page 955 du Liber Duodecimus de Historia Coelestis mentionne en détail l’observation anonyme du transit de 1631 effectuée à Ingolstadt, assortie d’un diagramme.
Monnaie à l’effigie de Léopold V, protecteur de Quietanus

Continuer la lecture

Chappe d’Auteroche, mort pour la science le 1er août 1769

Il y a tout juste un quart de millénaire – le 1er août 1769 – disparaissait un de ces héros oubliés de l’histoire des sciences : Jean Chappe d’Auteroche. Cela se passait très loin de son Auvergne natale (il était né en 1728 à Mauriac), en un lieu désolé de la Basse-Californie du Sud, aujourd’hui San José del Cabo au Mexique. Conclusion tragique d’une vie d’aventures tout entière vouée à la science, plus particulièrement à l’astronomie et plus spécifiquement aux deux événements célestes marquants qu’ont été en 1761 et 1769 les transits de la planète Vénus devant le disque du Soleil. J’en raconte l’histoire dans mon roman historique Le Rendez-vous de Vénus, publié en 1999.

Dans ce billet-hommage je reproduis  quelques extraits choisis, mais j’en profite surtout pour dévoiler une riche iconographie qui ne pouvait figurer dans le roman.

Jean Chappe d’Auteroche, mort pour la science le 1er août 1769 à San José del Cabo (Mexique)

 

Un aperçu général de la vie et de l’œuvre de Jean Chappe d’Auteroche n’est pas mon propos : vous le trouverez ici sur Wikipédia. Place maintenant à l’imagination, documentée cependant par une étude approfondie des sources historiques. Voici par exemple comment dans mon roman j’ai imaginé la première rencontre entre le héros narrateur, l’astronome Joseph-Jérôme Lefrançois de Lalande, et l’abbé Chappe, ce dernier ayant déjà embrassé l’état ecclésiastique lui permettant de se livrer à sa passion pour les sciences :

Chappe était un garçon d’une vingtaine d’années dont le visage rond et jovial, la bouche gourmande, les cheveux de jais et l’œil bleu sombre sous un sourcil net lui donnaient un aspect de virilité extraordinaire. Virilité soulignée encore par des joues qui, soigneusement rasées à l’aurore, devenaient bleues à midi. Ses muscles semblaient devoir faire éclater à chaque mouvement les habits noirs de l’abbé. Il était très grand et massif. Plus de six pieds et… Ah sacré nom, alors que le système métrique est l’une des plus intelligentes réformes que nous ait léguées la Révolution, je n’arriverai donc jamais qu’à radoter mes pouces et mes coudées ! Chappe mesurait un mètre, huit décimètres et cinq centimètres … À peu près. Je pensai alors que cet homme-là devait plaire aux femmes.
En le voyant perdu dans ses pensées, je m’amusai à lâcher un tonitruant “ Bonjour, monsieur l’abbé ”, rien que pour le plaisir de le voir sursauter, le sachant, malgré ses allures d’athlète, d’un naturel distrait. Il ne sursauta pas, mais pour répondre à mon salut, lança son index vers son chapeau. Dans le mouvement, son coude se leva et le portefeuille qu’il tenait serré sous son bras chuta sur les gravillons de l’allée. En ce début de mois de mars – cela faisait donc sept mois que j’étais à Paris – il soufflait un vent frisquet, qui emporta sur la pelouse quelques papiers échappés de la serviette tombée à terre. Je me lançai à leur poursuite. J’arrivai enfin à les ramasser, jetai un œil dessus, et revins, en les lisant, vers l’abbé. Il tendit la main pour les récupérer, mais je continuai à examiner les documents. Enfin, je levai la tête et dis en lui tendant les feuilles ramassées :
– Vous travaillez donc sur les tables de Halley, monsieur l’abbé ?
En prononçant ces mots, je devais être bien fat. Chappe émit un sifflement admiratif et dit :
– Eh bien mon garçon, si je m’attendais à ce qu’un enfant… Vous alliez chez le père Désastre ?
Tel était le sobriquet du libraire dont la boutique jouxtait l’Observatoire, et qui répétait avec fierté qu’il était “ le libraire des astres et des planètes ”.
– Oui-da, mon garçon, répliquai-je avec insolence, vexé que ce grand dadais me traitât comme un gamin. Et moi, ajoutai-je, je m’étonne qu’un ecclésiastique essaie de violer les mystères de la divine Providence.
L’abbé Chappe rougit, s’excusa mille fois de sa grossièreté, puis mille nouvelles fois quand je lui appris mon âge en me vieillissant de deux ans. Je n’avais pas encore compris que mon intérêt était au contraire de m’afficher en enfant prodige.
– Comprenez, m’expliqua-t-il comme pour se justifier, je ne suis pas entré dans les ordres par vocation, mais ce costume me permet de vivre décemment tout en me consacrant à la science. D’ailleurs, je ne suis pas le seul dans ce cas. Dès que le titre de savant me procurera enfin une considération et une existence moins équivoques, je renoncerai à cet état. Et vous ?
– Mon propre maître, le père Béraud, à Lyon, m’a suggéré de faire de même, mais ma famille s’y est opposée.
Plantés au milieu de l’allée, nous devînmes les meilleurs amis du monde.”

Je rappelle brièvement que, dans l’ordre des planètes du système solaire, Vénus se situe entre le Soleil et la Terre. Donc, à certaines périodes, la planète de l’amour passe exactement devant le disque de Phébus, comme un grain de beauté qui défile lentement. Cet événement est cependant assez rare : des conditions très particulières doivent en effet être réunies pour que Vénus, le Soleil et la Terre soient exactement alignés. Normalement, si le plan de l’orbite de la Terre était exactement le même que celui de Vénus, on le verrait relativement souvent. Mais comme les deux plans sont inclinés, il faut attendre une configuration très précise, à savoir le passage de Vénus sur la ligne des nœuds, lequel ne se produit que deux fois par siècle environ, groupés à 8 ans d’intervalle.

Configurations orbitales permettant le transit de Vénus devant le Soleil lors de ses passages aux nœuds ascendant et descendant. L’inclinaison des plans orbitaux de la Terre et de Vénus est ici très exagérée pour la clarté du schéma.

Continuer la lecture

Hommage à Baptiste-Marrey (1928-2019)

Baptiste-Marrey, très grand écrivain de langue française, vient de nous quitter le 22 janvier 2019 à l’âge de 91 ans. Pratiquement inconnu du public, ignoré par une critique littéraire germanopratine souvent mafieuse qui, pour l’essentiel, ne fait l’éloge que d’indigents écrivaillons, ce romancier, essayiste, poète et « agitateur culturel » était mon voisin à la campagne en même temps qu’une connaissance proche et amicale.

