Contes de l’Outre-temps (8) : Monsieur Héron

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse.  

Monsieur Héron

 

Monsieur Héron marchait d’un pas tranquille sur le sentier humide qui sentait bon le bois mouillé après la pluie. La mousse feutrée se blottissait dans les taillis, l’herbe dégoulinait de perles roses. La forêt déployait toutes ses splendeurs devant les yeux étonnés du promeneur.

C’était un miracle de la Nature, une telle forêt. Nul n’aurait pensé que la végétation pût renaître dans cette région ravagée par une explosion atomique cinquante années auparavant. Le sol avait été mutilé, les pierres avaient fondu… Un lieu à jamais calciné qui laisserait aux hommes de demain une preuve tangible de la folie de leurs aïeux.

Pourtant… Lorsque tous les humains eurent fui cette zone maudite, la Nature devint folle à son tour. Mais ce fut une folie généreuse, qui arracha à la terre une forêt cyclopéenne, taillée par un dieu dément. Chaque cratère fut comblé de fougères et de fleurs ; les herbes se mirent à grouiller ; les espèces végétales les plus diverses naquirent côte à côte dans cet étrange creuset de quelque jardinier alchimiste.

Les savants de l’époque furent stupéfaits, et les botanistes incrédules. Mais la forêt était bien là, semblant narguer leurs chimères scientifiques.

Elle semblait la palette d’un peintre prodigue. On y trouvait toutes les teintes. Les feuillages étaient bleus, jaunes, verts ; l’herbe rouge, blanche parfois… D’autres couleurs ne portaient pas de nom car aucun homme n’avait pensé qu’elles pussent exister ; mais toutes étaient nuancées, l’œil n’était pas choqué par ces fantastiques assemblages de lumière. Une harmonie souveraine baignait la forêt. Comme dans un vieux conte de fées…

Monsieur Héron songeait à tout cela, se laissant aller à un lyrisme démodé. Il se sentait attiré par cette étrange forêt, où il venait pour la première fois… Continuer la lecture

Contes de l’Outre-temps (7) : L’âne

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse.  J’ai écrit celle-ci en 1973, au retour de mon premier long voyage en voiture, de la France au Maroc. L’interminable file d’attente au débarquement de Ceuta est authentique, ainsi, hélas, que le pauvre âne écrasé sous sa charge…  

L’âne

 

J’étais paisiblement installé à la terrasse d’un petit café de Saint-Cirgues-en-Montagne, dans l’Ardèche.

Un calme profond imprégnait les êtres et les choses, comme s’il eût été composé de subtiles molécules diluées dans l’atmosphère suave du soir.

Je plissai les yeux de contentement, tant le paysage était beau. Des bouffées de souvenir remontaient dans ma gorge.

Près de moi, mon ami Philippe semblait tout aussi extasié. Des nuages aux formes de haillons se battaient comme des chiffonniers, les dômes ventrus des collines profilaient un vert insolent qui semblait enchanter les troupeaux de vaches que l’on entendait tinter au loin.

Lorsque nous ne contemplions pas en silence l’éternité de ces lieux, nous discutions un peu de philosophie et de musique, tout en nous régalant d’une bière bien mousseuse qui miroitait dans la lumière du couchant.

Nous vîmes soudain un âne qui trottinait sur la route cabossée, devant nous, lourdement chargé de fagots de bois. Le pauvre animal titubait sous le fardeau, et le gamin qui le menait ne semblait pas s’en soucier.

Notre amour des bêtes nous fît aussitôt déplorer ce triste état de choses. Mais, hypocritement, nous ne fîmes pas un geste pour intervenir. Figés en une incompréhensible torpeur, le cœur serré et coupable, nous regardâmes longuement s’éloigner l’étrange couple, l’âne épuisé et l’enfant indifférent.

Lorsque enfin leurs silhouettes se furent amalgamées en une seule petite tache sombre qui se découpait sur l’horizon écarlate, nous commençâmes à analyser notre petite lâcheté. Pourquoi l’homme devient-il si faible, si indécis dès le moment où il doit agir en accord avec ses propres convictions éthiques ou philosophiques ?

Un tel prônera que la charité est la plus haute des vertus, mais répugnera à lâcher une pièce au pauvre bougre empli de honte.

Tel autre – ce fut le cas pour nous – proclamera son amour immodéré pour le règne animal, mais ne lèvera pas le petit doigt pour décharger un âne croulant sous le poids d’un fardeau trop lourd …

Nous en conclûmes avec vergogne que l’inertie était la grande ennemie de l’homme, puisqu’elle retient d’agir et que l’action permet à l’homme de se manifester, donc d’exister en accord avec la nature.

Après ces réflexions assez communes, nous nous tûmes quelques instants. C’est alors que, me souvenant d’une aventure que j’avais vécue quelques années auparavant, je me tournai vers Philippe et lui contai cette curieuse histoire.

« Je venais de traverser le détroit de Gibraltar à bord du ferry-boat Victoria, embarquant ma voiture et un désir d’aventure qui n’attendait que l’Afrique pour être rassasié, du moins pour quelque temps.

Je me trouvai donc à Ceuta, enclave espagnole d’Afrique qui fait face au Grand Rocher, et il ne me restait plus qu’à remplir les formalités d’usage avant d’entrer en territoire marocain. Continuer la lecture

Mes romans : Les bâtisseurs du ciel (l’intégrale)

Les Bâtisseurs du ciel (l’intégrale)

EAN : 9782709636377Parution : 10/11/2010
1640 pages

Batisseurs-couvRassemblés en un volume, les quatre grands romans de Jean-Pierre Luminet consacrés à ceux qui ont totalement changé notre vision de l’univers : Copernic, Kepler, Tycho Brahé, Galilée, Newton.
« Au cours du XVIe et du XVIIe siècle, une poignée d’hommes étranges, des savants astronomes, ont été des précurseurs, des inventeurs, des agitateurs de génie. Ce qu’on ignore généralement – peut-être parce que leurs découvertes sont tellement extraordinaires qu’elles éclipsent les péripéties de leur existence – c’est qu’ils ont été aussi des personnages hors du commun, des caractères d’exception, des figures romanesques dont la vie fourmille en intrigues, en suspense, en coups de théâtre… »
La série Les Bâtisseurs du ciel est un hymne à la science, au plaisir et à la hardiesse.

****************************************************************

DOSSIER DE PRESSE

« Vulgarisateur surdoué et passionné, Jean-Pierre Luminet nous ouvre les portes de la nuit. »
Télérama

« Dans ses romans s’expriment toute la précision et la clarté du scientifique. »
Le Monde » Continuer la lecture

Contes de l’Outre-temps (6) : Santa Cruz de Mudela

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse.  J’ai écrit celle-ci en 1973, au retour de mon premier long voyage en voiture,  de la France au Maroc en passant par les régions désolées de la Castille. Le village existe vraiment, mais je suppose et espère que l’on n’y pratique pas les rites imaginés ci-dessous…  

Santa Cruz de Mudela

 

