qgplasma

L’univers holographique (5) : La quête des dualités

Suite du billet précédent : L’univers holographique (4) : la conjecture de Maldacena

Des centaines de chercheurs ont exploré les conséquences de la conjecture de Maldacena, avec l’espoir que la dualité jauge/gravité, sous sa forme la plus générale, puisse établir une sorte de dictionnaire pratique entre les propriétés d’un système physique en gravitation quantique, décrit par la théorie des cordes dans un espace courbe de dimensionnalité élevée (la Matrice), et un autre système physique, plus simple celui-là, décrit quantiquement par une théorie de jauge sur l’enveloppe de la Matrice – espace plat de dimensionnalité moindre. Il existe notamment une approche en théorie M développée en 1997 et baptisée BFSS[1], destinée à fournir une formulation numériquement calculable, qui a en outre le mérite d’établir un lien avec l’approche a priori différente de la géométrie non-commutative d’Alain Connes – pour plus de détails voir l’excellent billet de L. Sacco sur Futura Sciences.

L’avantage serait évident : certains calculs très complexes – voire impossibles – en gravité quantique pourraient être menés de façon plus simple dans le cadre de la théorie de jauge, comme on l’a vu dans le billet précédent  pour l’évaporation quantique d’un trou noir dans AdS5. Inversement, quand les champs de la théorie quantique sont fortement couplés (comme dans le plasma quark-gluon, voir ci-dessous), ceux de la théorie gravitationnelle interagissent faiblement et pourraient être plus facilement appréhendés mathématiquement. Cette dualité forte/faible permet ainsi d’explorer des aspects complexes de la physique nucléaire et de la physique de la matière condensée, en les traduisant en termes de théorie des cordes à haut degré de symétrie, plus aisément traitable.

Les possibles réalisations de la dualité jauge-gravité font aujourd’hui l’objet d’ambitieux programmes théoriques, rattachés à trois vastes domaines de la physique :

  • physique nucléaire, avec notamment l’étude du plasma quark-gluon (programme AdS/QCD)
  • physique de la matière condensée, avec l’étude des états exotiques de la matière (programme AdS/CMT)
  • relativité générale et cosmologie, avec les programmes Kerr/CFT et dS/CFT.

Développons brièvement chacun de ces programmes, en mentionnant leurs succès et leurs échecs. Continuer la lecture

3spheres

L’univers holographique (4) : La conjecture de Maldacena

Suite du billet précédent : L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Juan Maldacena en 2013
Juan Maldacena en 2013

Confrontés à la difficulté d’appliquer le principe holographique à un modèle d’univers réaliste, les physiciens se sont tournés vers des modèles d’univers simplifiés, dans lesquels le principe pourrait s’appliquer. La première réalisation concrète a été l’œuvre du jeune chercheur argentin Juan Maldacena qui, en novembre 1997, publia un résultat étonnant, assorti d’une audacieuse conjecture mathématique[1].

Considérant un trou noir dans un modèle d’espace-temps à cinq dimensions macroscopiques caractérisé par une géométrie dite anti-de Sitter, il montra que les détails des phénomènes se déroulant dans cet univers, décrits par la théorie des cordes et incluant donc la gravitation, étaient entièrement codés dans le comportement de certains champs quantiques (non gravitationnels) se déroulant sur la frontière quadridimensionnelle de cet univers.

Vue d'artiste de l'équivalence
Vue d’artiste de l’hypothèse de Maldacena

L’espace-temps de de Sitter est une solution exacte des équations de la relativité générale ordinaire découverte dès 1917, vide de matière mais qui comprend une force répulsive appelée constante cosmologique, de valeur positive ; si maintenant on change le signe de la constante cosmologique, la force de répulsion devient attractive et le modèle se transforme en un espace-temps anti-de Sitter[2] . Ce dernier acquiert une géométrie spatiale hyperbolique (c’est-à-dire de courbure négative) et, bien qu’il soit infini, possède un « bord » bien défini. Pour représenter ce bord, on utilise la représentation de Poincaré du disque hyperbolique qui, à l’aide d’une transformation conforme conservant les angles mais pas les distances, ramène l’infini à distance finie. L’artiste néerlandais Mauritz Cornelius Escher a créé une célèbre série d’estampes intitulées Circle Limits dans lesquelles il utilise la représentation de Poincaré, voir par exemple [3].

Poincaré representation of the hyperbolic disc.
Représentation de Poincaré du disque  hyperbolique.

Circular Limit III, zn engraving by M.C.E. Escher, using the Poincaré representation of hyperbolic space.
Circle Limit III, une gravure de M.C.E. Escher utilisant la représentation de Poincaré de l’espace hyperbolique.
L'esapce anti-de Sitter en dimension 3 se présente comme un empilement de disques hyperboliques, chacun représentant l'état d'un univers 2D à un instant donné. L'espace-temps 3D qui en résulte resemble à un cylindre solide.
L’esapce anti-de Sitter en dimension 3 se présente comme un empilement de disques hyperboliques, chacun représentant l’état d’un univers 2D à un instant donné. L’espace-temps 3D qui en résulte resemble à un cylindre solide.

Pour l’espace-temps anti-de Sitter en dimension 5, noté AdS5, le bord est de dimension 4 et, localement autour de chaque point, ressemble à l’espace de Poincaré-Minkowski, qui est précisément le modèle d’espace-temps plat utilisé en physique non-gravitationnelle. Cela signifie qu’un trou noir dans l’espace-temps anti-de Sitter 5D est strictement équivalent à un champ de particules et de rayonnement existant dans l’espace-temps plat 4D de la frontière. Or, cette dernière description fait appel à des théories de champs quantiques bien connues et maîtrisées, analogues aux champs de Yang-Mills utilisés par exemple en chromodynamique quantique (qui est la théorie de l’interaction forte). Notons cependant qu’aux cinq dimensions spatiales de l’espace-temps anti-de Sitter il faut rajouter cinq dimensions spatiales compactifiées en forme de sphère S5, afin de traiter le problème dans le cadre de la théorie des cordes standard à dix dimensions.

Continuer la lecture

constellation-map

Contes de l’Outre-temps (4) : L’espion

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse.  Celle-ci date de mon adolescence,  époque où je dévorais la littérature de science-fiction. Elle repose sur un calembour qui vaut ce qu’il vaut (un peu d’indulgence est donc requise).  Avec le recul je pense que j’ai été influencé par les brèves nouvelles humoristiques d’un maître du genre, Fredric Brown (voir ma nouvelle « L’univers en folie« ).

L’espion

L’Espion marchait dans la Cité indifférente et aveugle. Un rictus de joie barrait d’une empreinte diabolique sa face jaune. Parfois, il se mettait à glousser, si bien que les passants le regardaient d’un air effaré, se demandant qui pouvait être ce type aux cheveux verts qui se permettait de rire en pleine rue et se convulsionnait tous les dix pas.

Rire ? Il faut dire qu’il y avait de quoi !

L’Espion venait de réussir le coup le plus fameux de sa carrière.

Ce coup, il l’avait longuement préparé, avec la minutie d’un horloger atomique.