Hommage à l’homme et à son œuvre.

Il y a une vingtaine d’années je suis devenu propriétaire d’une petite fermette dans le village de Chevillon, dans le Nord de l’Yonne. J’allais y passer mes fins de semaine et une partie des vacances d’été, essentiellement pour retaper une à une les pièces de ma longère, entretenir mon jardin et mes arbres fruitiers, faire les confitures d’automne et cultiver mon potager. Un jour le facteur, qui avait appris que j’étais chercheur et que j’avais publié quelques livres, me dit « vous savez que vous avez un voisin écrivain, comme vous ? ». Sur le moment j’ai cru qu’il faisait allusion à mon collègue astrophysicien et ami Hubert Reeves. Il n’était pas précisément mon voisin à Chevillon, mais sa belle propriété de Malicorne, où je me rendais régulièrement, n’est située qu’à une dizaine de kilomètres – ce qui, dans les vastes campagnes de cette région, s’apparente à un proche voisinage. Je ne prêtai donc guère attention à l’information, et quelques années passèrent sans plus de curiosité de ma part.

C’est alors qu’un samedi de printemps 2005, au matin, on frappa à la porte de ma longère. Un homme de petite taille, légèrement corpulent, l’air affable, se tenait devant le seuil. Il se présenta à peu près ainsi  : « Bonjour, je suis votre voisin, j’habite une maison à 500 mètres en haut de la rue. Je suis écrivain, je viens vous saluer pour faire votre connaissance. Je m’appelle Baptiste Marrey ».

J’avoue que je n’avais jamais entendu parler d’un écrivain nommé ainsi, et sur le moment j’ai pensé qu’il s’agissait probablement d’un de ces petits auteurs régionalistes dont la littérature, ancrée dans le terroir, reste généralement ignorée en dehors de leur province. Mais lorsque, par politesse, je lui demandai chez quel éditeur il avait publié et qu’il me répondit Actes Sud, je me dis que cette prestigieuse et exigeante maison d’édition ne pouvait avoir dans son catalogue un auteur de seconde zone, de sorte que ma curiosité fut enfin éveillée.

C’est ainsi que je fis la connaissance de Baptiste-Marrey – de son vrai prénom Jean-Claude — et de son épouse, la comédienne Alix Romero. Vivant à Gentilly, ils possédaient en bordure du village de Chevillon, à moins d’un kilomètre de chez moi, une très belle demeure de campagne, « La Marelle », bien mieux entretenue que ma très rustique longère. Nous commençâmes donc à nous fréquenter, échangeant naturellement quelques-uns de nos écrits respectifs.

Je dois dire que je ne m’attendais pas du tout au choc littéraire que j’éprouvai en lisant en 2006 le premier roman qu’il m’offrit : Les papiers de Walter Jonas. Un vrai chef-d’œuvre, sur lequel je reviendrai plus bas.

Plus tard il me fit présent d’autres titres, que je dévorai comme le premier : SMS, Elvira, Edda H, consacrés à la musique classique et à l’opéra, passions communes, et l’Atelier de Peter Loewen, autre chef-d’œuvre cette fois consacré à la peinture (j’eus plus tard l’occasion de rencontrer l’un de ses fils, l’excellent peintre Gilles Marrey, et d’en visiter une superbe exposition au Musée de Sens).

Pour en savoir plus sur le parcours de Baptiste-Marrey je renvoie le lecteur intéressé au bel article qui lui est consacré sur Wikipédia, assorti d’une bibliographie assez complète (douze romans, une vingtaine d’essais). En résumé, il est né à Paris, dans le quartier de Bercy, et y a passé ses jeunes années. « La peau de mon enfance », l’un de ses derniers ouvrages publié en 2016, est un pèlerinage bouleversant dans le territoire de son enfance irrémédiablement défiguré par l’urbanisation du quartier: “Pierre à pierre me fut arrachée la peau de mon enfance. De cette ville-là (Paris), il ne reste rien que je puisse montrer à mes propres enfants.”Continuer la lecture

L’année de la confusion

Selon le dictionnaire, le mot « confusion » désigne une situation embrouillée. Il a pour synonymes « désordre », « trouble ». Vous pensez probablement que l’année 2018 qui s’achève, avec ses gilets jaunes, sa Macronie en déroute, ses errements de Brexit, ses guerres commerciales, ses fantaisies trumpiennes et autres proliférations de moustiques, semble toute désignée pour faire l’objet du présent billet de nouvel an. Hé bien pas du tout ! Si le 1er janvier 2019 va bel et bien mettre fin à une année en effet plutôt confuse sur les plans politique et social (sans garantie aucune que la nouvelle année le soit moins !), je veux vous rappeler ici que le 1er janvier de l’an 709 du calendrier romain (soit le 1er janvier 45 av. J.-C.) a mis fin à une vraie année de totale confusion. Sous l’égide de Jules César, cette date-clé de l’histoire du monde a inauguré le calendrier dit julien, lequel a mis un peu d’ordre astronomique dans l’excessif désordre des affaires humaines. L’histoire est bien connue. Vous la trouverez fort bien racontée et dans tous ses détails sur divers sites web, mais je ne résiste pas au plaisir de vous en faire un petit résumé illustré.

L’année de confusion, soit l’an 708 du calendrier romain dit A.U.C. (de la locution latine Ab Urbe condita, qui signifie littéralement « à partir de la fondation de la Ville »), a compté non pas 365 jours mais 445 répartis en quinze mois, afin de compenser le décalage pris au fil du temps entre le calendrier romain et l’année solaire, fondée sur le rythme régulier des saisons. Comment en était-on arrivé là ?

Calendrier républicain romain

Aux premiers temps de Rome, la mesure du temps se fondait sur les cycles de la Lune. Celle-ci tourne autour de la Terre en environ 29 jours et demi, de sorte qu’il n’y a pas un nombre entier de mois lunaires correspondant à la durée d’une année solaire. Le calendrier romain républicain en usage à Rome depuis Numa Pompilius, comportait 355 jours en année normale, répartis en douze mois de longueur inégale, allant de 28 à 31 jours. L’année débutait le 15 mars (les fameuses « ides »), considéré comme le début du printemps. Le premier mois, Martius, était dédié au dieu de la guerre. Le troisième, Maius, à une amante de Jupiter nommée Maïa (les chrétiens ont astucieusement dédié ce mois de mai à la Vierge Marie, sans changement phonétique). Le quatrième, Junius, à l’épouse de Jupiter. Le onzième, Ianuarius (janvier) à Janus, le dieu à double face. Le dernier mois (février) était le mois des morts, consacré à des purifications ; réputé néfaste, c’était le plus court (de 24 à 28 jours). Le nom des autres mois – Quintilis pour juillet, Sextilis pour août, September, October, November, December – correspondait aux rangs 5, 6, 7, 8, 9 et 10 qu’ils occupaient après Mars.