C’étaient les premiers jours d’un brûlant juillet où le ciel faisait peser sa chape de feu sur les routes poussiéreuses d’Espagne.
Depuis deux jours, je fonçais à travers ce pays délabré de chaleur afin d’arriver au plus vite près des rivages doux et parfumés de la baie de Cadiz.
Ayant donc traversé Madrid tôt dans la matinée dans l’espoir d’éviter quelque peu la circulation démente de la capitale – espoir d’ailleurs déçu –, j’avais roulé tout le matin dans la fournaise de Castille. Tour à tour Aranjuez, Ocaña, Madridejos, Manzanares m’avaient montré leurs visages fugitifs, images bariolées tantôt empreintes de la fraîcheur des arcades comme à Aranjuez, tantôt ardentes et blanches, ou laides et grises…
En début d’après-midi, je passai près de Valdepeñas et commençai à ressentir les affres de la faim. Je décidai de faire halte au prochain village pour dénicher une quelconque épicerie.
Dans cette immense Castille, les villages sont si rares le long de la dure route d’Andalousie que je craignais de n’en pas trouver avant une bonne heure. Ce délai ne plaisait guère à mon ventre affamé, et je maudis mon imprévoyance. Aussi fus-je heureusement surpris de lire le panneau indiquant Santa Cruz de Mudela à trois kilomètres.
Ravi, je quittai le grand serpent rouge qui zébrait ma carte Michelin et m’engageai sur une petite route de campagne.
Je devrais dire un désoloir. Partout de la poussière blanche.
J’ai toujours été intrigué, malgré ma formation scientifique, par le fait que le blanc est la somme de toutes les couleurs. Ici, le blanc des collines traduisait au contraire l’absence de tout coloris. C’était un désert de rocaille qui tentait sans y parvenir d’imiter la vastitude noble de son immense semblable, le Sahara.
Sur ces arides pensées, j’atteignis Santa Cruz. Là encore ne régnait que désolation. Les rues étaient vides, les volets clos.
Je n’ignorais pas les habitudes journalières des Espagnols. Je pensai soudain à l’heure et réalisai combien mon espoir de trouver une boutique ouverte était vain.
Voulant forcer le destin, et fulminant une fois de plus contre mon étourderie, je me mis cependant en quête d’une boulangerie et d’une boucherie.
Mes connaissances de la langue espagnole se réduisaient à quelques mots d’usage courant. Il m’était toujours difficile – sinon comique ! – de me renseigner après des habitants du pays sur des sujets précis.
De toute façon, dans ce village, j’étais seul, seul comme un voyageur sur une planète de feu.
Après avoir laissé ma voiture le long du trottoir, certain de ne pas gêner une circulation inexistante, je partis à pied dans les rues du village, rasant les murs afin de recueillir quelques bouffées de la fraîcheur des maisons. Mais les porches vétustes ne me renvoyaient qu’une haleine tiède et sans parfum.
Je trouvai enfin le mot « carnecería » inscrit au-dessus d’une porte laidement peinte en bleu. Mais, comme je m’y attendais, l’entrée était verrouillée.
Je poursuivis néanmoins ma quête insensée. La chaleur et la faim commençaient à me marteler le crâne, les fatigues du voyage ne faisant que contribuer à mon indolence.
Un peu plus loin, la même scène se déroula avec une boulangerie. Désespérant de trouver quelque chose – un peu de pain et de manchego, l’un des rares fromages espagnols, m’aurait semblé un menu d’ambassadeur –, je me résignai enfin à regagner ma voiture et à filer au plus vite en direction de la souriante Andalousie, tâchant d’oublier les protestations indignées de mon estomac malmené par deux jours de cuisine espagnole pimentée.

Je refaisais le chemin en sens inverse lorsque je la vis. Continuer la lecture

Contes de l’Outre-temps (5) : L’effaré

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse. Celle-ci, datée du début des années 1970,  est l’une de mes toutes premières (l’indulgence est donc de mise). J’étais alors au lycée Thiers de Marseille, et avec les amis Jacques et Boris nous jouions souvent au « doigt-pistolet » sur les marches du grand escalier de la gare Saint-Charles – d’où cette extrapolation imaginée durant un cours de maths …

*************

L’effaré

Pourquoi ? … Mais pourquoi m’a-t-il fait aussi mal ?

C’était un bon copain… Parfois même, il devenait mon ami. On riait souvent tous les deux, surtout quand on s’amusait à se tirer dessus, comme si nos doigts étaient des revolvers… C’était comme dans les films que nous avions vus ensemble !

Il m’emmenait souvent chez lui… Une baraque toute noire au bord de la plage. Bien sûr, il avait une vraie maison, avec de vrais parents. Il avait même deux petites sœurs qui jouaient souvent avec moi. Elles me poursuivaient en courant autour de la table. Elles criaient Pan ! Pan ! et je faisais le mort, à leur grand ravissement.

Mais il me disait que ce n’était pas sa « vraie » maison. Il possédait un petit monde à lui : la baraque.

Il me disait que j’étais la seule personne qu’il admettait dans son domaine.

Il avait trouvé cette bicoque de pêcheurs abandonnée… Abandonnée des hommes, abandonnée du vent qui ne la faisait jamais craquer, délaissée même par la mer qui ne venait jamais lui lécher ses flancs. Un calme immuable régnait dans la cabane…

Quand nous nous y enfermions, nous buvions un peu d’une bouteille de bon marc enveloppée de poussière. Il en cachait quelques-unes derrière un tas de bois noir et sec ; c’était son petit trésor.

Le marc, on l’aimait beaucoup, mais les yeux nous piquaient et l’on se mettait à tousser, puis à rire. Il ne me laissait boire qu’un demi-verre, de peur que l’alcool ne me tournât la tête.

Notre grande passion était la musique. Il possédait une vieille guitare amputée de deux cordes, dont il tirait des sons rares et mystérieux.

Mais surtout, nous écoutions le chant des vagues, au loin. C’était le seul bruit qui animait un peu la cabane perdue dans le silence…

***

Mais pourquoi parler au passé ? Comme si tout cela était irrémédiablement perdu ?

Oh, comme j’ai mal… Il m’a frappé si durement !

Nous marchions tous les deux, et l’on riait car nous étions contents d’être ensemble. On parlait des arbres, du ciel, de la mer. De la cabane aussi. Et puis soudain il a lancé son pied dans mon visage… Il a fait un bond extraordinaire ! J’ai cru qu’il avait voulu faire une prouesse d’acrobate, et qu’il m’avait malencontreusement atteint. J’étais prêt à lui dire que ce n’était pas grave, que je n’avais pas mal, malgré mon front qui saignait, mais il saisit un bâton et m’asséna un coup terrible à l’endroit même où il m’avait déjà frappé.

Je ne comprenais plus, surtout que le sang brouillait ma vue. J’ai eu envie de pleurer. Il a écrasé mes doigts sous ses talons, il a lacéré mes vêtements. Après, je ne sais plus ce qui s’est passé car j’ai perdu connaissance… Peut-être a-t-il continué à me battre… J’ai si mal !

Et me voici dans la cabane, enfermé…

C’est mon copain pourtant, et même mon ami… Je suis sûr qu’il va revenir, les larmes aux yeux, pour me demander pardon. Je ne lui en veux pas. On rira et l’on continuera à s’amuser ensemble, à faire Pan ! Pan ! avec nos doigts, à écouter l’eau qui clapote sur la plage…

***

La porte s’ouvre… C’est lui…

Il ne pleure pas… Bien sûr, il a raison. C’est stupide de pleurer. En tout cas, il doit bien regretter de m’avoir battu ! Il pointe son doigt vers moi… Il veut jouer au revolver… Oh oui, on va jouer ! Je vais me lever, je ferai comme si je n’avais pas mal, et puis d’un coup, je tirerai avec mon doigt, il fera le mort et après on s’écroulera de rire, on recommencera tout comme avant… ça y est, je suis debout… J’ai mal, mais ça ne fait rien. Je suis heureux ! Maintenant on va se tirer dessus, on va éclater de rire et puis j’oublierai tout…

***

Dans la baraque noire que le vent faisait craquer en permanence et dont les flots furieux de la mer battaient sans cesse les flancs, deux jeunes garçons se tenaient face à face.

L’un tenait à peine sur ses jambes. Du sang ruisselait sur son visage, ses vêtements étaient déchirés. Il était le plus jeune des deux, mais son regard brillait d’une joie extraordinaire.

L’Autre se tenait bien droit, les yeux fixés devant lui.

Ils pointaient leurs doigts l’un vers l’autre…

La première balle atteignit l’enfant au cœur. Il s’écroula sans bruit, en écarquillant ses yeux bleus. Une larme claire roula lentement de sa joue sur ses lèvres.

La seconde balle lui brisa la tempe.

L’Autre baissa les yeux vers son index meurtrier, mais ses traits restèrent figés. Après quelques instants, il pivota. Son corps semblait voûté.

Il s’en alla doucement sur le sentier qui grimpait vers la lune blanche, laissant derrière lui la petite maison qui hurlait dans la tempête.

doigt-revolver

On n’est pas sérieux quand on a 17 ans ? Questions d’un lycéen

Il y a quelques semaines,  un étudiant espagnol de 17 ans  en préparation d’un double diplôme  du bachillerato espagnol et du bac français (le Bachibac), m’a écrit pour me dire qu’il avait choisi pour son travail de recherche le thème de l’énigme de l’univers.  Voici le questionnaire qu’il m’a envoyé, et les réponses que je lui ai données.  Cela peut servir pour tous les jeunes du même âge… au cas où ils liraient mon blog! On n’est pas sérieux quand on a 17 ans, écrivait Rimbaud. Vraiment ?