Élaboré au cours du long voyage intersidéral qui l’avait conduit sur Terre, le plan s’était déroulé sans faille. Une fois débarqué (« car l’espace est une immense mer où se perdent parfois quelques rivages… », comme écrivit le grand poète Arzdaded), l’Espion avait revêtu l’apparence d’un Humain ordinaire.

Malgré ses cheveux virides, il n’avait eu aucun mal à se faire embaucher comme « introducteur » dans les bureaux administratifs d’une grande société scientifique et technologique. Sa tâche n’était pas bien difficile ; elle consistait à ouvrir les portes, et, de temps en temps, à les refermer.

Mais, dans l’ombre, l’Espion œuvrait pour sa planète ! Les administrateurs de la société Terrienne l’avaient vite pris en affection. C’est que l’Espion était bien sympathique, avec sa chevelure couleur de printemps et son visage d’œuf cassé.

À mesure qu’il marchait, les images de sa mission défilaient rétrospectivement dans son cerveau…

Chez lui, là-haut, une hystérie du Savoir s’était emparée des scientifiques. On ne sait trop pourquoi, ces derniers tenaient absolument à découvrir tous les secrets de l’Univers, en décortiquer les plus petites ficelles.

Mais avant de pénétrer les mystères des êtres et des choses, « il faut leur donner un nom, il faut les cataloguer », comme l’avait enseigné le grand philosophe Selestoris.

Par exemple, en astronomie, leur catalogue d’étoiles était incomparable, et faisait la fierté de l’Institut d’Astrophysique. Ils possédaient des appareils d’observation prodigieusement puissants. Sans cesse à l’écoute de la Terre et de ses congrès scientifiques, ils avaient décidé d’y installer sur place une petite colonie d’espions fort discrets, dont le seul rôle consistait à glaner toutes les découvertes scientifiques faites par les Terriens.

Ces derniers temps, ils n’avaient pas eu grand chose à se mettre sous la dent. Il est vrai que les Terriens étaient sacrément en retard. Ainsi, le 25 novembre de l’année Terrienne 1915, un obscur employé d’un bureau de brevets de la petite ville de Berne avait publié l’ébauche d’une nouvelle théorie sur l’espace et le temps, qu’il avait appelée la relativité. Or, là-haut, sur sa planète, cela faisait longtemps que les savants connaissaient tous les mystères de la gravité. Ils maîtrisaient même ces entonnoirs de l’espace qui permettent de voyager entre les étoiles.

Enfin, vint la merveilleuse surprise. La veille du Noël des Terriens, l’Espion avait appris qu’une nouvelle étoile était née au firmament. Ce fut la stupeur au bureau des Espions. Les Terriens avaient donc découvert une étoile avant eux ! De surcroît, ce devait être un astre bien important, puisqu’ils le surnommaient déjà « La Vedette ».

Mais il manquait à l’Espion l’information principale : le véritable nom de l’étoile, le nom officiel ! Continuer la lecture

BHextremal2

L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Suite du billet précédent L’univers holographique (2) : la gravité quantique façon théorie des cordes

Dans le cadre de la théorie des cordes, il s’agissait dans un premier temps de retrouver les lois de la thermodynamique classique des trous noirs, c’est-à-dire savoir calculer, en termes de mécanique statistique quantique, leur entropie et leur température en fonction de leur aire et de leur gravité de surface. La tâche n’est pas aisée. Comme en thermodynamique, l’entropie mesure le nombre total d’états microscopiques internes correspondant à un état externe donné du trou noir, défini par ses trois paramètres (M, J, Q). Encore faut-il comptabiliser les « vrais » états microscopiques, c’est-à-dire les degrés de liberté ultimes sur lesquels il faut calculer l’entropie. Pour évaluer le contenu ultime en informations d’un élément de matière, c’est-à-dire son entropie thermodynamique, il faut en toute rigueur connaître ses constituants fondamentaux au niveau le plus profond de structuration. Dans le modèle standard de la physique des particules, les quarks et les leptons semblent suffisants pour coder toute l’information. Mais dans la théorie des cordes et sa théorie-mère (M-theory), les quarks et les leptons sont des états excités de supercordes, qui deviennent alors les constituants les plus élémentaires du monde physique.

Gerard 't Hooft, né en 1946 aux Pays-Bas, est professeur à l'Institut de physique théorique de l'université d'Utrecht depuis 1977.
Gerard ‘t Hooft, né en 1946 aux Pays-Bas, est professeur à l’Institut de physique théorique de l’université d’Utrecht depuis 1977.

En 1993, Gerard t’Hooft (futur lauréat du prix de Nobel de physique 1999 pour ses travaux sur l’interaction électrofaible)  fut le premier à revisiter le travail de Hawking sur la thermodynamique des trous noirs dans le cadre de la théorie des cordes. Il calcula que le nombre total de degrés de liberté dans le volume d’espace-temps intérieur au trou noir était proportionnel à la superficie de son horizon[1]. La surface bidimensionnelle du trou noir peut être divisée en unités quantiques fondamentales appelées aires de Planck (10–66 cm2). Du point de vue de l’information, chaque bit sous forme de 0 ou de 1 correspond à quatre aires de Planck, ce qui permet de retrouver la formule de Bekenstein-Hawking S = A/4 pour l’entropie. Tout se passe comme si l’information perdue pour un observateur extérieur – l’entropie du trou noir – portée initialement par la structure 3D des objets ayant traversé l’horizon des événements, était codée sur sa surface 2D à la façon d’un hologramme, et t’Hooft en conclut que l’information avalée par un trou noir devait être intégralement restituée lors du processus d’évaporation quantique.

L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck (10–66 cm2) est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.
L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck  est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.

Continuer la lecture

etoiles-filantes

Le Météore du 13 Août

« A la seconde où tu m’apparus, mon cœur eut tout le ciel pour l’éclairer. Il fut midi à mon poème. Je sus que l’angoisse dormait.»
René Char : Le Météore du 13 Août (Fureur et Mystère,  1948).

Des dizaines d’excellents billets de blog ici et sont consacrés à l’actualité des Perséides, cette pluie d’étoiles filantes qui illumine chaque année le ciel de la mi-août. Pour ne pas faire redondance, je me contenterai ici de quelques notes astronomico-poétiques.

Comme chacun sait (ou devrait savoir), ces belles mais fugitives étincelles nomades sont des grains cométaires microscopiques qui, en pénétrant dans l’atmosphère, s’échauffent par frottement. Leur température monte à trois mille degrés, et elles se consument dans la haute atmosphère, à quatre-vingts kilomètres d’altitude environ, créant ces traînées lumineuses qui ne durent souvent qu’une fraction de seconde. En fait, ce n’est pas la combustion du grain porté à blanc que l’on voit à si grande distance, mais la traînée d’ionisation qu’il laisse dans l’atmosphère. Les étoiles filantes sont la version miniaturisée et anodine des météores, le « bonzaï » du bolide.

