Ce billet est une adaptation illustrée d’un article initialement paru dans le collectif Chien, sous la direction d’Hervé Le Tellier et Philippe di Folco (Textuel Éditions, 2010). Encyclopédie bizarre et décalée, ce livre étrange se propose de faire découvrir le chien comme on ne l’a encore jamais vu;
Toutous célestes
Le Grand, Major, suit Orion qui pourchasse le lièvre. Il porte au cou l’étoile la plus brillante du ciel, Sirius, sa médaille brillante. Sa tête forme un triangle peu reluisant au-dessus, les pattes arrières se prolongent pour encadrer la colombe. Murzim, Muliphen, Wezen, Adhara, Furud, Aludra sont les noms que les peuples d’Arabie ont donné à sa queue et ses pattes.
Le Petit, Minor, est le caniche de Major. Chaque matin il se lève avant lui. Procyon et Gomeisa sont ses yeux, le gauche est plus brillant que le droit.
Après la première observation du transit de Mercure du 7 novembre 1631 par Pierre Gassendi, les passages suivants vont susciter un intérêt astronomique de plus en plus grand. Celui du 9 novembre 1644 est toutefois invisible en Europe. Idem pour celui du 3 novembre 1651, mais il est observé par Jeremy Shakerley à Surat (Inde). Le passage du 3 mai 1661 est observé par le célèbre Hevelius à Dantzig (Gdansk), en Pologne. Celui du 4 novembre 1664 n’est pas documenté, et celui du 7 novembre 1674 est invisible en Europe.
N’arrêtez pas votre lecture à cette fastidieuse énumération : le cours de l’histoire de l’astronomie va changer avec le transit de Mercure du 7 novembre 1677 ! Voici pourquoi.
La distance Terre-Soleil par la méthode des transits
La troisième loi du mouvement planétaire formulée par Kepler en 1618, qui donne une relation entre la période de révolution d’une planète et le demi-grand axe de son orbite, permet de connaître la taille du système solaire à un facteur d’échelle près. La connaissance d’une seule distance entre planètes ou entre une planète et le Soleil suffit donc pour calculer toutes les autres.
La parallaxe solaire est l’angle sous lequel on voit le rayon de la Terre depuis le Soleil. La connaissance de la parallaxe est donc équivalente à la connaissance de la distance Terre-Soleil.
Le problème pratique est que l’angle est si petit qu’il est extrêmement difficile à mesurer (on sait aujourd’hui qu’il est égal à 8,794 secondes d’arc, soit 1/200 le diamètre apparent de la Lune). Les mesures et calculs effectués depuis l’Antiquité surestimaient considérablement cet angle, donc sous-estimaient la valeur réelle de la distance Terre-Soleil.
Or, en 1677, sur l’île de Sainte-Hélène où il s’est rendu pour établir un catalogue des étoiles du ciel austral, le grand astronome anglais Edmund Halley (1656-1742) observe le passage de Mercure qui a lieu le 7 novembre. Il bénéficie d’un beau temps inespéré, et d’une durée de transit de 5h 14m. De retour en Angleterre, Halley imagine une méthode simple mais géniale pour déterminer la parallaxe solaire. Sa méthode est basée sur la comparaison des temps de transit de Mercure ou de Vénus, mesurés depuis plusieurs lieux terrestres situés à des latitudes différentes. La différence des temps de passages observés donne accès à la parallaxe du Soleil. On remplace ainsi une difficile mesure de très petit angle par des mesures de temps.Continuer la lecture de Les passages de Mercure (2/2) : de Halley à aujourd’hui→
Le 9 mai, la planète Mercure va traverser le disque solaire d’est en ouest en environ sept heures et demi, et sera visible sous forme d’une minuscule tache noire – un phénomène astronomique appelé transit. Il va de soi que, pour qu’une planète transite sur le disque solaire, elle doit passer entre la Terre et le Soleil. Seules Mercure et Vénus peuvent donc être observées de la Terre lors de leur transit. Il y a en moyenne 13 passages de Mercure et deux passages de Vénus par siècle.