1/ Pour quoi êtes-vous devenu un scientifique ?

J’ai longtemps hésité entre les disciplines artistiques, que j’ai aussi beaucoup pratiquées (littérature, musique, peinture), et les sciences. J’ai fini par choisir ces dernières compte tenu de mes études de mathématiques, et lorsque j’ai compris que la recherche scientifique pouvait être aussi créative et imaginative que la pratique artistique.

2/ Si vous devriez recommencer à zéro vos études, est-ce que vous choisiriez le même domaine ?

Probablement oui. Mais, si les conditions familiales avaient été favorables, je serai peut-être devenu compositeur de musique, pianiste ou chef d’orchestre.

3/ À votre avis, quelle est la relation entre la physique et la philosophie ?

Relation variable selon les époques. Essentielle depuis l’Antiquité jusqu’au siècle des Lumières, séparée jusqu’au milieu du XXe siècle. Mais comme la physique quantique et la relativité générale remettent en cause les concepts même d’espace, de temps, de matière et de réalité, on assiste à un regain d’intérêt de certains philosophes pour la science, même s’ils n’ont généralement pas les outils techniques pour la comprendre vraiment.

4/Beaucoup des scientifiques affirment que pour arriver à découvrir, savoir comme répondre aux questions déjà formulées n’est pas assez, savoir comment les formuler est aussi nécessaire. Qu’est-ce que vous en pensez ?

C’est évident. J’ajouterai même qu’un grand scientifique doit être capable d’imaginer des questions qui n’avaient jamais été posées auparavant. Continuer la lecture

La métaphore par-delà l’infini

clivaz

  • par Clara Clivaz-Charvet
  • 198 pages
  • Editeur : Peter Lang Gmbh (septembre 2016)

Quatrième de couverture :

Comment penser un atome ?
Qu’est devenue la pomme de Newton ?
Sous quelles formes représenter l’Univers ?
Quelle imagerie est la préférée des scientifiques afin de décrire notre monde ?
Comment créer et utiliser les métaphores ?
Le changement de paradigme opéré par la physique au 20e siècle exige de transformer notre système de représentations et de repenser notre cadre référentiel. De la simple comparaison didactique à la métaphore heuristique, cet ouvrage recense les « images vedettes »  à l’œuvre dans la diffusion des connaissances et expose les huit bénéfices principaux inhérents à cette imagerie scientifique. L importance de faire un usage maîtrisé de ces réflexions dépasse largement un transfert d’informations. C’est la raison pour laquelle un guide à l’usage des scientifiques est proposé. Sous la forme de questions-réponses, ce guide pratique avertit des pièges à éviter tout en indiquant les emplois métaphoriques les plus pertinents pour comprendre et se faire comprendre.

Préface

par Jean-Pierre Luminet

(Astro)physicien, écrivain, amoureux de la langue française : j’ai toujours écrit, depuis mon plus jeune âge, poèmes, nouvelles, romans. Lorsque je suis devenu chercheur, un autre type d’écriture s’est imposé à moi par nécessité : la publication scientifique spécialisée. Ce n’est qu’après une dizaine d’années de recherche intensive que j’ai commencé à publier des ouvrages de « vulgarisation » – genre que je préfère qualifier de « culture scientifique ». Dans ces essais, dont certains traitent de sujets fort compliqués (les trous noirs, la forme de l’univers) mais adressés à un public assez large, je me suis toujours efforcé d’utiliser des techniques narratives empruntées à la littérature générale. C’est ainsi que mon premier essai sur les trous noirs avait la structure d’un roman policier : meurtre, enquête, identification des coupables.

Paul Valéry demandait à la littérature qu’elle lui procurât une « sensation d’univers ». De fait, c’est une telle sensation d’univers qui est à l’origine de ma double pratique d’astrophysicien et d’écrivain. Elle a pris un jour le visage d’une émotion déterminante par la grâce d’une métaphore lue dans un livre, dont je me souviendrai à jamais. J’avais une quinzaine d’années et je terminais la lecture d’une encyclopédie d’astronomie, d’une grande aridité de présentation. A la dernière page de l’ouvrage où se trouvait résumé un exposé de la relativité générale et du concept d’espace courbe – auxquels je ne pouvais à l’époque rien comprendre –, je suis tombé sur cette phrase qui m’a stupéfait : « L’espace a ici la forme d’un mollusque. » J’ai plus tard étudié les grilles de coordonnées souples dites du « mollusque de Gauss », qui ont donné après coup un sens mathématique à cette phrase. Je crois pouvoir dire aujourd’hui que c’est le mystère de cette phrase qui a en partie décidé de ma vocation de chercheur, par l’énigme à la fois poétique et scientifique qu’elle me posait. C’est pour expliciter les courbes et les bosses du mollusque universel que j’ai entrepris mes travaux sur la relativité générale, sur les trous noirs et les univers chiffonnés peuplés de galaxies fantômes. Oui, ma « sensation d’univers » m’aura été donnée par le mollusque d’espace-temps !

Aussi est-ce avec un intérêt certain qu’en novembre 2014 j’ai pris connaissance du courriel que Clara Clivaz m’a adressé, m’apprenant que dans le cadre de sa thèse de doctorat en sciences du langage tout juste soutenue à l’Université de Berne, elle avait analysé sous un angle linguistique un de mes livres (ainsi que ceux de quatre autres auteurs), lequel se trouvait être celui que je considère comme le plus abouti parmi mes écrits de culture scientifique. Elle précisait que sa thèse portait sur les différentes images rhétoriques procédant par analogie et permettant la visualisation, l’incarnation puis la compréhension de concepts ou de phénomènes abstraits ou invisibles auprès du grand public, ajoutant avoir eu le plaisir de découvrir dans nos écrits une invention à la fois remarquable et parfaitement adaptée, mais également des « visions du monde » très divergentes. Continuer la lecture

La mort de Tycho Brahe (24 octobre 1601)

Hommage à Tycho Brahe, astronome danois mort le 24 octobre 1601 à Prague.

Le texte qui suit conte les derniers jours de la vie de Tycho Brahe. Il reproduit, agrémenté d’images, le dernier chapitre de mon roman La discorde céleste, paru en  2008 aux éditions J.C. Lattès, repris en Livre de Poche en 2009 et dans l’ouvrage complet Les Bâtisseurs du ciel (J.C. Lattès, 2010). Il existe également une traduction en espagnol, titrée El Tesoro de Kepler (Ediciones B, 2009)

couvDiscorde discordepoche
Batisseurs-couv tesoro

 Afin de mieux suivre le déroulement du récit, je donne en préambule un bref rappel sur les personnages mis en jeu (parfaitement historiques, bien qu’il s’agisse d’un roman)

Personnages

tycho_brahe1Tycho Brahé (1546-1601). Astronome danois, qui se fit connaître par la description de l’étoile nouvelle apparue en 1572. Il put ensuite mener ses travaux grâce à l’octroi par le roi Frédéric II de Danemark d’un domaine sur l’île de Hven, où il fit construire le mythique observatoire d’Uraniborg. Là, entouré d’étudiants, de savants et de princes, Brahé accumula pendant vingt ans des mesures à l’œil nu d’une incroyable précision, notamment sur les positions de la planète Mars. N’admettant pas le système de Copernic, il chercha un compromis et le combina à l’ancien système de Ptolémée : pour lui, les cinq planètes connues tournaient autour du Soleil, l’ensemble faisant lui-même le tour de la Terre immobile. Dépossédé de ses biens, il quitta le Danemark et, en 1599, devint le mathématicien impérial de l’empereur Rodolphe II à Prague. C’est là qu’il fut assisté par Johann Kepler, au cours d’une collaboration orageuse. A sa mort brusquement survenue en 1601, il fut enterré en grande pompe à l’église Notre-Dame de Tyn à Prague. Johann Kepler lui succéda comme mathématicien impérial et utilisa ses données pour développer ses propres théories sur l’astronomie.
Christine Brahé, née Jorgensdatter (1549-1604), fille de paysan et épouse morganatique de Tycho, survécut trois ans à son mari et fut enterrée auprès de lui. Les fils de Tycho Brahé, Tyge (1581-1627) et Jorgen (1583-1640), ne tinrent pas les promesses que leur père avait placées en eux, Tyge s’occupant des finances et Jorgen d’alchimie et de médecine. Ses filles Madeleine (1574-1620), Sophie (1578-1655) et Cécile (1580-1640) eurent une jeunesse délurée, tandis qu’Elisabeth (1579-1613), mise enceinte par le secrétaire de Tycho, Franz Tengnagel, dut épouser ce dernier dans la quasi-clandestinité.