Dans cette mosaïque romaine du IIIe siècle av. J-C. figurent dans la première colonne le symbole des saisons, suivi pour chacune ds trois mois correspondants. A l’époque l’année débutait en mars.

Toutefois, pour que l’année coïncide mieux avec le cycle solaire et respecte le rythme des saisons, il fallait compléter de temps à autre (environ tous les deux ans) l’année normale par un mois intercalaire de 27 jours appelé Mercedonius, qui faisait passer l’année à 377 ou 378 jours. Il fallait alors raccourcir le mois de février à 23 jours pour les intercalaires courtes ou à 24 pour les intercalaires longues. Cela paraît un peu compliqué mais, selon le célèbre philosophe du IVe siècle Macrobe, ce cycle d’intercalation était le meilleur possible puisqu’il permettait de ramener la longueur moyenne de l’année à 365,25 jours sur une période de 24 ans, très proche de l’année solaire connue depuis au moins Hipparque, au IIIe siècle av. J.-C. (Dans sa définition moderne, l’année solaire, dite aussi tropique, est le temps que met la Terre pour faire une révolution autour du Soleil, égal en l’an 2000 à 365,2422 jours).

Pourquoi donc Jules César entreprit-il de réformer le calendrier ? Parce qu’en pratique, le système compensatoire n’était pas appliqué avec rigueur ; les mois ou jours intercalaires, déterminés par les prêtres responsables du calendrier et appliqués par les consuls, étaient effectués de façon hasardeuse, soit par négligence, par concussion (les premiers jours de chaque mois, appelés calendes, étaient ceux où les Romains devaient payer les loyers ainsi que les intérêts de leurs dettes. Le mot « calendrier » en découle, mais il a d’abord désigné le registre où étaient inscrits les comptes), ou encore en raison de guerres durant lesquelles les intercalations étaient omises. Continuer la lecture

Pourquoi s’intéresser aux étoiles ? (2/2)

Suite du billet précédent

Un des mobiles les plus puissants qui poussent vers l’art et la science est le désir de s’évader de l’existence terre-à-terre avec son âpreté douloureuse et son vide désespérant, d’échapper aux chaînes des désirs individuels éternellement changeants. Il pousse les êtres aux cordes sensibles hors de l’existence personnelle, vers le monde de la contemplation et de la connaissance objective.
Albert Einstein

La connaissance pour la connaissance ?

Si notre connaissance du monde, des hommes et de leurs œuvres avait ce caractère définitif qui ne se rencontre que dans l’oubli ou la mort, c’en serait fait de notre capacité à questionner, à chercher, à connaître et à créer. L’art sait renaître sans cesse de lui-même, il sait nous protéger de l’oubli et nous parler de l’étrangeté du monde tout comme de sa beauté, il sait nous mener vers les ailleurs, les autrement et les avenirs ; il ne laisse pas de place à une éventuelle constitution définitive qui figerait sa matière.

Le « définitivement constitué » est tout autant étranger à la science. Celle-ci suit –différemment, certes – des chemins voisins de ceux de l’art et accentue encore cette réalité du caractère toujours provisoire qu’ont les acquis de la recherche. En s’accumulant, ceux-ci augmentent assurément notre connaissance du monde, mais, le plus souvent, ils entrouvrent des lucarnes sur les champs nouveaux à explorer, champs tellement vastes qu’il est permis de se demander si, finalement, notre activité de recherche nous rapproche d’une éventuelle connaissance ultime du « Grand Tout » ou si, au contraire, elle nous en éloigne.

Prenons pour exemple les mesures de la vitesse des étoiles dans les galaxies, données numériques qui augmentent utilement notre connaissance de l’Univers lointain. Voilà que, de cette liste de valeurs, surgit un fait insolite : pour chaque étoile, cette vitesse ne correspond pas du tout à celle que font prévoir les lois de la gravitation, en fonction de la distance donnée de l’étoile au centre de sa galaxie et de la quantité de matière visible dans cette galaxie : elle est beaucoup plus élevée. D’une accumulation intéressante mais routinière de mesures découle infiniment plus que la simple connaissance de celles-ci : s’ouvre en fait une passionnante page blanche dans le livre de la Nature. Ou bien il faut modifier les lois de la gravitation s’agissant d’étoiles éloignées du centre de leur galaxie ; ou bien – hypothèse plus plausible que la première, car le même type d’anomalies se découvre également à l’échelle de galaxies tout entières gravitant dans leurs amas – on doit admettre qu’il existe une quantité considérable de matière (95 % environ de la masse de l’Univers) qui, n’émettant pas de rayonnement, ne nous est pas directement connue, mais qui se manifeste cependant en ajoutant son action à celle de la matière visible : c’est la matière dite « sombre ».

Plus étonnant encore, nous croyons savoir depuis le début des années 2000 que le constituant principal de la partie sombre de notre Univers est largement dominé par une forme étrange d’énergie appelée « énergie noire ». Alors que des calculs théoriques simplifiés prédisaient un ralentissement de l’expansion de l’Univers sous l’effet de la matière gravitante (visible ou sombre), les observations indiquent que c’est l’inverse qui se produit : on constate une accélération. Passé l’effet de surprise, il a fallu trouver une explication : une énergie noire « répulsive », qui n’est ni astre invisible ni particule élémentaire, mais énergie « pure », diffuse dans tout l’espace, remplirait actuellement l’Univers aux deux-tiers et gouvernerait son évolution. Reste à savoir quelle est la vraie nature de cette énergie : énergie du vide quantique ? champs encore inconnus ? Le mystère reste entier et mobilise l’imagination fertile de quelques centaines de théoriciens. Il pourrait déboucher sur une nouvelle vision fondamentale des mécanismes de l’Univers.

J’insiste sur le fait que la quête de la connaissance « pure » justifie à elle seule la recherche scientifique, même lorsque aucune application pratique ne se profile à l’horizon de quelques générations humaines (au-delà, on ne peut jamais préjuger). Cela dit, la majorité des applications pratiques a pour origine des réponses à des questions qui n’avaient a priori rien à voir avec le but atteint. La découverte des rayons X n’a pas résulté d’un programme de détection des fractures osseuses, l’invention des ordinateurs n’est pas issue d’un projet d’amélioration des règles à calculer et l’invention de la radio et du téléphone n’est pas venue d’une tentative de perfectionnement des techniques des pigeons voyageurs. Qui sait si la compréhension, puis la maîtrise de l’énergie noire ne changeront pas le sort futur de l’humanité ?