Tous les passages de Mercure se produisent aux mois de mai et novembre, aux alentours respectivement du 7 et du 9 du mois, le phénomène se répétant à des intervalles de 13 ou 33 ans en mai, ou tous les 7, 13 ou 33 ans en novembre. C’est donc une observation relativement rare, ce qui explique son intérêt pour les astronomes. Le transit de Mercure du 9 mai 2016 sera le premier depuis le précédent, en novembre 2006, et avant le prochain qui aura lieu en novembre 2019.
Comme le montre la carte de visibilité ci-dessous, il sera observable (moyennant un ciel dégagé !) depuis l’Europe, l’Afrique, les Amériques et une partie de l’Asie.
Nombre d’excellents blogs, comme ceux de Futura Sciences ou celui de Guillaume Cannat intitulé Autour du Ciel, consacreront ou ont déjà consacré des billets détaillés à cet événement astronomique pas si fréquent. Mon présent billet ne sera donc pas consacré à l’actualité du transit mercurien, mais à sa très intéressante histoire.
De Kepler à Gassendi
La prévision des passages de Mercure et de Vénus devant le Soleil nécessite une bonne connaissance des mouvements orbitaux des planètes intérieures. Les tables dont disposaient les astronomes au début du XVIIe siècle n’étaient que peu fiables, qu’il s’agisse des classiques Tables Alphonsines fondées sur le système de Ptolémée, ou des plus récentes Tables Pruténiques fondées sur le système de Copernic. Lorsque Gaultier de la Valette (1564 – 1617), vicaire général d’Aix et excellent astronome amateur qui, en 24 novembre 1610 et en compagnie de Nicolas Fabri de Peiresc avait été le premier en France à observer à la lunette les quatre satellites de Jupiter, essaye de calculer le moment d’une conjonction du Soleil avec Mercure en mai 1631, il se retrouve presque au désespoir. Le 12 avril 1631 il écrit à Peiresc « L’on ne peut deviner quelles tables seront plus véritables. Je ne manquerai pourtant, durant ces trois ou quatre jours, faire tout mon possible si nous pouvons voir cette belle observation, qui nous découvrirait de belles choses en la nature, nous assurerait du mouvement de ladite planète, de sa distance au soleil, de la grandeur de son orbe, de sa révolution et de son cours suivant l’opinion de Copernic, et nous faisait encore voir de quelles tables les Astronomes ou Astrologues se doivent plus assurément servir : des Pruténiques, Daviques, Rudolphines ou Alphonsines ». Continuer la lecture de Les passages de Mercure (1/2) : De Kepler à Gassendi→
Les début de printemps et les fêtes pascales semblent décidément propices aux apparitions de comètes. L’étoile mouvante qui accompagna les Rois Mages vers la crèche de Jésus – dont nombre d’études historiques suggèrent la naissance non pas à Noël mais bien à Pâques – était-elle une comète ? Vraisemblablement, tout au moins si pareil événement s’est réellement produit.
Cette année 2016, ce sont deux petites sœurs jumelles aux noms charmants de P/2016 BA14 et 252P/Linear qui, après être passées à quelques millions de kilomètres de la Terre lundi 21 et mardi 22 mars, ont augmenté en luminosité et sont devenues visibles dans l’hémisphère nord de la Terre en ce vendredi pascal, 25 mars 2016. Je n’en dirai pas plus, le sujet ayant été abondamment traité dans la blogosphère astronomique, notamment sur le site de Futurasciences et l’excellent blog Autour du ciel tenu par Guillaume Cannat.