keplerJohannes Kepler (1571-1630). Mathématicien, astronome et physicien, le plus prolifique de l’histoire avec Newton et Einstein. Il est surtout connu pour avoir découvert que les planètes ne tournent pas en cercle autour du Soleil, mais en suivant des ellipses. Ses innombrables découvertes passèrent à peu près inaperçues des autres savants de son temps, notamment de Galilée. Mais Newton en comprit toute la valeur, et elles lui fournirent la base de la découverte du principe de la gravitation universelle.. Issu d’un milieu extrêmement défavorisé, et après une enfance difficile marquée par la pauvreté et les maladies, Kepler réussit à rejoindre l’université de Tübingen, où Michael Maestlin l’initia aux doctrines de Copernic. Après avoir enseigné les mathématiques à Gratz, il fut appelé à Prague auprès de Tycho Brahé pour devenir son principal assistant et donner forme à ses milliers d’observations astronomiques. Mais Tycho Brahé n’étant pas copernicien, leur collaboration fut une longue discorde. À la mort de ce dernier en 1601, Kepler lui succéda comme astronome de l’empereur Rodolphe II. Il conserva la même fonction auprès de l’empereur Mathias (1612-19), puis auprès de Ferdinand II en 1619, et en 1628 auprès du duc de Wallenstein. Pris dans la tourmente de la Guerre de Trente Ans, il mourut épuisé par la fatigue et la misère.

barbara-kepler-detailBarbara Kepler, née Mulleck ou Müller (1573-1611) épousa Johann Kepler en 1597 à l’âge de 24 ans, après avoir déjà été deux fois veuve. Sa fille Regine, issue d’un premier mariage, fut élevée par le couple. Barbara eut avec Johann cinq enfants, dont deux moururent au berceau. Fière et acrimonieuse, Barbara harcela Johann toute sa vie, devint folle et mourut en 1611, suivie de près dans la tombe par un de ses fils.

rudolfiiRodolphe II de Habsbourg (1552-1612), petit-fils de Charles Quint, roi de Bohème et de Hongrie, puis Empereur du Saint Empire romain germanique de 1576 à 1612. Protecteur des arts et des sciences (Arcimboldo, Tycho Brahe, Kepler) mais introverti et mélancolique, sujet à des accès de folie. Féru d’ésotérisme, il s’entoura d’une cour de mages, alchimistes et astrologues. Son incapacité à régner fut le prélude à la guerre de Trente Ans.

Thaddeus Hajek

Thaddeus Hajek, dit Hagecius (1525-1600), humaniste, astronome et médecin personnel de l’empereur Rodolphe II qui le fit chevalier. Après avoir publié des travaux sur la supernova apparue en 1572 dans la constellation de Cassiopée, il eut une correspondance scientifique suivie avec Tycho Brahe, et joua un rôle important en persuadant Rodolphe II d’inviter Brahe (et plus tard Kepler) à Prague.

jesseniusJan Jesensky, dit Jessenius (1566-1621), médecin, philosophe et homme politique. Professeur d’anatomie à l’Université de Wittenberg, puis doyen de l’université de Prague, il effectua la première dissection publique d’un corps humain en 1600, en présence de l’empereur Rodolphe. C’est lui qui prononça l’oraison funèbre de Tycho, mentionnant la rétention d’urine comme cause de sa mort.

Pierre de RosenbergPetr Vok, baron Pierre de Rosenberg  (1539 –1611), puissant seigneur de la Cour de Rodolphe, représentant de la noblesse tchèques faisant partie des catholiques modérés. En 1601, en proie à des difficultés financières, il dut vendre à Rodolphe II le célèbre château familial de Krumlov.

Minkowitz, conseiller impérial de Rodolphe II.

Franz Tengnagel  (1576-1622), noble de Westphalie, « intendant » de Tycho à partir de 1595 à Hven, Wandsbeck et Prague. Intriguant, il épousa sa fille Elisabeth Brahe après l’avoir mise enceinte. A la mort de Tycho, il mena une carrière politique auprès des Habsbourg. En 1609 il écrivit une brève et prétentieuse préface au génial traité de Kepler, Astronomia Nova.

*****************************************

Tycho avait assisté, l’après-midi, en compagnie de l’empereur et d’une bonne partie de la cour, à la première dissection en public d’un cadavre humain, par son ami le doyen de la faculté de médecine de Prague : le professeur Jessenius. A la fin de la leçon d’anatomie, Rodolphe, en proie à une profonde mélancolie, avait désiré s’isoler au lieu de débattre de cette séance avec l’aréopage de savants et d’artistes qui l’entourait toujours. Kepler, trop sensible, avait dû quitter l’amphithéâtre au premier coup de scalpel. Or, c’était avec lui que Tycho aurait aimé philosopher sur le sujet. Depuis le retour de son assistant, un mois après le mariage très discret d’Elisabeth et de Tengnagel, il ne pouvait plus se passer de lui, goûtant sa conversation plus que tout au monde, d’accord sur tout, sauf bien sûr l’héliocentrisme, auquel il résistait farouchement. Il arrivait à l’improviste dans l’appartement de Johann, s’invitait à table, couvrait Barbara et Régine de cadeaux et d’attentions, veillant à ce qu’elles ne manquent de rien. Et quand l’empereur le convoquait, ce qui arrivait de plus en plus souvent, il forçait Kepler à l’accompagner, malgré le peu de goût que celui-ci avait pour le cérémonial.

Continuer la lecture

Eclipses intellectuelles

Ceci est, inhabituellement chez moi, un petit billet d’humeur. Je m’y élève  avec quelque retard contre les égarements de certains technocrates de l’éducation nationale. Ils sont si nombreux, ces égarements,  que je n’en citerai qu’un ici.  La scène s’est déroulée en mai dernier, lorsque fut annoncé un passage de Mercure devant le Soleil se produisant le 9 de ce mois, événement astronomique intéressant et pouvant faire l’objet d’activités ludiques,  pédagogiques – et donc instructives – pour nos chères têtes blondes, brunes ou rousses. J’y ai d’ailleurs à l’époque consacré deux billets sur ce même blog, ici et .

Or, j’avais appris qu’une certain directeur académique des services de l’Éducation nationale pour la Haute Garonne, serviteur zélé du Ministère de la Déséducation Nationale, avait donné pour directive aux enseignants de garder les enfants en classe durant tout la durée du phénomène, par mesure de précaution cf. cette circulaire.

Le même genre de recommandation aberrante  émanant « d’en haut » – accompagnée d’un texte en tous points semblable – avait déjà été préconisée lors d’une éclipse solaire en  2015, et répercutée dans de nombreuses académies (dont celle de Nice) .

De nombreuses associations s’étaient élevées contre ce type de directives. Pour ma part, mon sang n’ayant fait qu’un tour, voici la lettre que j’avais illico adressée à ce gardien de l’ordre. Lettre évidemment restée sans réponse… Continuer la lecture

L’univers holographique (5) : La quête des dualités

Suite du billet précédent : L’univers holographique (4) : la conjecture de Maldacena

Des centaines de chercheurs ont exploré les conséquences de la conjecture de Maldacena, avec l’espoir que la dualité jauge/gravité, sous sa forme la plus générale, puisse établir une sorte de dictionnaire pratique entre les propriétés d’un système physique en gravitation quantique, décrit par la théorie des cordes dans un espace courbe de dimensionnalité élevée (la Matrice), et un autre système physique, plus simple celui-là, décrit quantiquement par une théorie de jauge sur l’enveloppe de la Matrice – espace plat de dimensionnalité moindre. Il existe notamment une approche en théorie M développée en 1997 et baptisée BFSS[1], destinée à fournir une formulation numériquement calculable, qui a en outre le mérite d’établir un lien avec l’approche a priori différente de la géométrie non-commutative d’Alain Connes – pour plus de détails voir l’excellent billet de L. Sacco sur Futura Sciences.