Les étoiles filantes, si elles ne font pas d’argent ni ne répondent aux vœux, font parfois de beaux  poèmes:

A la pointe où se balance un mouchoir blanc
Au fond noir qui finit le monde
Devant nos yeux un petit espace
Tout ce qu’on ne voit pas
Et qui passe

Le soleil donne un peu de feu

Une étoile filante brille
Et tout tombe
Le ciel se ride
Les bras s’ouvrent
Et rien ne vient
Un cœur bat encore dans le vide

Un soupir douloureux s’achève
Dans les plis du rideau le jour se lève

Pierre Reverdy, Etoile filante (dans Plupart du temps, 1915-1922)

Leur taille ne dépasse pas quelques millimètres. Ce sont des silicates, analogues à des grains de sable. La luminosité des grains est fonction de leur masse. À la vitesse typique de soixante-dix kilomètres par seconde, un grain de seulement trois millimètres présente une luminosité égale à celle d’une étoile de première grandeur comme Sirius, mais pour un grain caractéristique d’un tiers de millimètre, l’intensité est tout juste visible à l’œil nu.

meteore_bolideLorsque, par une nuit quelconque, vous observez une étoile filante, il s’agit d’un météore sporadique. Par ciel dégagé, on peut en voir quelques-uns par heure, en principe davantage après minuit qu’avant, et davantage en automne qu’au printemps – du moins pour l’hémisphère nord.

Si de nombreux météores apparaissent la même nuit et semblent provenir du même endroit du ciel, il s’agit d’une pluie d’étoiles filantes. On voit alors dix, voire cinquante météores et plus par heure, dans un ciel sombre sans Lune et loin des lumières des villes. Continuer la lecture

particles

L’univers holographique (2) : La gravité quantique façon théorie des cordes

Suite du billet précédent L’univers holographique (1) : le paradoxe de l’information

Le paradoxe de l’information lié aux trous noirs reflète notre incapacité actuelle à élaborer une théorie cohérente de la gravité quantique. L’approximation semi-classique de Hawking cesse d’être valide quand le trou noir devient suffisamment petit pour que le rayon de courbure à l’horizon des événements atteigne la longueur de Planck, 10-33 cm, autrement dit lorsque non seulement la matière et l’énergie, mais aussi le champ gravitationnel doivent être quantifiés. La description finale de l’évaporation et la restitution partielle ou complète de l’information exigent donc un traitement complet en gravité quantique, branche fondamentale de la physique qui cherche à décrire la gravitation en utilisant les principes de la mécanique quantique.

Richard Feynman (1918-1988), prix Nobel de physique 1965, auteur des diagrammes du même nom.
Richard Feynman (1918-1988), prix Nobel de physique 1965, auteur des diagrammes du même nom.

L’application de la mécanique quantique aux objets physiques tels que le champ électromagnétique, qui s’étendent dans l’espace et le temps, a connu un succès éclatant avec la théorie quantique des champs[1]. Celle-ci forme la base de la compréhension du modèle standard de la physique des particules élémentaires, rendant compte des interactions électromagnétiques, nucléaire forte et nucléaire faible. Elle permet de calculer les probabilités d’événements en utilisant les techniques de la théorie des perturbations. Les diagrammes de Feynman décrivent les chemins de particules ponctuelles et leurs interactions. Chaque diagramme représente une contribution à un processus d’interaction. Pour leurs calculs, les physiciens additionnent en premier lieu les contributions les plus fortes, puis les plus petites, et ainsi de suite, jusqu’à atteindre la précision désirée.

Diagramme de Feynman. Lorsque deux particules (ici deux électrons venant du bas) interagissent, elles peuvent le faire « simplement », en échangeant un seul photon (schéma du haut). Mais ce photon peut lui-même se matérialiser puis de dématérialiser en chemin. Sur le schéma du bas, par exemple, il crée une paire électron-positron qui recrée ensuite le photon. Si l’on tient compte de cette aventure, la description de l’interaction des deux électrons de départ n’est plus la même. Cela n’est en fait que la « première correction ». En effet, il peut arriver au photon des histoires beaucoup plus compliquées qui représentent des corrections d’ordre 2,3,4… La physique quantique exige de tenir compte de l’infinité de ces corrections pour le moindre calcul. Cette difficulté considérable a conduit à incorporer à la physique quantique l’idée de renormalisation.
Diagramme de Feynman. Lorsque deux particules (ici deux électrons venant du bas) interagissent, elles peuvent le faire « simplement », en échangeant un seul photon (schéma du haut). Mais ce photon peut lui-même se matérialiser puis de dématérialiser en chemin. Sur le schéma du bas, par exemple, il crée une paire électron-positron qui recrée ensuite le photon. Si l’on tient compte de cette aventure, la description de l’interaction des deux électrons de départ n’est plus la même. Cela n’est en fait que la « première correction ». En effet, il peut arriver au photon des histoires beaucoup plus compliquées qui représentent des corrections d’ordre 2,3,4… La physique quantique exige de tenir compte de l’infinité de ces corrections pour le moindre calcul. Cette difficulté considérable a conduit à incorporer à la physique quantique l’idée de renormalisation.

 

Mais ce procédé ne marche que si les contributions deviennent réellement négligeables à mesure qu’un plus grand nombre d’interactions est pris en compte. Lorsqu’il en va ainsi, la théorie est dite “faiblement couplée” et les calculs convergent vers des valeurs physiques finies. S’il en va différemment, la théorie est dite “fortement couplée” et les méthodes standard de la physique des particules échouent. C’est notamment ce qui arrive avec le graviton, supposé être la particule médiatrice du champ gravitationnel. Le graviton, créant de la masse-énergie, interagit avec lui-même, ce qui crée de nouveaux gravitons, qui à leur tour interagissent, et ainsi de suite, jusqu’à la divergence. L’échec de la technique des perturbations pour quantifier la gravité a donc conduit les physiciens à explorer d’autres voies. Continuer la lecture

Stephen Hawking dans les années 1970.

L’univers holographique (1) : le paradoxe de l’information

Ce billet est le premier d’une série de 6 reprenant un article initialement publié en anglais dans la revue Inference : The International Review of Science, auquel j’ai rajouté des illustrations à caractère pédagogique.

Introduction

Lors d’un exposé donné le 25 août 2015 au KTH Royal Institute of Technology à Stockholm qui a fait l’objet d’un grand tapage médiatique, Stephen Hawking a annoncé avoir résolu un problème de la physique appelé paradoxe de l’information [1]. Ce dernier illustre un conflit potentiel entre la mécanique quantique et les modèles de trou noir décrits par la relativité générale ; à ce titre, il joue un rôle central en physique fondamentale et divise la communauté des théoriciens depuis quatre décennies. Selon Hawking, toute l’information sur la matière et l’énergie contenue dans le volume 3D du trou noir résiderait en réalité sur sa surface 2D, l’horizon des événements, codée sous forme d’hologramme.

hologram1
Un hologramme est une photographie d’un type particulier qui engendre une image tridimensionnelle quand on l’éclaire de façon appropriée ; toute l’information décrivant une scène en trois dimensions est encodée dans le motif de zones claires et sombres inscrit sur un film à deux dimensions.

Cette information pourrait ensuite être entièrement récupérée (bien que sous forme chaotique) grâce au rayonnement libéré lors de son évaporation quantique – un processus initialement prédit par le même Hawking quarante ans auparavant.

L’idée n’est pas nouvelle : elle fait appel à un modèle d’univers holographique précédemment étudié par des centaines de physiciens, et objet d’un tel engouement qu’il a conduit certains d’entre eux à imaginer des scénarios parfaitement surréalistes. Par exemple, S. Mathur a proposé qu’au lieu d’être détruit par des forces de marée gravitationnelles ou par un pare-feu quantique, un astronaute tombant dans un trou noir serait simplement converti en hologramme, sans se rendre compte de rien [2].