Retour sur Terre…

Depuis deux générations, nous observons nettement des transformations dans notre vie quotidienne, issues des activités de recherche scientifiques et techniques. Tous les secteurs de l’activité humaine sont concernés : la santé, l’alimentation, la mobilité, l’habitat et la communication ont connu de fortes mutations, qui caractérisent nos sociétés développées. La raison en est simple : l’industrie et l’économie ne peuvent pas se développer sans une recherche active. Une bonne articulation entre recherche fondamentale et recherche appliquée, puis entre recherche appliquée et réalisation industrielle est évidemment nécessaire (moyennant certains contrôles nécessaires pour garantir un minimum d’éthique). Si une seule de ces étapes est négligée, la chaîne s’interrompt.

La responsabilité scientifique relève précisément de sa capacité à répondre aux besoins de la société. En retour de l’investissement dans la recherche publique et privée, les avancées scientifiques livrent des clés pour comprendre et transformer le monde. Il est vrai que certaines applications des sciences ou des technologies nouvelles suscitent la peur, la contestation ou le refus, notamment lorsqu’elles touchent au vivant et menacent potentiellement l’identité et l’intégrité de l’homme.

La recherche et ses applications peuvent enrichir notre vision du monde et nous conduire à porter un autre regard sur l’amélioration de la condition humaine. Prenons par exemple le développement de l’astronautique dans les années 1960. L’horizon s’est transformé : en s’éloignant, il est devenu courbe, puis la planète dans sa globalité s’est offerte aux caméras des satellites. Les vues de la Terre dans l’espace constituent l’une des principales retombées du programme Apollo. Dès lors, notre planète a cessé d’être assimilée à un monde infini, mais plutôt à un immense vaisseau spatial qu’il convient de protéger tant il semble fragile dans l’immensité du cosmos. Continuer la lecture

Pourquoi s’intéresser aux étoiles ? (1/2)

Écoutez! Si on allume les étoiles – alors – c’est donc utile à quelqu’un ? Alors – quelqu’un exige qu’elles existent ? Alors – quelqu’un les nomme perles ces petits machins? Et, forçant les tourbillons de poussière au zénith, il fonce vers Dieu, craint d’être en retard, pleure, baise sa main noueuse, demande qu’il y ait une étoile tôt ou tard, jure que vivre sans étoiles l’épuise. Et après le voilà dans les alarmes, mais l’air tranquille. Il arrête un passant : “Dis, maintenant ça va ? Tu n’as plus peur ? –Non !”
Écoutez ! Si on allume les étoiles – alors – c’est donc utile à quelqu’un ?
Alors il est indispensable que chaque soir, au-dessus des toits,
s’illumine au moins une étoile ?

Vladimir Maïakovsky

Liminaire

Le blog de culture tous azimuts sur lequel vous me faites l’honneur de naviguer a pour objet de partager quelques-unes de mes multiples passions. A ce titre, il traite de sujets de recherche et de réflexion à l’intersection des sciences, de la littérature, de la musique, de l’art, de l’histoire,  de la philosophie.
Je prends en outre soin et plaisir à lire régulièrement les commentaires, parfois très développés et documentés, de certains lecteurs particulièrement assidus. Or, depuis quelque temps, je sens chez certains d’entre eux s’instiller le doute sur l’utilité de mon entreprise. Il est clair, mes billets sur l’histoire des pluies d’étoiles filantes, le voyage cosmique dans la littérature ou encore la révolution copernicienne chez les humanistes provençaux ne peuvent aucunement soulager les souffrances de ce bas monde. Ce n’est d’ailleurs pas leur but!

Un de mes commentateurs (ou commentatrice ?) notait récemment « Que reste-t-il de toute cette science incapable de soulager nos corps et nos âmes dans cette vallée de cendres et de larmes? Quid de ce savoir, de cette érudition sans bornes, si telle aventure livresque est incapable d’étancher notre soif dans cet enfer moderne? […] Les seules étoiles à portée de main sont celles de étalages de Noël où les marchands vendent du rêve à gogo et dans la chambre vide des décorations, il y a comme une absence […]. Les pauvres – car il y en a – restent sur leur faim et leur fin. […] Pensez que le prochain billet va y changer quelque chose? Faut pas rêver! Je vous en donne mon billet qu’il n’apportera rien au mendiant. »

Ces remarques, tout à fait compréhensibles et malheureusement pertinentes, donnent à réfléchir. Je ne nie pas, bien sûr, que la principale motivation de mon blog (qui m’est une charge assez lourde de travail s’ajoutant à mes nombreuses autres activités) n’est autre que mon propre (et narcissique ?) plaisir, davantage qu’une  noble philanthropie ou une empathie (que je possède réellement) envers les souffrances des moins favorisés que moi. Ce qui n’empêche de me poser régulièrement la question : la culture – scientifique, littéraire, artistique, philosophique, etc. – est-elle vraiment conçue pour soulager la misère du monde?
Déjà faudrait-il pour cela que les plus défavorisés – et il y en a beaucoup – aient les moyens d’accéder à ladite culture ; par exemple, un simple abonnement mensuel à l’internet haut débit permettant d’accéder à un blog comme le mien n’est pas à la portée de toutes les bourses. J’en ai pleinement conscience, tout comme du fait  que notre « belle France », bien que relativement favorisée par rapport à nombre d’autres pays de la planète, soit en plein processus de paupérisation des classes moyennes. Processus au demeurant savamment et patiemment calculé par les divers pouvoirs économiques et financiers, donc politiques. Or, je pense que la paupérisation et nombre de maux de la société moderne sont  intimement liés à l’inculture…
Dans le billet qui suit, je veux donc rappeler comment la culture – l’authentique, la « bonne », pas la bouillie que nous en donnent la plupart des médias, les réseaux sociaux et autres commentateurs auto-proclamés de la sous-culture politiquement correcte –  peut grandement aider à soulager l’inévitable fardeau de l’existence, par la seule élévation de l’âme qu’elle procure. J’entends aussi défendre – admettant que ce soit encore nécessaire – le rôle majeur des sciences fondamentales dans l’amélioration de la condition humaine.

Il s’agit de l’adaptation d’un texte jadis publié dans l’ouvrage collectif Plaidoyer pour réconcilier les sciences et la culture (Editions Le Pommier, 2010), preuve que le sujet me préoccupe depuis longtemps.

Recherche et société

Qu’est-ce que les connaissances en astrophysique apportent au corps social ? À quoi sert la recherche dans les sciences de l’Univers alors que tant de choses sont à faire pour assurer le mieux-être, sinon la survie de l’espèce humaine ? De grands défis menacent aujourd’hui la planète entière : la faim dans le monde, le manque d’eau potable, le pillage inconsidéré des matières premières, le réchauffement climatique, la pollution généralisée, la diminution drastique de la biodiversité qui en découle, l’organisation chaotique des finances mondiales, la paupérisation des classes moyennes, le retour de l’irrationnel et des fondamentalismes, les bouffées de violence qui éclatent un peu partout, et j’en passe ! La recherche scientifique est-elle le moyen de répondre à ces défis ? Un simple outil parmi d’autres ? Un luxe parfaitement inutile et dispendieux, comme le clament certains ?