L’avantage serait évident : certains calculs très complexes – voire impossibles – en gravité quantique pourraient être menés de façon plus simple dans le cadre de la théorie de jauge, comme on l’a vu dans le billet précédent  pour l’évaporation quantique d’un trou noir dans AdS5. Inversement, quand les champs de la théorie quantique sont fortement couplés (comme dans le plasma quark-gluon, voir ci-dessous), ceux de la théorie gravitationnelle interagissent faiblement et pourraient être plus facilement appréhendés mathématiquement. Cette dualité forte/faible permet ainsi d’explorer des aspects complexes de la physique nucléaire et de la physique de la matière condensée, en les traduisant en termes de théorie des cordes à haut degré de symétrie, plus aisément traitable.

Les possibles réalisations de la dualité jauge-gravité font aujourd’hui l’objet d’ambitieux programmes théoriques, rattachés à trois vastes domaines de la physique :

  • physique nucléaire, avec notamment l’étude du plasma quark-gluon (programme AdS/QCD)
  • physique de la matière condensée, avec l’étude des états exotiques de la matière (programme AdS/CMT)
  • relativité générale et cosmologie, avec les programmes Kerr/CFT et dS/CFT.

Développons brièvement chacun de ces programmes, en mentionnant leurs succès et leurs échecs. Continuer la lecture

L’univers holographique (4) : La conjecture de Maldacena

Suite du billet précédent : L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Juan Maldacena en 2013
Juan Maldacena en 2013

Confrontés à la difficulté d’appliquer le principe holographique à un modèle d’univers réaliste, les physiciens se sont tournés vers des modèles d’univers simplifiés, dans lesquels le principe pourrait s’appliquer. La première réalisation concrète a été l’œuvre du jeune chercheur argentin Juan Maldacena qui, en novembre 1997, publia un résultat étonnant, assorti d’une audacieuse conjecture mathématique[1].

Considérant un trou noir dans un modèle d’espace-temps à cinq dimensions macroscopiques caractérisé par une géométrie dite anti-de Sitter, il montra que les détails des phénomènes se déroulant dans cet univers, décrits par la théorie des cordes et incluant donc la gravitation, étaient entièrement codés dans le comportement de certains champs quantiques (non gravitationnels) se déroulant sur la frontière quadridimensionnelle de cet univers.

Vue d'artiste de l'équivalence
Vue d’artiste de l’hypothèse de Maldacena

L’espace-temps de de Sitter est une solution exacte des équations de la relativité générale ordinaire découverte dès 1917, vide de matière mais qui comprend une force répulsive appelée constante cosmologique, de valeur positive ; si maintenant on change le signe de la constante cosmologique, la force de répulsion devient attractive et le modèle se transforme en un espace-temps anti-de Sitter[2] . Ce dernier acquiert une géométrie spatiale hyperbolique (c’est-à-dire de courbure négative) et, bien qu’il soit infini, possède un « bord » bien défini. Pour représenter ce bord, on utilise la représentation de Poincaré du disque hyperbolique qui, à l’aide d’une transformation conforme conservant les angles mais pas les distances, ramène l’infini à distance finie. L’artiste néerlandais Mauritz Cornelius Escher a créé une célèbre série d’estampes intitulées Circle Limits dans lesquelles il utilise la représentation de Poincaré, voir par exemple [3].

Poincaré representation of the hyperbolic disc.
Représentation de Poincaré du disque  hyperbolique.

Circular Limit III, zn engraving by M.C.E. Escher, using the Poincaré representation of hyperbolic space.
Circle Limit III, une gravure de M.C.E. Escher utilisant la représentation de Poincaré de l’espace hyperbolique.
L'esapce anti-de Sitter en dimension 3 se présente comme un empilement de disques hyperboliques, chacun représentant l'état d'un univers 2D à un instant donné. L'espace-temps 3D qui en résulte resemble à un cylindre solide.
L’esapce anti-de Sitter en dimension 3 se présente comme un empilement de disques hyperboliques, chacun représentant l’état d’un univers 2D à un instant donné. L’espace-temps 3D qui en résulte resemble à un cylindre solide.

Pour l’espace-temps anti-de Sitter en dimension 5, noté AdS5, le bord est de dimension 4 et, localement autour de chaque point, ressemble à l’espace de Poincaré-Minkowski, qui est précisément le modèle d’espace-temps plat utilisé en physique non-gravitationnelle. Cela signifie qu’un trou noir dans l’espace-temps anti-de Sitter 5D est strictement équivalent à un champ de particules et de rayonnement existant dans l’espace-temps plat 4D de la frontière. Or, cette dernière description fait appel à des théories de champs quantiques bien connues et maîtrisées, analogues aux champs de Yang-Mills utilisés par exemple en chromodynamique quantique (qui est la théorie de l’interaction forte). Notons cependant qu’aux cinq dimensions spatiales de l’espace-temps anti-de Sitter il faut rajouter cinq dimensions spatiales compactifiées en forme de sphère S5, afin de traiter le problème dans le cadre de la théorie des cordes standard à dix dimensions.

Continuer la lecture

Contes de l’Outre-temps (4) : L’espion

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse.  Celle-ci date de mon adolescence,  époque où je dévorais la littérature de science-fiction. Elle repose sur un calembour qui vaut ce qu’il vaut (un peu d’indulgence est donc requise).  Avec le recul je pense que j’ai été influencé par les brèves nouvelles humoristiques d’un maître du genre, Fredric Brown (voir ma nouvelle « L’univers en folie« ).

L’espion

L’Espion marchait dans la Cité indifférente et aveugle. Un rictus de joie barrait d’une empreinte diabolique sa face jaune. Parfois, il se mettait à glousser, si bien que les passants le regardaient d’un air effaré, se demandant qui pouvait être ce type aux cheveux verts qui se permettait de rire en pleine rue et se convulsionnait tous les dix pas.

Rire ? Il faut dire qu’il y avait de quoi !

L’Espion venait de réussir le coup le plus fameux de sa carrière.

Ce coup, il l’avait longuement préparé, avec la minutie d’un horloger atomique.

Élaboré au cours du long voyage intersidéral qui l’avait conduit sur Terre, le plan s’était déroulé sans faille. Une fois débarqué (« car l’espace est une immense mer où se perdent parfois quelques rivages… », comme écrivit le grand poète Arzdaded), l’Espion avait revêtu l’apparence d’un Humain ordinaire.

Malgré ses cheveux virides, il n’avait eu aucun mal à se faire embaucher comme « introducteur » dans les bureaux administratifs d’une grande société scientifique et technologique. Sa tâche n’était pas bien difficile ; elle consistait à ouvrir les portes, et, de temps en temps, à les refermer.

Mais, dans l’ombre, l’Espion œuvrait pour sa planète ! Les administrateurs de la société Terrienne l’avaient vite pris en affection. C’est que l’Espion était bien sympathique, avec sa chevelure couleur de printemps et son visage d’œuf cassé.

À mesure qu’il marchait, les images de sa mission défilaient rétrospectivement dans son cerveau…

Chez lui, là-haut, une hystérie du Savoir s’était emparée des scientifiques. On ne sait trop pourquoi, ces derniers tenaient absolument à découvrir tous les secrets de l’Univers, en décortiquer les plus petites ficelles.

Mais avant de pénétrer les mystères des êtres et des choses, « il faut leur donner un nom, il faut les cataloguer », comme l’avait enseigné le grand philosophe Selestoris.

Par exemple, en astronomie, leur catalogue d’étoiles était incomparable, et faisait la fierté de l’Institut d’Astrophysique. Ils possédaient des appareils d’observation prodigieusement puissants. Sans cesse à l’écoute de la Terre et de ses congrès scientifiques, ils avaient décidé d’y installer sur place une petite colonie d’espions fort discrets, dont le seul rôle consistait à glaner toutes les découvertes scientifiques faites par les Terriens.