A l’annonce de Hawking la communauté scientifique a donc dans son ensemble réagi avec beaucoup de prudence et de scepticisme, pour ne pas dire d’embarras devant l’annonce prématurée d’une idée non élaborée sur le plan technique : comment l’information s’inscrit-elle dans l’horizon des événements, comment est-elle restituée au monde extérieur, aucun détail n’a encore été donné.[3]

Pour y voir plus clair, un retour en arrière sur la thermodynamique des trous noirs s’impose.

Thermodynamique des trous noirs et paradoxe de l’information

Au cours des années 1970 – âge d’or de la théorie des trous noirs en relativité générale classique -, il a été démontré d’une part que l’état final d’un trou noir à l’équilibre ne dépendait que de trois paramètres : sa masse M, son moment angulaire J et sa charge électrique Q, ce qui paradoxalement faisait de lui l’objet le plus simple de toute la physique ; d’autre part, que la dynamique des trous noirs en interaction se résumait en quatre lois présentant une analogie extrêmement frappante avec celles de la thermodynamique usuelle[4]. En particulier, la seconde loi stipule que l’aire d’un trou noir ne peut jamais décroître au cours du temps. Ce résultat fondamental suggère une connexion étroite entre l’aire d’un trou noir et l’entropie d’un système thermodynamique. Continuer la lecture

starrysky

Hommage à Yves Bonnefoy, poète inquiet du cosmos

yves-bonnefoyAvant de se consacrer à la poésie, Yves Bonnefoy avait fait des études de mathématiques, d’histoire des sciences et de philosophie. J’aime souligner les relations privilégiées du mathématicien avec le poète. La question du langage y est déterminante, notamment la recherche d’une économie maximale au service de l’expression la plus forte. Il s’agit toujours de condenser une formulation, de trouver « l’équation », l’algorithme en quelque sorte. Gilbert Lély a défini la poésie de la façon suivante : « A chaque interrogation du monde extérieur, la réponse la plus rapide, la plus nettement articulée, la plus libre, la plus dévorante. » On ne saurait mieux définir la quête du mathématicien. En mathématiques comme en poésie, la forme et le fond sont indissociables. C’est par là sans doute que le poème se différencie de la prose. La vérité du poème se joue là, même si elle renferme, comme en mathématiques, sa part d’inconnu. Dans Entretiens sur la poésie 1972-1990 (Mercure de France), Yves Bonnefoy parlait de cet effort de limpidité qui l’animait lorsqu’il écrivait, et qu’il comparait à une équation qu’on réduirait à sa « forme canonique », laquelle contient toujours l’inconnu(e).

Une excellente introduction à la lecture de l’œuvre poétique d’Yves Bonnefoy est due à Jean-Michel Maulpois et se lit ici.

Pour ma part je me contenterai d’une brève remarque prises dans l’anthologie « Les poètes et l’univers » que j’ai publiée en 1996 et dans laquelle Yves Bonnefoy figurait en bonne place. Continuer la lecture

Gravity_Waves_StillImage

Evénements ondes gravitationnelles : un résumé en images

Les événements GW150914 et GW151226

Résumé en 5 images extraites d’une de mes présentations powerpoint sur les trous noirs
DiapoGW1
Le mystère des ondes gravitationnelles, posé il y a un siècle par Albert Einstein dans un article paru en mars 1916, met en jeu les infimes variations de courbure de l’espace-temps engendrées par le mouvement d’objets relativistes. En haut à gauche : vue d’artiste figurant les ondes gravitationnelles engendrées par un système binaires d’étoiles compactes (étoiles à neutrons et/ou trous noirs). En haut à droite : vue d’artiste des ondes gravitationnelles engendrées par l’effondrement (non sphérique) d’une étoile en trou noir. En bas au centre : rappel du fait que l’existence des ondes gravitationnelles a d’abord été prouvée indirectement en 1974 grâce à l’analyse d’un pulsar binaire (couple d’étoiles à neutrons), dont la période orbitale décroît à la suite de la perte d’énergie due aux ondes gravitationnelles.

 

DiapoGW2
Les premières détections directes des ondes gravitationnelles ont été effectuées le 14 septembre 2015 (événement GW150914) et le 26 décembre 2015 (événement GW151226) par les deux détecteurs du programme LIGO situés aux Etats-Unis. Séparés par 3000 km, les détecteurs reçoivent le même signal à un centième de seconde d’intervalle, puisque les ondes gravitationnelles se déplacent à la vitesse de la lumière dans le vide, 300 000 km/s.

 

DiapoGW3
La comparaison entre le calcul théorique (en haut) et les données reçues (en bas) montre sans ambiguïté que le signal gravitationnel provient de la fusion de deux trous noirs en un trou noir unique, en trois phases extrêmement brèves (le tout durant moins d’une seconde dans la bande de fréquence dans laquelle les détecteurs sont sensibles): phase d’approche des deux trous noirs, fusion (signal maximum), vibration et stabilisation du trou noir final.

 

La modélisation des événements GW150914 et GW152612 permet notamment de déduire les masses des trous noirs mis en jeu. Il s’agit en l’occurrence de trous noirs « stellaires », bien que dans l’événement du 14 septembre 2015 les masses sont sensiblement plus élevées que la « normale », ce qui soulève d’intéressantes questions sur la formation de tels couples. La masse du trou noir final est, dans les deux cas, inférieure à la somme des masses des trous noirs parents : en vertu de la formule E=mc2, la différence a précisément été évacuée sous forme d’énergie gravitationnelle propagée par les ondes. Dans les deux cas aussi, ces événements se sont produits il y a près de 1,5 milliards d’années dans le passé. Notons qu’un troisième événement similaire, semblant lui aussi émaner d’une fusion de trous noirs situés cette fois à plus de 3 milliards d’années-lumière, a été observé le 12 octobre 2015, mais sa signification statistique n’est pas suffisante pour le qualifier. Cela implique d’une part que les couples de trous noirs sont beaucoup plus nombreux que ce que prédisaient les modèles conventionnels, d’autre part que ces détections pourraient être faites à un rythme de quelques dizaines par an, bien plus grand que prévu.

 

DiapoGW5

Et pour approfondir le sujet des ondes gravitationnelles, voir ma suite de 4 billets de février dernier consacrés au sujet :

http://blogs.futura-sciences.com/luminet/2016/02/10/la-lumiere-gravitationnelle-1/

http://blogs.futura-sciences.com/luminet/2016/02/10/la-lumiere-gravitationnelle-22/

http://blogs.futura-sciences.com/luminet/2016/02/13/la-lumiere-gravitationnelle-34-levenement-gw150914/

http://blogs.futura-sciences.com/luminet/2016/02/20/la-lumiere-gravitationnelle-44-le-futur-est-dans-lespace/

PLANETARIUM-CANIS-MAJOR

Toutous célestes

chien-chez-textuelCe billet est une adaptation illustrée d’un article initialement paru dans le collectif Chien, sous la direction d’Hervé Le Tellier et Philippe  di Folco  (Textuel Éditions, 2010).
Encyclopédie bizarre et décalée, ce livre étrange se propose de faire découvrir le chien comme on ne l’a encore jamais vu;

Toutous célestes

Le Grand, Major, suit Orion qui pourchasse le lièvre. Il porte au cou l’étoile la plus brillante du ciel, Sirius, sa médaille brillante. Sa tête forme un triangle peu reluisant au-dessus, les pattes arrières se prolongent pour encadrer la colombe. Murzim, Muliphen, Wezen, Adhara, Furud, Aludra sont les noms que les peuples d’Arabie ont donné à sa queue et ses pattes.