Devant l’ampleur des problèmes posés, nous ne sommes pas assurés du succès, loin de là, en revanche nous pouvons être certains de l’échec si la recherche scientifique n’est pas mise au premier plan et considérée comme une priorité absolue. La recherche est en effet une activité stratégique qui concerne la société tout entière. Certes, pour beaucoup de chercheurs et de dirigeants avisés (il en reste, ne serait-ce qu’une petite poignée, notamment dans les pays asiatiques), l’investissement dans la recherche est une évidence. Mais devant le nombre de fois où la question « À quoi ça sert ? » est posée dans les médias, dans les parlements et le grand public, il est utile de rappeler avec force quelques vertus cardinales de la recherche, et d’illustrer chacune de ces vertus par des exemples puisés dans ma propre discipline, les sciences de l’Univers – lesquelles semblent pourtant, à première vue, les plus éloignées des préoccupations de ce « bas monde ». Continuer la lecture

Les Léonides, pluie céleste de novembre (2/2)

Suite du précédent billet

Dans les nuits d’automne, errant par la ville,
Je regarde au ciel avec mon désir,
Car si, dans le temps qu’une étoile file,
On forme un souhait, il doit s’accomplir.
François Coppée, Etoiles Filantes (1877)

Fontaine de flammèches et d’éclairs illuminant l’atmosphère durant la pluie de 1833.
Nom de baptème

Lors de la pluie de novembre 1833, les nombreux observateurs de la côte Est des Etats-Unis et de la région des Chutes du Niagara avaient vu les météores semblant provenir de la constellation du Lion (Leo). Le nom de Léonides fut alors donné à cet essaim.

A la mi-novembre 1799, un phénomène similaire à la pluie de 1833 avait déjà été observé au large des côtes du Vénézuela par le célèbre naturaliste allemand Alexander von Humboldt, en compagnie du botaniste français Aimé Bonpland (1773-1858) [deux jours après ils partirent explorer le fleuve Orénoque].

Gravure extraite du célèbre ouvrage de Humboldt “Cosmos. Essai d’une description physique du Monde, 1847-1859.
Hubert Anson Newton (1830-1896).  Son travail d’archives  sur les Léonides a été repris en 1958 par Susumu Imoto et Ichiro Hasegawa pour les textes anciens chinois, japonais et coréens, puis par Gary Kronk en 1988 et Donald Yeomans en 1991, qui ont dressé des catalogues descriptifs de toutes les pluies de Léonides observées, de l’an 901 jusqu’à nos jours.

Hubert Anson Newton, autre professeur de Yale, subodora donc une périodicité du phénomène. Il rechercha dans les chroniques astronomiques anciennes des allusions aux « météores de novembre ». Il en trouva treize mentions, allant de l’an 901 à 1833. Newton en déduisit une périodicité de 33 ans un quart, et en 1864 il prédit une grande nuit des Léonides pour novembre 1866, année du passage suivant. Sa prédiction fut vérifiée. En novembre 1866, des centaines de météores à la minute furent bel et bien observés partout en Europe, et de nombreux compte-rendus parurent dans les journaux.

On en vit encore en 1867 et 1868, quoique à un rythme moindre. De remarquables gravures de l’époque en attestent, comme celles du génial dessinateur et astronome de l’Observatoire de Paris Etienne-Leopold Trouvelot et celle figurant dans un bel ouvrage d’astronomie populaire d’Emmanuel Liais. [Ce dernier, expulsé de lʼObservatoire de Paris en 1858 par son irascible directeur Urbain Le Verrier, avait poursuivi sa carrière au Brésil].

A gauche, dessin de Trouvelot. A droite, deux gravures extraites de l’ouvrage publié par Liais en 1881, “L’espace céleste, ou, Description de l’univers”.
La comète Tempel-Tuttle, maman des Léonides

Restait à trouver la cause du phénomène. Le voile fut levé par la découverte d’une comète de magnitude 6 nommée Tempel-Tuttle, en hommage à ses deux découvreurs, Ernst Tempel et Horace Tuttle. Le premier la détecta le 19 décembre 1865, le second quelques jours plus tard, le 6 janvier 1866. Cette même année, l’Italien Giovanni Schiaparelli démontrait que l’orbite de cette comète était quasiment identique à celle qu’occupent les particules provoquant l’essaim des Léonides, faisant pour la première fois le lien qui manquait. Continuer la lecture

Les Léonides, pluie céleste de novembre (1/2)

Une étoile filante brille
Et tout tombe
                   Le ciel se ride
Les bras s’ouvrent
                   Et rien ne vient
Un cœur bat encore dans le vide

Pierre Reverdy :  Etoile filante (extrait),
dans Plupart du temps, 1915-1922.

Le mois de novembre est propice aux pluies d’étoiles filantes, appelées aussi essaims météoritiques. Trois d’entre eux connaîtront leur maximum d’activité. L’essaim météoritique des Taurides Nord, actif du 20 Octobre au 10 Décembre, aura son maximum le 12 novembre, avec un taux moyen de 5 météores à l’heure. L’essaim des alpha-Monocérotides est actif du 15 au 25 Novembre avec un maximum le 21 Novembre ; son activité est très variable d’une année à l’autre, pouvant monter à 400 météores à l’heure durant environ 30 minutes. Mais c’est surtout l’essaim des Léonides qui attirera l’attention. Actif du 6 au 30 Novembre, il atteindra son maximum le 17 avec un taux d’environ 15 à l’heure. Cela paraît modeste, mais comme on va le voir, au cours de certaines années passées ce taux a atteint le taux phénoménal  de 200 000 à l’heure. Ce n’était plus une pluie, mais une tempête!

Belle pluie des Orionides vue depuis la Mongolie intérieure

Avant de revenir sur ces pluies historiques qui ont marqué les mémoires, quelques petits rappels astronomiques s’imposent.

Éphémère progéniture de comète

Les belles mais fugitives étoiles filantes sont des grains cométaires microscopiques qui, en pénétrant dans l’atmosphère, s’échauffent par frottement. Leur température monte à 3 000° C, et elles se consument dans la haute atmosphère, à 80 km d’altitude, créant ces traînées lumineuses qui ne durent souvent qu’une fraction de seconde. En fait, ce n’est pas la combustion du grain porté à blanc que l’on voit à si grande distance, mais la traînée d’ionisation qu’il laisse dans l’atmosphère. Ces étincelles nomades sont la version miniaturisée et anodine des météores – le bonzaï du bolide ! Leur taille ne dépasse pas quelques millimètres. Ce sont des silicates analogues à des grains de sable.