Ces derniers temps, ils n’avaient pas eu grand chose à se mettre sous la dent. Il est vrai que les Terriens étaient sacrément en retard. Ainsi, le 25 novembre de l’année Terrienne 1915, un obscur employé d’un bureau de brevets de la petite ville de Berne avait publié l’ébauche d’une nouvelle théorie sur l’espace et le temps, qu’il avait appelée la relativité. Or, là-haut, sur sa planète, cela faisait longtemps que les savants connaissaient tous les mystères de la gravité. Ils maîtrisaient même ces entonnoirs de l’espace qui permettent de voyager entre les étoiles.

Enfin, vint la merveilleuse surprise. La veille du Noël des Terriens, l’Espion avait appris qu’une nouvelle étoile était née au firmament. Ce fut la stupeur au bureau des Espions. Les Terriens avaient donc découvert une étoile avant eux ! De surcroît, ce devait être un astre bien important, puisqu’ils le surnommaient déjà « La Vedette ».

Mais il manquait à l’Espion l’information principale : le véritable nom de l’étoile, le nom officiel ! Continuer la lecture

L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Suite du billet précédent L’univers holographique (2) : la gravité quantique façon théorie des cordes

Dans le cadre de la théorie des cordes, il s’agissait dans un premier temps de retrouver les lois de la thermodynamique classique des trous noirs, c’est-à-dire savoir calculer, en termes de mécanique statistique quantique, leur entropie et leur température en fonction de leur aire et de leur gravité de surface. La tâche n’est pas aisée. Comme en thermodynamique, l’entropie mesure le nombre total d’états microscopiques internes correspondant à un état externe donné du trou noir, défini par ses trois paramètres (M, J, Q). Encore faut-il comptabiliser les « vrais » états microscopiques, c’est-à-dire les degrés de liberté ultimes sur lesquels il faut calculer l’entropie. Pour évaluer le contenu ultime en informations d’un élément de matière, c’est-à-dire son entropie thermodynamique, il faut en toute rigueur connaître ses constituants fondamentaux au niveau le plus profond de structuration. Dans le modèle standard de la physique des particules, les quarks et les leptons semblent suffisants pour coder toute l’information. Mais dans la théorie des cordes et sa théorie-mère (M-theory), les quarks et les leptons sont des états excités de supercordes, qui deviennent alors les constituants les plus élémentaires du monde physique.

Gerard 't Hooft, né en 1946 aux Pays-Bas, est professeur à l'Institut de physique théorique de l'université d'Utrecht depuis 1977.
Gerard ‘t Hooft, né en 1946 aux Pays-Bas, est professeur à l’Institut de physique théorique de l’université d’Utrecht depuis 1977.

En 1993, Gerard t’Hooft (futur lauréat du prix de Nobel de physique 1999 pour ses travaux sur l’interaction électrofaible)  fut le premier à revisiter le travail de Hawking sur la thermodynamique des trous noirs dans le cadre de la théorie des cordes. Il calcula que le nombre total de degrés de liberté dans le volume d’espace-temps intérieur au trou noir était proportionnel à la superficie de son horizon[1]. La surface bidimensionnelle du trou noir peut être divisée en unités quantiques fondamentales appelées aires de Planck (10–66 cm2). Du point de vue de l’information, chaque bit sous forme de 0 ou de 1 correspond à quatre aires de Planck, ce qui permet de retrouver la formule de Bekenstein-Hawking S = A/4 pour l’entropie. Tout se passe comme si l’information perdue pour un observateur extérieur – l’entropie du trou noir – portée initialement par la structure 3D des objets ayant traversé l’horizon des événements, était codée sur sa surface 2D à la façon d’un hologramme, et t’Hooft en conclut que l’information avalée par un trou noir devait être intégralement restituée lors du processus d’évaporation quantique.

L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck (10–66 cm2) est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.
L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck  est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.

Continuer la lecture

Le Météore du 13 Août

« A la seconde où tu m’apparus, mon cœur eut tout le ciel pour l’éclairer. Il fut midi à mon poème. Je sus que l’angoisse dormait.»
René Char : Le Météore du 13 Août (Fureur et Mystère,  1948).

Des dizaines d’excellents billets de blog ici et sont consacrés à l’actualité des Perséides, cette pluie d’étoiles filantes qui illumine chaque année le ciel de la mi-août. Pour ne pas faire redondance, je me contenterai ici de quelques notes astronomico-poétiques.

Comme chacun sait (ou devrait savoir), ces belles mais fugitives étincelles nomades sont des grains cométaires microscopiques qui, en pénétrant dans l’atmosphère, s’échauffent par frottement. Leur température monte à trois mille degrés, et elles se consument dans la haute atmosphère, à quatre-vingts kilomètres d’altitude environ, créant ces traînées lumineuses qui ne durent souvent qu’une fraction de seconde. En fait, ce n’est pas la combustion du grain porté à blanc que l’on voit à si grande distance, mais la traînée d’ionisation qu’il laisse dans l’atmosphère. Les étoiles filantes sont la version miniaturisée et anodine des météores, le « bonzaï » du bolide.

Les étoiles filantes, si elles ne font pas d’argent ni ne répondent aux vœux, font parfois de beaux  poèmes:

A la pointe où se balance un mouchoir blanc
Au fond noir qui finit le monde
Devant nos yeux un petit espace
Tout ce qu’on ne voit pas
Et qui passe

Le soleil donne un peu de feu

Une étoile filante brille
Et tout tombe
Le ciel se ride
Les bras s’ouvrent
Et rien ne vient
Un cœur bat encore dans le vide

Un soupir douloureux s’achève
Dans les plis du rideau le jour se lève

Pierre Reverdy, Etoile filante (dans Plupart du temps, 1915-1922)

Leur taille ne dépasse pas quelques millimètres. Ce sont des silicates, analogues à des grains de sable. La luminosité des grains est fonction de leur masse. À la vitesse typique de soixante-dix kilomètres par seconde, un grain de seulement trois millimètres présente une luminosité égale à celle d’une étoile de première grandeur comme Sirius, mais pour un grain caractéristique d’un tiers de millimètre, l’intensité est tout juste visible à l’œil nu.

meteore_bolideLorsque, par une nuit quelconque, vous observez une étoile filante, il s’agit d’un météore sporadique. Par ciel dégagé, on peut en voir quelques-uns par heure, en principe davantage après minuit qu’avant, et davantage en automne qu’au printemps – du moins pour l’hémisphère nord.

Si de nombreux météores apparaissent la même nuit et semblent provenir du même endroit du ciel, il s’agit d’une pluie d’étoiles filantes. On voit alors dix, voire cinquante météores et plus par heure, dans un ciel sombre sans Lune et loin des lumières des villes. Continuer la lecture

L’univers holographique (2) : La gravité quantique façon théorie des cordes

Suite du billet précédent L’univers holographique (1) : le paradoxe de l’information

Le paradoxe de l’information lié aux trous noirs reflète notre incapacité actuelle à élaborer une théorie cohérente de la gravité quantique. L’approximation semi-classique de Hawking cesse d’être valide quand le trou noir devient suffisamment petit pour que le rayon de courbure à l’horizon des événements atteigne la longueur de Planck, 10-33 cm, autrement dit lorsque non seulement la matière et l’énergie, mais aussi le champ gravitationnel doivent être quantifiés. La description finale de l’évaporation et la restitution partielle ou complète de l’information exigent donc un traitement complet en gravité quantique, branche fondamentale de la physique qui cherche à décrire la gravitation en utilisant les principes de la mécanique quantique.

Richard Feynman (1918-1988), prix Nobel de physique 1965, auteur des diagrammes du même nom.
Richard Feynman (1918-1988), prix Nobel de physique 1965, auteur des diagrammes du même nom.

L’application de la mécanique quantique aux objets physiques tels que le champ électromagnétique, qui s’étendent dans l’espace et le temps, a connu un succès éclatant avec la théorie quantique des champs[1]. Celle-ci forme la base de la compréhension du modèle standard de la physique des particules élémentaires, rendant compte des interactions électromagnétiques, nucléaire forte et nucléaire faible. Elle permet de calculer les probabilités d’événements en utilisant les techniques de la théorie des perturbations. Les diagrammes de Feynman décrivent les chemins de particules ponctuelles et leurs interactions. Chaque diagramme représente une contribution à un processus d’interaction. Pour leurs calculs, les physiciens additionnent en premier lieu les contributions les plus fortes, puis les plus petites, et ainsi de suite, jusqu’à atteindre la précision désirée.