Le Petit, Minor, est le caniche de Major. Chaque matin il se lève avant lui. Procyon et Gomeisa sont ses yeux, le gauche est plus brillant que le droit.

Les constellations du Grand Chien et du Petit Chien suivent le chasseur Orion dans le célèbre Atlas Coelestis de John Flamsteed, publié à titre postume en 1729.
Les constellations du Grand Chien et du Petit Chien suivent le chasseur Orion dans le célèbre Atlas Coelestis de John Flamsteed, publié à titre postume en 1729.

Continuer la lecture

peinture  
   tableau  
   BELLANGER Camille  
Titre  Abel  
Ecole  France  
   3e quart 19e siècle  
Lieu de conservation  Paris ; musée d'Orsay  
-------------------------------------------------------------------------
ENGLISH--- Bible writing ( Bible online ) others harmonics search "topicals"
FRANCAIS---Ecrits bibliques voir Bible online-"update" pour la traduction en français-Harmoniques bibliques chercher sur "topicals"
--------------------------------------------------------------------------

Genesis 4 Cain and Abel _ Genèse 4 Caïn et Abel 
--------------------------------------------------------------------------
              /19 Bellanger Abel, Paris LOU  

              /__/_____/_____________________________________________/

Contes de l’Outre-temps (3) : L’assassin originel

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir un jour en un recueil intitulé  « Contes de l’Outre-temps », si un éditeur s’y intéresse.  Celle-ci, inspirée d’une bande dessinée dont j’ai oublié titre et auteur, est la première que j’ai écrite. J’avais 19 ans (cela se sent dans le style un peu grandiloquent) et je l’ai rédigée d’un trait en plein cours de Maths Sup, au grand dam de mes camarades qui n’avaient d’yeux que pour les équations du tableau noir ! En effet je commençais déjà à trouver navrant le clivage entre mathématiques et littérature, que pour ma part je respirais à délices égales.    

L’assassin originel

L’Homme brandit son javelot vers le ciel rougeoyant. Il poussa un rugissement terrible, mêlé de colère et de désespoir. Puis, ses bras torturés de muscles et de poils retombèrent le long de son corps, et sa tête hirsute se tourna vers le paysage désert : il n’y avait partout que blocs rocailleux et arides, que cascades de pierres fendues par la foudre, que sable et poussière. Nulle trace de vie, nul gibier.

L’Homme était vêtu d’une peau d’aurochs. Son faciès simiesque reflétait une expression hagarde et vorace. Il cherchait de la nourriture dans cette étendue désolée. Un bouc des montagnes lui aurait suffi, ou même un gros lièvre sauvage. Il devait à tout prix rapporter de la viande à ses parents, en rapporter plus que l’Autre.

L’Autre, c’était son frère. Et ils vivaient tous les quatre ensemble : les deux vieillards blanchis par le temps, et les deux mâles chasseurs. Tandis que les Anciens restaient dans la grotte, les Fils, bouillant d’un sang jeune, partaient pour de longues journées de chasse.

Il s’était établi une sorte de rivalité entre eux. Leur esprit était encore confus, mais ils savaient pourtant discerner entre les degrés d’une affection, d’un amour.

L’Homme, tout en ayant repris sa marche, pensait à tout cela, et des larmes de rage lui vinrent au bord des yeux. Car il savait que l’Autre était le Préféré. Pourtant, il ne rapportait pas plus de gibier que lui. Bien au contraire. C’est pour cela que l’Homme ne comprenait pas la raison de cette préférence. Mais il pensait qu’en faisant une chasse miraculeuse – quelque bouquetin, c’est tout ce que l’on pouvait espérer tuer sur ce territoire –, il deviendrait bientôt l’égal de son frère dans le cœur des Anciens.

Il poursuivait donc son exploration, malgré une journée vaine d’attentes et de marches interminables.

**

L’Autre chassait à quelque distance de là.

Il n’avait rien trouvé non plus, durant cette journée si dure et accablante. Soudain, sur un escarpement rocheux, il aperçut un superbe animal. C’était un bouc des montagnes d’une taille peu ordinaire.

L’Autre s’accroupit dans les rochers et rampa, tel un félin, vers sa proie. Alors son cri de guerre perça le silence des pierres, en même temps que le sifflement de sa sagaie déchirait l’espace. L’animal s’abattit, frappé à la tête. L’Autre leva les bras au ciel en signe de triomphe. Un sourire illumina ses lèvres dures et crevassées, et il bondit sur le cadavre de sa victime. Une joie confuse envahit son esprit. Son frère ne pourrait jamais faire mieux, et la vie continuerait comme avant : il serait toujours le Préféré, celui sur qui se poseraient le plus souvent les regards attendris des Anciens.

Il chargea la bête sur ses rudes épaules. Il s’apprêtait à descendre des rochers lorsqu’un bruit étrange lui fit lever la tête. Il aperçut la Chose dans le ciel, qui lui sembla être un Oiseau Géant.

Il se cacha vite derrière une saillie du rocher et examina l’Oiseau. Il était immense et brillait au Soleil. On distinguait à peine ses ailes, et   semblait avoir des yeux énormes, globuleux et transparents.

L’Oiseau, ayant hésité au-dessus de la vallée, se stabilisa dans les airs.

Continuer la lecture

A l'occasion du passage de Mercure devant le Soleil du 7 novembre 1914, le peintre italien Giacomo Balla (1871-1958) a peint la même année ce tableau d'inspiration cubiste, intitulé "Mercure devant le Soleil vue au télescope".

Les passages de Mercure (2/2) : de Halley à aujourd’hui

Suite du billet précédent Les passages de Mercure (1/2) : de Kepler à Gassendi et fin

Après la première observation du transit de Mercure du 7 novembre 1631 par Pierre Gassendi, les passages suivants vont susciter un intérêt astronomique de plus en plus grand. Celui du 9 novembre 1644 est toutefois invisible en Europe. Idem pour celui du 3 novembre 1651, mais il est observé par Jeremy Shakerley à Surat (Inde). Le passage du 3 mai 1661 est observé par le célèbre Hevelius à Dantzig (Gdansk), en Pologne. Celui du 4 novembre 1664 n’est pas documenté, et celui du 7 novembre 1674 est invisible en Europe.

N’arrêtez pas votre lecture à cette fastidieuse énumération : le cours de l’histoire de l’astronomie va changer avec le transit de Mercure du 7 novembre 1677 ! Voici pourquoi.

La distance Terre-Soleil par la méthode des transits

La troisième loi du mouvement planétaire formulée par Kepler en 1618, qui donne une relation entre la période de révolution d’une planète et le demi-grand axe de son orbite, permet de connaître la taille du système solaire à un facteur d’échelle près. La connaissance d’une seule distance entre planètes ou entre une planète et le Soleil suffit donc pour calculer toutes les autres.