Un bolide

Il existe un lien entre la masse du grain et sa luminosité, donné par une formule dite de Hughes. A la vitesse typique de 70 km par seconde, cela donne une luminosité égale à celle d’une étoile de première grandeur comme Sirius pour un grain de seulement 3 millimètres, et une intensité tout juste visible à l’œil nu pour un grain de 0,3 millimètre.

Pour que nous puissions voir une si petite poussière à 80 km de distance, il faut qu’elle ait mis toutes ses forces dans la bataille. Parler de chant du cygne n’est rien. Il faudrait parler de la flambée de l’étoile filante. Les scientifiques se contentent de dire que « le rendement de la combustion est très élevé ».

Un grain cométaire

Lorsque, par une nuit quelconque, vous observez une étoile filante, il s’agit d’un météore sporadique. Par ciel dégagé, on peut en voir quelques-uns par heure, en principe davantage après minuit qu’avant, et davantage en automne qu’au printemps (pour l’hémisphère nord).

Si de nombreux météores apparaissent la même nuit et semblent provenir du même endroit du ciel, il s’agit d’une pluie d’étoiles filantes. On verra alors dix, voire cinquante météores et plus par heure, dans un ciel sombre sans Lune, loin des lumières des villes.

Cet essaim de météores résulte du passage annuel de la Terre dans la traînée de poussières laissée par une comète. Dans sa course folle, l’astre vagabond véhicule et éjecte autour de lui une grande quantité de matière, allant de la poussière au caillou. Une traînée composée de myriades de particules jalonne sa trajectoire elliptique dans le vide interplanétaire.

Ces sillages remplis de grains s’étendent sur des centaines de millions de kilomètres pour quelques dizaines de milliers de kilomètres de largeur, ce qui leur confère une forme de tube tordu.

Les poussières flottent dans ce tube, obscures, et la Terre, en les bousculant de son atmosphère, les enflamme. Dans un certain sens, c’est plutôt la Terre qui tombe sur elles qu’elles sur nous. Si ce n’est que notre planète, en croisant un tube, agit comme un aspirateur gravitationnel et engloutit ce qui traîne à la ronde.

Durant les plus belles pluies météoritiques annuelles on peut voir jusqu’à cent météores à l’heure. Et beaucoup plus encore lors de certaines années exceptionnelles – les grands crus -, où l’événement prend l’allure d’une véritable tempête. Continuer la lecture

L’éclipse lunaire du siècle

Ce vendredi 27 juillet, une éclipse de Lune sera visible en France métropolitaine dès le crépuscule, soit à partir de 21h dans le sud de la France pour ceux qui auront la possibilité d’observer l’astre des nuits dès son émergence sur l’horizon. Pour les autres le spectacle sera décalé de quelques minutes.

Avec une durée de totalité de 1 h 42 min et 57 s, proche du maximum possible de 1 h 47 min, ce sera la plus longue éclipse de Lune du XXIe siècle ! Un événement à ne pas rater, dont vous trouverez une description précise dans cet article de Xavier Demeersman sur Futurascience.

Je reproduis ici une carte de cette éclipse déjà publiée il y a près de vingt ans dans mon livre « Eclipses, les rendez-vous célestes » (Bordas, 1999) en collaboration avec l’ami Serge Brunier.

L’éclipse de Lune totale et centrale du 27 juillet 2018 sera au zénith de Madagascar, de l’ïle de la Réunion et de l’Ile Maurice, mais elle sera aussi visible en totalité ou en partie en Europe, en Afrique, en Asie et en Australasie.

Lors d’une précédente éclipse totale de Lune (28 septembre 2015), j’avais déjà posté sur ce blog un billet assez développé sur les éclipses de Lune qui ont marqué l’histoire des hommes et des civilisations. Je vous invite à lire ou relire ces éclipses de lune mémorablesEt si le sujet vous passionne, pourquoi ne pas relire également les deux billets de mars 2015 que j’avais consacrés aux éclipses dans la littérature !

Pour honorer la présente éclipse du 27 juillet 2018, j’ajoute quelques compléments de mon cru d’ordre historique et pratique, adaptés de mon livre.

Empêchements et défaillances

Dans les Institutions astronomiques, premier livre d’astronomie rédigé en français et publié en 1557, le poète et savant Jean-Pierre de Mesmes (1516-1578), proche de la Pléiade, a proposé un vocabulaire scientifique emprunté à la langue vulgaire au lieu du grec et du latin. Il suggérait d’appeler “empêchements” les éclipses de Soleil et “défaillances” les éclipses de Lune. Si ces termes poétiques n’ont pas été adoptés, ils marquent bien la différence essentielle entre les deux phénomènes.

Bien que toute éclipse soit causée par l’interception d’un astre – la Lune ou la Terre- devant le Soleil, les éclipses solaires et lunaires diffèrent en effet sur plusieurs points. Dans une éclipse solaire, la Lune masque le Soleil en totalité ou en partie, mais seulement pour certains points de la surface de la Terre : ici, le long d’une bande longue et étroite, elle est totale ou annulaire ; là, elle n’est que partielle, et la partie cachée du Soleil est plus ou moins grande ; ailleurs, on ne voit nulle trace d’éclipse. Dans une éclipse lunaire, au contraire, notre satellite cesse en totalité ou en partie d’être éclairé par le Soleil parce qu’il traverse l’ombre de la Terre, et cet aspect de la Lune est le même pour tous les habitants de l’hémisphère terrestre qui ont la Lune au-dessus de l’horizon.

Quoi qu’il en soit, les éclipses mettent en scène ces trois acteurs aux rôles bien distincts que sont la Terre, le Soleil et la Lune. Une éclipse de Soleil se produit quand la Lune passe devant le Soleil au moment de la nouvelle lune, une éclipse de Lune se produit quand la Lune passe dans l’ombre de la Terre au moment de la pleine lune. Dans les deux configurations, les trois corps sont alignés.

Une éclipse de Lune est visible en tout point de la Terre où la Lune est au-dessus de l’horizon. Au contraire, une éclipse de Soleil n’est visible que dans une zone de la Terre relativement réduite. Ces schémas sont extraits d’un atlas du XVIIIe siècle.
Claude Buy de Mornas. Atlas méthodique et élémentaire de géographie. Paris 1761.