Diagramme de Feynman. Lorsque deux particules (ici deux électrons venant du bas) interagissent, elles peuvent le faire « simplement », en échangeant un seul photon (schéma du haut). Mais ce photon peut lui-même se matérialiser puis de dématérialiser en chemin. Sur le schéma du bas, par exemple, il crée une paire électron-positron qui recrée ensuite le photon. Si l’on tient compte de cette aventure, la description de l’interaction des deux électrons de départ n’est plus la même. Cela n’est en fait que la « première correction ». En effet, il peut arriver au photon des histoires beaucoup plus compliquées qui représentent des corrections d’ordre 2,3,4… La physique quantique exige de tenir compte de l’infinité de ces corrections pour le moindre calcul. Cette difficulté considérable a conduit à incorporer à la physique quantique l’idée de renormalisation.
Diagramme de Feynman. Lorsque deux particules (ici deux électrons venant du bas) interagissent, elles peuvent le faire « simplement », en échangeant un seul photon (schéma du haut). Mais ce photon peut lui-même se matérialiser puis de dématérialiser en chemin. Sur le schéma du bas, par exemple, il crée une paire électron-positron qui recrée ensuite le photon. Si l’on tient compte de cette aventure, la description de l’interaction des deux électrons de départ n’est plus la même. Cela n’est en fait que la « première correction ». En effet, il peut arriver au photon des histoires beaucoup plus compliquées qui représentent des corrections d’ordre 2,3,4… La physique quantique exige de tenir compte de l’infinité de ces corrections pour le moindre calcul. Cette difficulté considérable a conduit à incorporer à la physique quantique l’idée de renormalisation.

 

Mais ce procédé ne marche que si les contributions deviennent réellement négligeables à mesure qu’un plus grand nombre d’interactions est pris en compte. Lorsqu’il en va ainsi, la théorie est dite “faiblement couplée” et les calculs convergent vers des valeurs physiques finies. S’il en va différemment, la théorie est dite “fortement couplée” et les méthodes standard de la physique des particules échouent. C’est notamment ce qui arrive avec le graviton, supposé être la particule médiatrice du champ gravitationnel. Le graviton, créant de la masse-énergie, interagit avec lui-même, ce qui crée de nouveaux gravitons, qui à leur tour interagissent, et ainsi de suite, jusqu’à la divergence. L’échec de la technique des perturbations pour quantifier la gravité a donc conduit les physiciens à explorer d’autres voies. Continuer la lecture

L’univers holographique (1) : le paradoxe de l’information

Ce billet est le premier d’une série de 6 reprenant un article initialement publié en anglais dans la revue Inference : The International Review of Science, auquel j’ai rajouté des illustrations à caractère pédagogique.

Introduction

Lors d’un exposé donné le 25 août 2015 au KTH Royal Institute of Technology à Stockholm qui a fait l’objet d’un grand tapage médiatique, Stephen Hawking a annoncé avoir résolu un problème de la physique appelé paradoxe de l’information [1]. Ce dernier illustre un conflit potentiel entre la mécanique quantique et les modèles de trou noir décrits par la relativité générale ; à ce titre, il joue un rôle central en physique fondamentale et divise la communauté des théoriciens depuis quatre décennies. Selon Hawking, toute l’information sur la matière et l’énergie contenue dans le volume 3D du trou noir résiderait en réalité sur sa surface 2D, l’horizon des événements, codée sous forme d’hologramme.

hologram1
Un hologramme est une photographie d’un type particulier qui engendre une image tridimensionnelle quand on l’éclaire de façon appropriée ; toute l’information décrivant une scène en trois dimensions est encodée dans le motif de zones claires et sombres inscrit sur un film à deux dimensions.

Cette information pourrait ensuite être entièrement récupérée (bien que sous forme chaotique) grâce au rayonnement libéré lors de son évaporation quantique – un processus initialement prédit par le même Hawking quarante ans auparavant.

L’idée n’est pas nouvelle : elle fait appel à un modèle d’univers holographique précédemment étudié par des centaines de physiciens, et objet d’un tel engouement qu’il a conduit certains d’entre eux à imaginer des scénarios parfaitement surréalistes. Par exemple, S. Mathur a proposé qu’au lieu d’être détruit par des forces de marée gravitationnelles ou par un pare-feu quantique, un astronaute tombant dans un trou noir serait simplement converti en hologramme, sans se rendre compte de rien [2].

A l’annonce de Hawking la communauté scientifique a donc dans son ensemble réagi avec beaucoup de prudence et de scepticisme, pour ne pas dire d’embarras devant l’annonce prématurée d’une idée non élaborée sur le plan technique : comment l’information s’inscrit-elle dans l’horizon des événements, comment est-elle restituée au monde extérieur, aucun détail n’a encore été donné.[3]

Pour y voir plus clair, un retour en arrière sur la thermodynamique des trous noirs s’impose.

Thermodynamique des trous noirs et paradoxe de l’information

Au cours des années 1970 – âge d’or de la théorie des trous noirs en relativité générale classique -, il a été démontré d’une part que l’état final d’un trou noir à l’équilibre ne dépendait que de trois paramètres : sa masse M, son moment angulaire J et sa charge électrique Q, ce qui paradoxalement faisait de lui l’objet le plus simple de toute la physique ; d’autre part, que la dynamique des trous noirs en interaction se résumait en quatre lois présentant une analogie extrêmement frappante avec celles de la thermodynamique usuelle[4]. En particulier, la seconde loi stipule que l’aire d’un trou noir ne peut jamais décroître au cours du temps. Ce résultat fondamental suggère une connexion étroite entre l’aire d’un trou noir et l’entropie d’un système thermodynamique. Continuer la lecture

Hommage à Yves Bonnefoy, poète inquiet du cosmos

yves-bonnefoyAvant de se consacrer à la poésie, Yves Bonnefoy avait fait des études de mathématiques, d’histoire des sciences et de philosophie. J’aime souligner les relations privilégiées du mathématicien avec le poète. La question du langage y est déterminante, notamment la recherche d’une économie maximale au service de l’expression la plus forte. Il s’agit toujours de condenser une formulation, de trouver « l’équation », l’algorithme en quelque sorte. Gilbert Lély a défini la poésie de la façon suivante : « A chaque interrogation du monde extérieur, la réponse la plus rapide, la plus nettement articulée, la plus libre, la plus dévorante. » On ne saurait mieux définir la quête du mathématicien. En mathématiques comme en poésie, la forme et le fond sont indissociables. C’est par là sans doute que le poème se différencie de la prose. La vérité du poème se joue là, même si elle renferme, comme en mathématiques, sa part d’inconnu. Dans Entretiens sur la poésie 1972-1990 (Mercure de France), Yves Bonnefoy parlait de cet effort de limpidité qui l’animait lorsqu’il écrivait, et qu’il comparait à une équation qu’on réduirait à sa « forme canonique », laquelle contient toujours l’inconnu(e).

Une excellente introduction à la lecture de l’œuvre poétique d’Yves Bonnefoy est due à Jean-Michel Maulpois et se lit ici.

Pour ma part je me contenterai d’une brève remarque prises dans l’anthologie « Les poètes et l’univers » que j’ai publiée en 1996 et dans laquelle Yves Bonnefoy figurait en bonne place. Continuer la lecture

Evénements ondes gravitationnelles : un résumé en images

Les événements GW150914 et GW151226

Résumé en 5 images extraites d’une de mes présentations powerpoint sur les trous noirs
DiapoGW1
Le mystère des ondes gravitationnelles, posé il y a un siècle par Albert Einstein dans un article paru en mars 1916, met en jeu les infimes variations de courbure de l’espace-temps engendrées par le mouvement d’objets relativistes. En haut à gauche : vue d’artiste figurant les ondes gravitationnelles engendrées par un système binaires d’étoiles compactes (étoiles à neutrons et/ou trous noirs). En haut à droite : vue d’artiste des ondes gravitationnelles engendrées par l’effondrement (non sphérique) d’une étoile en trou noir. En bas au centre : rappel du fait que l’existence des ondes gravitationnelles a d’abord été prouvée indirectement en 1974 grâce à l’analyse d’un pulsar binaire (couple d’étoiles à neutrons), dont la période orbitale décroît à la suite de la perte d’énergie due aux ondes gravitationnelles.