La parallaxe solaire est l’angle sous lequel on voit le rayon de la Terre depuis le Soleil. La connaissance de la parallaxe est donc équivalente à la connaissance de la distance Terre-Soleil.

parallaxe-solaireLe problème pratique est que l’angle est si petit qu’il est extrêmement difficile à mesurer (on sait aujourd’hui qu’il est égal à 8,794 secondes d’arc, soit 1/200 le diamètre apparent de la Lune). Les mesures et calculs effectués depuis l’Antiquité surestimaient considérablement cet angle, donc sous-estimaient la valeur réelle de la distance Terre-Soleil.

Cette pièce de 50 pence célèbre le voyage de Halley à Sainte-Hélène en 1576 et montre le passage d'une comète qui le rendra mondialement célèbre.
Cette pièce de 50 pence célèbre le voyage de Halley à Sainte-Hélène en 1676 et montre le passage de la comète de 1682 à qui il donnera son nom et qui le rendra mondialement célèbre.

Or, en 1677, sur l’île de Sainte-Hélène où il s’est rendu pour établir un catalogue des étoiles du ciel austral, le grand astronome anglais Edmund Halley (1656-1742) observe le passage de Mercure qui a lieu le 7 novembre. Il bénéficie d’un beau temps inespéré, et d’une durée de transit de  5h 14m. De retour en Angleterre, Halley  imagine une méthode simple mais géniale pour déterminer la parallaxe solaire. Sa méthode est basée sur la comparaison des temps de transit de Mercure ou de Vénus, mesurés depuis plusieurs lieux terrestres situés à des latitudes différentes. La différence des temps de passages observés donne accès à la parallaxe du Soleil. On remplace ainsi une difficile mesure de très petit angle par des mesures de temps. Continuer la lecture

Un transit de Mercure

Les passages de Mercure (1/2) : De Kepler à Gassendi

Le 9 mai, la planète Mercure va traverser le disque solaire d’est en ouest en environ sept heures et demi, et sera visible sous forme d’une minuscule tache noire – un phénomène astronomique appelé transit. Il va de soi que, pour qu’une planète transite sur le disque solaire, elle doit passer entre la Terre et le Soleil. Seules Mercure et Vénus peuvent donc être observées de la Terre lors de leur transit. Il y a en moyenne 13 passages de Mercure et deux passages de Vénus par siècle.

Mercure apparaît tout en bas du disque solaire sur cette image du transit du 7 mai 2003 (à ne pas confondre donc avec la tache solaire proche du centre, de taille apparente beaucoup plus grande).
Mercure apparaît tout en bas du disque solaire sur cette image du transit du 7 mai 2003 (à ne pas confondre donc avec la tache solaire proche du centre, de taille apparente beaucoup plus grande).

Tous les passages de Mercure se produisent aux mois de mai et novembre, aux alentours respectivement du 7 et du 9 du mois, le phénomène se répétant à des intervalles de 13 ou 33 ans en mai, ou tous les 7, 13 ou 33 ans en novembre. C’est donc une observation relativement rare, ce qui explique son intérêt pour les astronomes. Le transit de Mercure du 9 mai 2016 sera le premier depuis le précédent, en novembre 2006, et avant le prochain qui aura lieu en novembre 2019.

Comme le montre la carte de visibilité ci-dessous, il sera observable (moyennant un ciel dégagé !) depuis l’Europe, l’Afrique, les Amériques et une partie de l’Asie.

Transit Mercure 2016

Nombre d’excellents blogs, comme ceux de Futura Sciences ou celui de Guillaume Cannat intitulé Autour du Ciel, consacreront ou ont déjà consacré des billets détaillés à cet événement astronomique pas si fréquent. Mon présent billet ne sera donc pas consacré à l’actualité du transit mercurien, mais à sa très intéressante histoire.

De Kepler à Gassendi

La prévision des passages de Mercure et de Vénus devant le Soleil nécessite une bonne connaissance des mouvements orbitaux des planètes intérieures. Les tables dont disposaient les astronomes au début du XVIIe siècle n’étaient que peu fiables, qu’il s’agisse des classiques Tables Alphonsines fondées sur le système de Ptolémée, ou des plus récentes Tables Pruténiques fondées sur le système de Copernic. Lorsque Gaultier de la Valette (1564 – 1617), vicaire général d’Aix et excellent astronome amateur qui, en 24 novembre 1610 et en compagnie de Nicolas Fabri de Peiresc avait été le premier en France à observer à la lunette les quatre satellites de Jupiter, essaye de calculer le moment d’une conjonction du Soleil avec Mercure en mai 1631, il se retrouve presque au désespoir. Le 12 avril 1631 il écrit à Peiresc « L’on ne peut deviner quelles tables seront plus véritables. Je ne manquerai pourtant, durant ces trois ou quatre jours, faire tout mon possible si nous pouvons voir cette belle observation, qui nous découvrirait de belles choses en la nature, nous assurerait du mouvement de ladite planète, de sa distance au soleil, de la grandeur de son orbe, de sa révolution et de son cours suivant l’opinion de Copernic, et nous faisait encore voir de quelles tables les Astronomes ou Astrologues se doivent plus assurément servir : des Pruténiques, Daviques, Rudolphines ou Alphonsines ». Continuer la lecture

pavillon-psy

Contes de l’Outre-temps (2) : Le pavillon 39

Suite de la série de brèves nouvelles fantastiques écrites au fil du temps, que j’envisage de réunir en un recueil intitulé  « Contes de l’Outre-temps ».  Celle-ci est largement inspirée d’un texte inédit de mon ami d’enfance Philippe André, devenu psychiâtre à la clinique Saint-Martin de Vignogoul, dans l’Hérault.

Le pavillon 39

A Philippe André

 

Ce matin, le parc de l’hôpital psychiatrique est encore somnolent lorsque je m’engage dans le sentier qui mène au pavillon 39. Petits pas rapides, je dois me hâter. L’heure de la promenade générale va bientôt sonner. Je ne voudrais rencontrer personne.

Je m’impose cette marche quotidienne dans l’espoir de perdre de l’énergie et diminuer mon obésité. Ce gras est un handicap pour moi et une gêne pour les autres. Je m’en rends parfaitement compte. Ils ne peuvent jamais me regarder en face. Hélas, je sais aussi que le déficit en sueur sera compensé par les boissons que j’ingurgite tout au long de la journée. J’ai une passion sans limites pour l’ingestion d’eau glacée. Le docteur André m’a dit en riant que j’étais atteint de potomanie.

L’herbe est humide. Après quelques minutes de marche, mes pieds sont trempés par la rosée. Jadis, les alchimistes recueillaient à l’aube ces perles d’eau pure, inlassablement, chaque jour. Le millième matin, les gouttes mises en fioles devenaient élixir de longue vie.

J’ai lu aussi, dans une revue de la salle d’attente du pavillon 39, que des astronomes ont détecté des molécules d’eau dans l’espace entre les étoiles. Moi, j’ai juste impression d’en avoir un litre dans chaque chaussure. Je sais, parce que je l’ai observé à plusieurs reprises, que lorsque j’ôterai mes souliers pour vider toute cette eau, je n’en retirerai qu’une paire de chaussettes déteintes. Et alors de quoi aurais-je l’air au pavillon ?