Continuer la lecture

30 juin, Journée de l’astéroïde

Le 6 décembre 2016, l’Assemblée générale des Nations Unies a adopté une résolution déclarant le 30 juin Journée internationale des astéroïdes « afin de commémorer chaque année, au niveau international, l’anniversaire de l’explosion de Tunguska (Sibérie, Fédération de Russie) survenue le 30 juin 1908 et de sensibiliser la population aux risques d’impact d’astéroïdes. »

La Journée internationale de l’astéroïde (Asteroid Day) vise à sensibiliser le grand public aux menaces que représentent les astéroïdes, l’informer des mesures qui seraient prises pour assurer la communication de crise au niveau mondial en cas de risques liés aux géocroiseurs, mais aussi (et surtout) à mieux connaître ces fascinants résidus de la formation du système solaire.

Retour sur l’événement du 30 juin 1908, à partir d’extraits de mon livre paru en 2012, « Astéroïdes, la Terre en danger »

Le 30 juin 1908 à 7 h du matin, une effroyable explosion ravage la Tunguska, lointaine vallée pratiquement inhabitée qui étend ses forêts de conifères entre la ville d’Omsk et le lac Baïkal, en Sibérie occidentale. Accompagné d’une lueur aveuglante, le souffle couche au sol tous les arbres dans un cercle de cent kilomètres, décime des milliers de rennes, se propage, atteint les villages, brise des vitres, ébranle des immeubles. La déflagration est entendue à 1500 km à la ronde, jusqu’au cercle arctique.

Un habitant de Vanarava, à 60 km de l’endroit, aperçoit juste avant l’explosion un objet énorme et étincelant, gros comme la moitié du Soleil, fendre le ciel à la vitesse de l’éclair. Suivi par un sillage de poussière et de fumée, l’objet dégage une chaleur telle que la chemise de l’homme commence à prendre feu. Terrorisé, il a juste le temps de courir se réfugier dans sa maison afin d’éteindre les flammes.

D’autres témoins affirment avoir vu s’élever un énorme champignon de fumée noire coupant le ciel en deux. Vingt kilomètres au nord de Varanava, les nomades des tribus Tungouzes transhumant dans les forêts croient que la fin du monde est venue.Leurs huttes, arrachées du sol comme des fétus de paille, s’envolent aux quatre vents, et ils perdent des centaines de leurs rennes, gravement brûlés.

Région parmi les plus hostiles, la Tunguska compte alors très peu d’habitants. Si les dégâts matériels sont énormes, on ne déplore heureusement que quelques blessés et brûlés. Un vrai miracle. D’autant que d’incroyables phénomènes lumineux se produisent. Ce soir-là, la nuit ne se couche pas dans presque toute l’Europe. La Grande-Bretagne est éblouie par un coucher de Soleil étincelant ; la nuit, sillonnée de nuages de lumière rose, est si claire que les Londoniens peuvent lire leur journal dans la rue à minuit, sans avoir recours à l’éclairage de la ville. Des nuits d’une blancheur irréelle s’installent plusieurs semaines durant.

Enregistrée par les sismographes du monde entier, l’énergie libérée est estimée à 15 millions de tonnes de TNT. C’est mille fois la bombe atomique qui détruira 37 ans plus tard Hiroshima.

Du fait des événements qui secouent le début du siècle (purge politique en Russie, Première Guerre mondiale), les savants soviétiques ne commencent à explorer le site de la Tunguska qu’en 1927. Les arbres sont encore brûlés, couchés radialement autour du centre de l’explosion.

Continuer la lecture

Stephen Hawking (1942-2018) : ses travaux

Complément au billet précédent Stephen Hawking (1942-2018) : Souvenirs personnels

Les travaux de Stephen Hawking tournent essentiellement autour d’une interrogation aussi vieille que l’humanité : l’éternité du temps. Pour tenter d’y répondre de façon pertinente, le physicien britannique  a utilisé l’arsenal de la physique contemporaine : la relativité générale (théorie de la gravitation), la mécanique quantique (théorie des particules élémentaires et de leurs interactions) et le problématique mariage des deux (la gravitation quantique), concentrant sa stratégie sur deux domaines clés de la recherche théorique : les trous noirs et la cosmologie.

La relativité générale prédit que les étoiles très massives s’effondrent sur elles-mêmes sans limite. Leur champ gravitationnel devient alors si grand qu’il emprisonne la matière et la lumière à l’intérieur d’un « trou noir », zone de non-retour délimitée par une surface appelée horizon des événements. À la fin des années 1960, Hawking et son mentor Roger Penrose ont démontré qu’au-delà de l’horizon, l’effondrement gravitationnel doit inévitablement se poursuivre pour atteindre un stade « singulier » où la densité devient infinie. A la question « le temps a-t-il une fin ? », la réponse est donc oui dans le cadre de la relativité générale classique : le futur s’arrête aux singularités cachées au fond des trous noirs.

On doit à Roger Penrose (né en 1931) de nombreuses contributions à la physique des trous noirs, à la cosmologie et aux mathématiques.

Hawking s’est ensuite attaché, en collaboration avec d’autres chercheurs, à la mise en place d’une « thermodynamique des trous noirs » calquée sur les lois de la thermodynamique usuelle, autrement dit à les modéliser comme des systèmes physiques capables d’interagir avec le milieu extérieur et d’évoluer au cours du temps. Hawking a notamment démontré la loi de croissance irréversible de l’aire d’un trou noir, qui peut être mise en parallèle avec la loi de croissance de l’entropie. En outre, la gravité de surface d’un trou noir doit jouer le rôle d’une température. Un paradoxe, pointé par Jacob Bekenstein de l’Université de Princeton, surgit alors : si le trou noir possède réellement une température et une entropie, il doit être capable de rayonner de l’énergie, ce qui entre en conflit avec sa définition classique.

En 1970, Stephen Hawking et le physicien grec Demetrios Christodolou ont démontré qu’au cours de son évolution, un trou noir ne peut qu’accroître sa surface. Si deux trous noirs entrent en collision, ils forment un seul trou noir dont la surface A3 est plus grande que la somme des surfaces A1 et A2 des trous noirs parents.

Le dilemme a été résolu en 1974 par Hawking (un peu par hasard a-t-il plus tard reconnu), lorsqu’il a entrepris d’étudier l’interaction d’un trou noir avec le vide quantique. Dans la conception classique du trou noir, rien ne peut sortir de l’horizon. En mécanique quantique, au contraire, en raison du principe d’incertitude, une particule a toujours une probabilité non nulle de franchir une barrière de potentiel par effet tunnel. Appliqué à la théorie des trous noirs microscopiques, le principe d’incertitude crée des sortes de « tunnels quantiques » à travers l’horizon gravitationnellement infranchissable, permettant à des particules de s’en échapper et au trou noir de s’évaporer. Cette évaporation quantique du trou noir se manifeste sous forme d’un rayonnement dont la température est bien fixée par la gravité régnant à la surface du trou noir.