 

DiapoGW2
Les premières détections directes des ondes gravitationnelles ont été effectuées le 14 septembre 2015 (événement GW150914) et le 26 décembre 2015 (événement GW151226) par les deux détecteurs du programme LIGO situés aux Etats-Unis. Séparés par 3000 km, les détecteurs reçoivent le même signal à un centième de seconde d’intervalle, puisque les ondes gravitationnelles se déplacent à la vitesse de la lumière dans le vide, 300 000 km/s.

 

DiapoGW3
La comparaison entre le calcul théorique (en haut) et les données reçues (en bas) montre sans ambiguïté que le signal gravitationnel provient de la fusion de deux trous noirs en un trou noir unique, en trois phases extrêmement brèves (le tout durant moins d’une seconde dans la bande de fréquence dans laquelle les détecteurs sont sensibles): phase d’approche des deux trous noirs, fusion (signal maximum), vibration et stabilisation du trou noir final.

 

La modélisation des événements GW150914 et GW152612 permet notamment de déduire les masses des trous noirs mis en jeu. Il s’agit en l’occurrence de trous noirs « stellaires », bien que dans l’événement du 14 septembre 2015 les masses sont sensiblement plus élevées que la « normale », ce qui soulève d’intéressantes questions sur la formation de tels couples. La masse du trou noir final est, dans les deux cas, inférieure à la somme des masses des trous noirs parents : en vertu de la formule E=mc2, la différence a précisément été évacuée sous forme d’énergie gravitationnelle propagée par les ondes. Dans les deux cas aussi, ces événements se sont produits il y a près de 1,5 milliards d’années dans le passé. Notons qu’un troisième événement similaire, semblant lui aussi émaner d’une fusion de trous noirs situés cette fois à plus de 3 milliards d’années-lumière, a été observé le 12 octobre 2015, mais sa signification statistique n’est pas suffisante pour le qualifier. Cela implique d’une part que les couples de trous noirs sont beaucoup plus nombreux que ce que prédisaient les modèles conventionnels, d’autre part que ces détections pourraient être faites à un rythme de quelques dizaines par an, bien plus grand que prévu.

 

DiapoGW5

Et pour approfondir le sujet des ondes gravitationnelles, voir ma suite de 4 billets de février dernier consacrés au sujet :

http://blogs.futura-sciences.com/luminet/2016/02/10/la-lumiere-gravitationnelle-1/

http://blogs.futura-sciences.com/luminet/2016/02/10/la-lumiere-gravitationnelle-22/

http://blogs.futura-sciences.com/luminet/2016/02/13/la-lumiere-gravitationnelle-34-levenement-gw150914/

http://blogs.futura-sciences.com/luminet/2016/02/20/la-lumiere-gravitationnelle-44-le-futur-est-dans-lespace/

Toutous célestes

chien-chez-textuelCe billet est une adaptation illustrée d’un article initialement paru dans le collectif Chien, sous la direction d’Hervé Le Tellier et Philippe  di Folco  (Textuel Éditions, 2010).
Encyclopédie bizarre et décalée, ce livre étrange se propose de faire découvrir le chien comme on ne l’a encore jamais vu;

Toutous célestes

Le Grand, Major, suit Orion qui pourchasse le lièvre. Il porte au cou l’étoile la plus brillante du ciel, Sirius, sa médaille brillante. Sa tête forme un triangle peu reluisant au-dessus, les pattes arrières se prolongent pour encadrer la colombe. Murzim, Muliphen, Wezen, Adhara, Furud, Aludra sont les noms que les peuples d’Arabie ont donné à sa queue et ses pattes.

Le Petit, Minor, est le caniche de Major. Chaque matin il se lève avant lui. Procyon et Gomeisa sont ses yeux, le gauche est plus brillant que le droit.

Les constellations du Grand Chien et du Petit Chien suivent le chasseur Orion dans le célèbre Atlas Coelestis de John Flamsteed, publié à titre postume en 1729.
Les constellations du Grand Chien et du Petit Chien suivent le chasseur Orion dans le célèbre Atlas Coelestis de John Flamsteed, publié à titre postume en 1729.

Continuer la lecture

Contes de l’Outre-temps (3) : L’assassin originel

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse.  Celle-ci, inspirée d’une bande dessinée dont j’ai oublié titre et auteur, est la première que j’ai écrite. J’avais 19 ans (cela se sent dans le style un peu grandiloquent) et je l’ai rédigée d’un trait en plein cours de Maths Sup, au grand dam de mes camarades qui n’avaient d’yeux que pour les équations du tableau noir ! En effet je commençais déjà à trouver navrant le clivage entre mathématiques et littérature, que pour ma part je respirais à délices égales.    

L’assassin originel

L’Homme brandit son javelot vers le ciel rougeoyant. Il poussa un rugissement terrible, mêlé de colère et de désespoir. Puis, ses bras torturés de muscles et de poils retombèrent le long de son corps, et sa tête hirsute se tourna vers le paysage désert : il n’y avait partout que blocs rocailleux et arides, que cascades de pierres fendues par la foudre, que sable et poussière. Nulle trace de vie, nul gibier.

L’Homme était vêtu d’une peau d’aurochs. Son faciès simiesque reflétait une expression hagarde et vorace. Il cherchait de la nourriture dans cette étendue désolée. Un bouc des montagnes lui aurait suffi, ou même un gros lièvre sauvage. Il devait à tout prix rapporter de la viande à ses parents, en rapporter plus que l’Autre.

L’Autre, c’était son frère. Et ils vivaient tous les quatre ensemble : les deux vieillards blanchis par le temps, et les deux mâles chasseurs. Tandis que les Anciens restaient dans la grotte, les Fils, bouillant d’un sang jeune, partaient pour de longues journées de chasse.

Il s’était établi une sorte de rivalité entre eux. Leur esprit était encore confus, mais ils savaient pourtant discerner entre les degrés d’une affection, d’un amour.

L’Homme, tout en ayant repris sa marche, pensait à tout cela, et des larmes de rage lui vinrent au bord des yeux. Car il savait que l’Autre était le Préféré. Pourtant, il ne rapportait pas plus de gibier que lui. Bien au contraire. C’est pour cela que l’Homme ne comprenait pas la raison de cette préférence. Mais il pensait qu’en faisant une chasse miraculeuse – quelque bouquetin, c’est tout ce que l’on pouvait espérer tuer sur ce territoire –, il deviendrait bientôt l’égal de son frère dans le cœur des Anciens.

Il poursuivait donc son exploration, malgré une journée vaine d’attentes et de marches interminables.

**

L’Autre chassait à quelque distance de là.

Il n’avait rien trouvé non plus, durant cette journée si dure et accablante. Soudain, sur un escarpement rocheux, il aperçut un superbe animal. C’était un bouc des montagnes d’une taille peu ordinaire.

L’Autre s’accroupit dans les rochers et rampa, tel un félin, vers sa proie. Alors son cri de guerre perça le silence des pierres, en même temps que le sifflement de sa sagaie déchirait l’espace. L’animal s’abattit, frappé à la tête. L’Autre leva les bras au ciel en signe de triomphe. Un sourire illumina ses lèvres dures et crevassées, et il bondit sur le cadavre de sa victime. Une joie confuse envahit son esprit. Son frère ne pourrait jamais faire mieux, et la vie continuerait comme avant : il serait toujours le Préféré, celui sur qui se poseraient le plus souvent les regards attendris des Anciens.

Il chargea la bête sur ses rudes épaules. Il s’apprêtait à descendre des rochers lorsqu’un bruit étrange lui fit lever la tête. Il aperçut la Chose dans le ciel, qui lui sembla être un Oiseau Géant.

Il se cacha vite derrière une saillie du rocher et examina l’Oiseau. Il était immense et brillait au Soleil. On distinguait à peine ses ailes, et   semblait avoir des yeux énormes, globuleux et transparents.

L’Oiseau, ayant hésité au-dessus de la vallée, se stabilisa dans les airs.

Continuer la lecture

J’eus le vertige et je pleurai car mes yeux avaient vu cet objet secret et conjectural dont les hommes usurpent le nom, mais qu’aucun homme n’a regardé : l’inconcevable univers. Jorge Luis Borges, L’Aleph (1949)