Aussi loin que je m’en souvienne, mon psychisme n’a jamais été solidaire du reste de mon corps. Je ne vis que de façon morcelée dans l’une ou l’autre de ses parties. Pour l’heure je vis dans mes pieds. Je suis mes pieds. Tout à l’heure je serai un doigt, ou un de mes cheveux, ou peut-être une autre région moins avouable. Continuer la lecture

Neb Plan 2

Astronomie et imaginaire collectif

Comment l’homme se forge-t-il des images mentales du cosmos, et quelle place ces représentations occupent-elles dans son imaginaire, qu’il soit scientifique, artistique, philosophique ou tout simplement populaire ?

Il est fascinant d’analyser les diverses façons d’imaginer le cosmos à travers la culture savante ou populaire, individuelle ou collective, et de les mettre en rapport avec le développement des connaissances astronomiques afin d’y déceler ce que Bachelard appelait des « archétypes de la pensée ». Nombre de thèmes astronomiques ont toujours été féconds pour l’imaginaire collectif et imprègnent l’univers quotidien de l’homme sous des formes diverses, comme le vocabulaire, l’usage qui en est fait et les représentations qu’il va créer.

place_d-orion_cropPrenons l’exemple basique de l’étoile – l’objet astronomique à la fois le plus familier et le plus transcendant. Le mot provient du latin stella, qui désignait tout ce qui scintille. Nous devons aux Arabes d’avoir baptisé la plupart des étoiles les plus brillantes. Qui n’a pas entendu parler d’Aldébaran, de Véga ou de Bételgeuse, ne serait-ce qu’à travers des marques de produits ou de slogans publicitaires ? Et on ne compte plus les lieux, places, rues, chemins, enseignes, marques baptisés Sirius, Antarès, Procyon, Rigel, Deneb, Capella ou Algol. Quant aux motifs étoilés à cinq, six, huit, dix branches ou davantage, ils se retrouvent dans un immense éventail de réalisations humaines : sculptures, architecture des espaces publics, guides touristiques, drapeaux, etc. Pensons aussi aux voûtes de tant de monuments – chapelles médiévales, cathédrales, tombeaux de rois et d’empereurs – qui rappellent la présence permanence de la voûte étoilée au-dessus de nos têtes. Continuer la lecture

many-worlrds

Contes de l’Outre-temps (1) : L’univers en folie

J’inaugure ici une série de brèves nouvelles fantastiques que j’ai écrites au fil du temps, certaines lorsque j’étais encore adolescent, d’autres plus récemment.  Mise à part la première que voici,  publiée en 2010 dans un livre collectif, les autres sont inédites. J’envisage de les réunir un jour en un recueil qui s’intitulerait  « Contes de l’Outre-temps ».

********************************************************************************

L’univers en folie de Fredric Brown
(re)lu ?

Lorsque je reçus la proposition de rédiger un court  texte sur un titre de la collection Folio SF, je songeai immédiatement à L’univers en folie de Fredric Brown,  lu dans ma jeunesse. Ce bijou de la science-fiction américaine en son âge d’or (celui des Bradbury, Asimov, Heinlein, Simak, auteurs que j’avais dévorés…) m’avait suffisamment marqué pour que je me souvienne, trente-cinq ans après, comment Brown utilisait l’interprétation d’Everett de la mécanique quantique pour plonger son héros dans une course folle le faisant voyager d’un univers parallèle à l’autre. Le malheureux tentait de réparer dans chaque nouvel univers les bourdes commises dans l’univers précédent, mais aggravait constamment sa situation. Le récit, agrémenté d’une réflexion mi-légère, mi-sérieuse sur la réalité de notre monde, était raconté avec un humour inimitable – l’une des marques de fabrique de Fredric Brown, qui m’avait par ailleurs régalé avec « Martiens Go Home », « Lune de miel en enfer » ou « Fantômes et Farfafouilles ». Et puis, en ce début de XXIe siècle et à mes yeux d’astrophysicien, le livre prenait d’autant plus de valeur rétrospective qu’il anticipait les modèles de « multivers » et les théories cosmologiques les plus modernes qui sont désormais mon pain quotidien.

Il y a bien des façons de concevoir le multivers. La première date de 1957, quand le physicien américain Hugh Everett publia un article qui le rendit célèbre pour son hypothèse des mondes multiples. Selon lui, la « fonction d’onde » de la mécanique quantique (un opérateur mathématique compliqué) décrit toute la réalité d’un système, à savoir une superposition quasiment infinie d’états possibles qui ont chacun une « réalité » dans autant d’univers distincts. Il en découle que tout ce qui est physiquement permis par les équations de la mécanique quantique se réalise de front. Notre monde, comme tous les autres univers, est né du résultat des probabilités. Prenons le jeu de pile ou face. Juste avant qu’on lance la pièce, les deux probabilités qu’elle retombe sur pile ou sur face ont la même chance. Si la pièce retombe sur face, cela veut dire que la possibilité qu’elle tombe sur pile a échoué dans notre univers. Mais dans un autre univers tout aussi réel, la pièce est retombée sur pile, et les deux univers se sont séparés lors du jet de la pièce. Cet exemple est simplifié au maximum car en réalité, les multiplications de probabilités se produisent au niveau des particules élémentaires et engendrent une succession indéfinie d’univers parallèles. A ce propos, l’appellation courante « d’univers parallèles » est impropre, puisque les univers d’Everett ont au moins un point commun dans leur passé. Il est plus correct de parler « d’univers divergents ». Ce n’en est que plus vertigineux.

shattered-glass2-copy Continuer la lecture

hyakutake1

Les comètes de Pâques : Hyakutake, la grande comète de l’an 1996

Les début de printemps et les fêtes pascales semblent décidément propices aux apparitions de comètes. L’étoile mouvante qui accompagna les Rois Mages vers la crèche de Jésus – dont nombre d’études historiques suggèrent la naissance non pas à Noël mais bien à Pâques – était-elle une comète ? Vraisemblablement, tout au moins si pareil événement s’est réellement produit.

Dans cette célèbre fresque de l'Adoration des Mages, réalisée par Giotto en 1303, l'étoile de la Nativité est représentée sous forme d'un astre chevelu, autrement dit une comète. Nombre d'historiens estiment qu'il s'agit probablement d'une fidèle reproduction de la brillante comète vue en 1301 dans les cieux d'Europe, comète qui sera plus tard identifiée comme étant la comète périodique de Halley.
Dans cette célèbre fresque de l’Adoration des Mages, réalisée par Giotto en 1303, l’étoile de la Nativité est représentée sous forme d’un astre chevelu, autrement dit une comète. Nombre d’historiens estiment qu’il s’agit probablement d’une fidèle reproduction de la brillante comète vue en 1301 dans les cieux d’Europe, comète qui sera plus tard identifiée comme étant la comète périodique de Halley.