Une explication de l’évaporation d’un micro trou noir par polarisation du vide quantique.

L’évaporation quantique est totalement négligeable pour les trous noirs astrophysiques de masse stellaire ou galactique, lesquels s’accroissent au cours du temps, mais Hawking a montré qu’elle deviendrait dominante pour les « mini-trous noirs » de la taille d’un proton et moins massifs qu’un milliard de tonnes, leur temps d’évaporation devenant plus court que l’âge de l’univers (quatorze milliards d’années). De tels objets auraient pu se former au cours du Big Bang, lorsque la densité d’énergie ambiante était si élevée que la moindre fluctuation aurait pu se condenser en trou noir microscopique.

Cette découverte théorique du rayonnement quantique des trous noirs – appelé depuis « rayonnement Hawking » – a permis de comprendre que les trous noirs, outre leur intérêt astrophysique, jouent le rôle d’une pierre de Rosette dans le déchiffrage des liens énigmatiques entre gravité, quantas et thermodynamique. C’est à ce titre qu’elle restera la contribution la plus importante de Hawking à la physique théorique moderne. Continuer la lecture

Stephen Hawking (1942-2018) : Souvenirs personnels

Stephen Hawking (8 janvier 1942-14 mars 2018) rappelait souvent avec malice qu’il était né 300 ans jour pour jour après la mort de Galilée. Il ne se doutait probablement pas qu’il mourrait un 14 mars, jour anniversaire de la naissance d’Albert Einstein. Cette belle photo le montre à la fin des années 1970 en compagnie de son épouse Jane et deux de ses enfants.

 

Mon premier contact avec les travaux de Stephen Hawking remonte à 1975, année où j’ai quitté mes études de mathématiques pures à l’Université de Marseille pour suivre un D.E.A. de physique théorique et de cosmologie à la faculté de Montpellier sous la direction du professeur Andrillat. De fait je n’ai guère fréquenté les cours, car durant les précédentes vacances d’été j’avais déjà lu et assimilé l’excellente monographie sur la relativité générale et la cosmologie qu’Andrillat avait publiée en 1970. Du coup, j’ai pris l’initiative de me lancer dans la lecture de deux tout nouveaux ouvrages de haut vol parus en 1973 : The large scale structure of space-time de Stephen Hawking et George Ellis, et Gravitation de Charles Misner, Kip Thorne et John Wheeler. Ces livres émanant des deux grandes écoles anglo-saxonnes de physique théorique de l’époque, celle de Cambridge en Angleterre et celle de Princeton aux Etats-Unis,  allaient vite devenir de vraies bibles de la discipline, en  traitant la théorie d’Einstein selon des angles différents mais complémentaires.

Si la partie technique de ces livres était trop ardue pour ma formation de l’époque, j’en avais quand même retiré un immense intérêt pour les méthodes de physique mathématique développées par l’école de Cambridge, créée par Dennis Sciama dans les années 1960 et dont les plus remarquables disciples étaient Roger Penrose, Stephen Hawking, Brandon Carter et George Ellis. Ces méthodes permettaient notamment de traiter de manière originale des sujets comme la structure globale de l’espace-temps, les propriétés des trous noirs et les singularités inhérentes à la théorie de la relativité générale.

De gauche à droite : Dennis Sciama (1926-1999), Roger Penrose (né en 1931), Stephen Hawking (1942-2018), Brandon Carter (né en 1942) et George Ellis (né en 1939)

A la fin de cette année de DEA j’ai d’ailleurs rédigé un gros mémoire intitulé « Groupes d’isométries en relativité générale ». C’était en fait de la pure « géométrie différentielle » appliquée à la théorie gravitationnelle d’Einstein, directement inspirée par la lecture du livre de Hawking et Ellis. C’est alors que le professeur Andrillat m’a vivement conseillé d’aller poursuivre mes études à l’Observatoire de Paris-Meudon, où existait depuis peu un « Groupe d’astrophysique relativiste ». Recruté par le CNRS, Brandon Carter venait de quitter Cambridge pour en prendre la direction, et il sut faire confiance au jeune étudiant enthousiaste que j’étais. Collègue et ami personnel de Stephen Hawking, il m’a dirigé vers un sujet de thèse riche mais complexe concernant les singularités qui apparaissent dans certains modèles de la cosmologie relativiste. C’est ainsi que l’on désigne les points de l’espace-temps où certains paramètres physiques deviennent infinis. Le centre des trous noirs est une singularité de l’espace-temps, un point où la gravité devient infinie, ainsi que le début de l’Univers tel qu’il est décrit par la théorie du Big Bang. Par essence, on ne peut appréhender les singularités avec les outils de l’astrophysique, seulement avec ceux de la physique mathématique. Hawking et Penrose avaient justement démontré l’occurrence inévitable de singularités en relativité générale, moyennant quelques hypothèses plausibles. Ce sujet me convenait parfaitement !

Au bout d’un an, j’ai obtenu une bourse du British Council me permettant d’aller travailler trois mois à l’université de Cambridge, dans le laboratoire de Stephen Hawking. Il était déjà connu dans le petit monde des physiciens mais sans plus, et j’étais très impressionné d’avoir un bureau au DAMTP (Department of Applied Mathematics and Theoretical Physics), laboratoire prestigieux situé à l’époque dans une ancienne usine reconvertie, rue Silver Street. Encore plus impressionné le premier jour où, assistant à un séminaire au DAMTP, j’ai vu arriver Stephen Hawking en fauteuil roulant, la tête inclinée de côté, rictus sur le visage mais le regard toujours extraordinairement vif.

Le D.A.M.T.P. dans ses anciens locaux de Silver Street, avant son déménagement en 2002 dans des bâtiments modernes.

Dans les mois qui ont suivi j’ai eu l’occasion de mieux connaître Stephen. Je me souviens notamment d’un repas à la cantine de l’université, montrant les extraordinaires difficultés auxquelles Stephen était en permanence confronté pour accomplir les actes les plus simples de l’existence. Je me souviens aussi du jour où, voulant assister à un séminaire se tenant loin du DAMTP et nécessitant un déplacement en voiture, Stephen avait demandé si je pouvais le conduire avec mon propre véhicule. Je l’avais donc soulevé de son fauteuil roulant et pris dans mes bras pour le déposer sur le siège avant, m’étonnant de son poids qui ne devait guère dépasser les 40 kilos. Mais mon incapacité à communiquer vraiment avec lui était embarrassante. A cette époque en effet son élocution était déjà fortement altérée par sa maladie, de sorte que seules les personnes le connaissant très bien pouvaient comprendre ses paroles, ce qui pouvait créer des malentendus. Continuer la lecture