Cette année 2016, ce sont deux petites sœurs jumelles aux  noms charmants de P/2016 BA14 et 252P/Linear qui, après être passées à quelques millions de kilomètres de la Terre lundi 21 et mardi 22 mars, ont augmenté en luminosité et sont devenues visibles dans l’hémisphère nord de la Terre en ce vendredi pascal, 25 mars 2016. Je n’en dirai pas plus, le sujet ayant été abondamment traité dans la blogosphère astronomique, notamment sur le site de Futurasciences et l’excellent blog Autour du ciel tenu par Guillaume Cannat.

Ce billet a en réalité pour but de vous ramener vingt années en arrière, en compagnie de l’une des plus brillantes comètes de Pâques jamais vues de mémoire d’homme. Cette année-là donc,  le 30 janvier 1996, un astronome amateur japonais, Yuji Hyakutake, eut la chance de découvrir une nouvelle comète qui allait désormais porter son nom. D’après les calculs, la comète atteindrait au moins la magnitude 1, soit celle des étoiles les plus brillantes du ciel, et serait visible à l’œil nu pendant tout le mois d’Avril, voyageant  de la constellation de la Grande Ourse en direction de celle  du Taureau. Hyakutake respecterait-elle  ses promesses ? Elle serait alors l’une des plus belles comètes de cette fin de XXe siècle, en attendant la très prometteuse Hale-Bopp annoncée pour le début 1997. Continuer la lecture

Ciel-etoile-madrasa

Hommage à Ulugh Beg, prince des étoiles, né le 22 mars 1394

Aujourd’hui 22 mars est le  jour d’équinoxe du printemps 2016 qui vit naître il y a 622 ans Ulugh Beg, prince astronome musulman décapité à l’âge de 55 ans par les fondamentalistes de l’époque pour avoir ressuscité les sciences arabo-musulmanes.

Il y aussi 28 ans jour pour jour qu’en hommage à ce prince,  l’Association pour l’art et l’histoire Timurides a vu le jour à Paris, et a dédié toutes ces années à l’étude de cette période Timuride et à la vie de ses Princes. Leur site web, d’une très grande richesse, vaut vraiment la peine d’être visité.

*************************************************************************

Le frontispice de Prodromus Astronomiae, ouvrage du célèbre astronome polonais Johannes Hevelius (1611-1687), montre la muse de l’astronomie, Uranie, entourée à sa gauche par les prestigieuses figures de Ptolémée et Tycho Brahe, à sa droite par un personnage au faciès mongol et à large moustache tombante nommé Ulugh Beg. Qui était donc cet astronome quasiment inconnu de nos jours, digne pourtant de figurer au panthéon de l’histoire de sa discipline ? Dans mon dernier roman historique Ulugh Beg, l’astronome de Samarcande (JC Lattès, 2014), j’ai voulu rendre justice à ce prince turco-mongol du XVe siècle qui régna sur la Transoxiane – vaste province d’Asie Centrale entourant sa capitale Samarcande – et qui, délaissant les affaires politiques au profit de l’astronomie, porta très haut le flambeau des sciences arabo-musulmanes, avant que celui-ci ne s’éteigne inexorablement sous les coups de l’obscurantisme.

1.Détail du frontispice du Prodromus Astronomiae (1690) de Johannes Hevelius
Détail du frontispice du Prodromus Astronomiae (1690) de Johannes Hevelius

Mohammed Taragaï, dit Ulugh Beg (c’est-à-dire « le grand prince »), était l’un des nombreux petits-fils de Timour Leng (1336-1405), plus connu en Occident sous le nom de Tamerlan[1]. Conquérant brutal et impitoyable, ce dernier sema partout la terreur durant ses quarante années de règne, bâtissant par le feu et le sang un immense empire s’étendant sur l’Ouzbékistan, l’Arménie, la Géorgie, l’Afghanistan, l’Irak et l’Iran actuels. En marge des inévitables massacres, chaque cité conquise par Timour contribuait toutefois à la déportation de savants, de lettrés, d’artisans et d’ouvriers qualifiés vers la capitale de l’empire, Samarcande, qui retrouva peu à peu sa splendeur d’antan.

Après la mort de Timour, survenue en 1404 alors qu’il s’apprêtait à envahir la Chine, l’empire fut partagé entre ses descendants, entraînant la multiplication des potentats locaux et des luttes fratricides pour s’arroger le pouvoir. Ce fut finalement Chah Rukh (1377-1447), le quatrième et plus digne fils de Tamerlan, qui en 1408 s’imposa comme souverain d’une grande partie de l’empire, tout en déplaçant sa capitale à Herat. Chah Rukh fut l’artisan de la « renaissance timouride », époque brillante mais éphémère où l’art, la science et la culture fleurirent en terre musulmane. De fait, rien n’eût été possible sans Goharshad (1378-1457), son épouse favorite qui eut une grande influence sur sa politique ; elle permit l’épanouissement d’une cour raffinée et transmit le goût du savoir à ses deux fils, Ulugh Beg et Baysunghur. Continuer la lecture

Jardin-des-delices

Langue royale

Langue royale, XII

Triomphal à chaque instant l’aigle doré passe sur tes cheveux
Autre prisme de la vision Bosch aveugle
Tu es une cohue à mon ivresse
Nuit des enfantements noirs qui s’attachent aux étoiles de sang
Urne du septénaire de la terre contrainte au silence
Le pardon ne lève pas les actes

Transfigurer ce pan de muraille avant que les éboulements
Y fassent obstacle
Que les glissements immémoriaux de terrains et la grande opacité
Ennemie absolue des hommes
Ne dissolvent la cohorte des piédestaux et des statues
La chair la chair sacrée s’épuise sous l’écorce des harfangs
Stupéfiante prérogative de dévoiler les griffes
De chemins entre tous arbitraires
Forcer la géométrie d’un temps révolu
A travers tous les orifices possibles
Les traînées serpentines de quartz se perdent dans
Ton sable qui brûle toujours
Oh pavois clair frangé d’or
Le temps de reconnaître
Ta torsade éblouissante les poissons de tes jambes
Duvet de ton nid plus frêle jonque chauffée à blanc
Hanches sans globe à l’œil long comme le ciseau d’un sculpteur

Aucun réverbère aucune sirène pour l’avenir
Dans une voiture file un paquet
Tassé dans un coin.

******************************************************

Langue royale, VIII

Nuit allégorique mue par trois hélices de verre
Voici ce que disent les rivières rieuses :
Le monde n’est pas créé une fois pour toutes
La vie aveuglément recouvre l’intelligence
L’intolérable perte de contact
Et le jour se règle sur le prisme des larmes
Celles qui éclatent sont les plus irisées
Tes yeux de fin d’orage c’est ce croissant pâle
Qui se nacre et s’ardoise aux sept planètes
Comme la cristallisation du vent
Vertigineusement penché
Ton regard se veloute d’une incandescence propre
Ton aile triple est frottée du miel floral
Il y a les crochets des scorpions
Le fondeur des étangs aux dépouilles chéries
Les colonnes liquides porteuses de haches

Poisson lumineux
Une lune à la jonction de tes cuisses
Est le siège de la toute-beauté. Continuer la lecture

J’eus le vertige et je pleurai car mes yeux avaient vu cet objet secret et conjectural dont les hommes usurpent le nom, mais qu’aucun homme n’a regardé : l’inconcevable univers. Jorge Luis Borges, L’Aleph (1949)