Ce billet a en réalité pour but de vous ramener vingt années en arrière, en compagnie de l’une des plus brillantes comètes de Pâques jamais vues de mémoire d’homme. Cette année-là donc, le 30 janvier 1996, un astronome amateur japonais, Yuji Hyakutake, eut la chance de découvrir une nouvelle comète qui allait désormais porter son nom. D’après les calculs, la comète atteindrait au moins la magnitude 1, soit celle des étoiles les plus brillantes du ciel, et serait visible à l’œil nu pendant tout le mois d’Avril, voyageant de la constellation de la Grande Ourse en direction de celle du Taureau. Hyakutake respecterait-elle ses promesses ? Elle serait alors l’une des plus belles comètes de cette fin de XXe siècle, en attendant la très prometteuse Hale-Bopp annoncée pour le début 1997. Continuer la lecture de Les comètes de Pâques : Hyakutake, la grande comète de l’an 1996→
Aujourd’hui 22 mars est le jour d’équinoxe du printemps 2016 qui vit naître il y a 622 ans Ulugh Beg, prince astronome musulman décapité à l’âge de 55 ans par les fondamentalistes de l’époque pour avoir ressuscité les sciences arabo-musulmanes.
Il y aussi 28 ans jour pour jour qu’en hommage à ce prince, l’Association pour l’art et l’histoire Timurides a vu le jour à Paris, et a dédié toutes ces années à l’étude de cette période Timuride et à la vie de ses Princes. Leur site web, d’une très grande richesse, vaut vraiment la peine d’être visité.
Le frontispice de Prodromus Astronomiae, ouvrage du célèbre astronome polonais Johannes Hevelius (1611-1687), montre la muse de l’astronomie, Uranie, entourée à sa gauche par les prestigieuses figures de Ptolémée et Tycho Brahe, à sa droite par un personnage au faciès mongol et à large moustache tombante nommé Ulugh Beg. Qui était donc cet astronome quasiment inconnu de nos jours, digne pourtant de figurer au panthéon de l’histoire de sa discipline ? Dans mon dernier roman historique Ulugh Beg, l’astronome de Samarcande (JC Lattès, 2014), j’ai voulu rendre justice à ce prince turco-mongol du XVe siècle qui régna sur la Transoxiane – vaste province d’Asie Centrale entourant sa capitale Samarcande – et qui, délaissant les affaires politiques au profit de l’astronomie, porta très haut le flambeau des sciences arabo-musulmanes, avant que celui-ci ne s’éteigne inexorablement sous les coups de l’obscurantisme.
Mohammed Taragaï, dit Ulugh Beg (c’est-à-dire « le grand prince »), était l’un des nombreux petits-fils de Timour Leng (1336-1405), plus connu en Occident sous le nom de Tamerlan[1]. Conquérant brutal et impitoyable, ce dernier sema partout la terreur durant ses quarante années de règne, bâtissant par le feu et le sang un immense empire s’étendant sur l’Ouzbékistan, l’Arménie, la Géorgie, l’Afghanistan, l’Irak et l’Iran actuels. En marge des inévitables massacres, chaque cité conquise par Timour contribuait toutefois à la déportation de savants, de lettrés, d’artisans et d’ouvriers qualifiés vers la capitale de l’empire, Samarcande, qui retrouva peu à peu sa splendeur d’antan.
Après la mort de Timour, survenue en 1404 alors qu’il s’apprêtait à envahir la Chine, l’empire fut partagé entre ses descendants, entraînant la multiplication des potentats locaux et des luttes fratricides pour s’arroger le pouvoir. Ce fut finalement Chah Rukh (1377-1447), le quatrième et plus digne fils de Tamerlan, qui en 1408 s’imposa comme souverain d’une grande partie de l’empire, tout en déplaçant sa capitale à Herat. Chah Rukh fut l’artisan de la « renaissance timouride », époque brillante mais éphémère où l’art, la science et la culture fleurirent en terre musulmane. De fait, rien n’eût été possible sans Goharshad (1378-1457), son épouse favorite qui eut une grande influence sur sa politique ; elle permit l’épanouissement d’une cour raffinée et transmit le goût du savoir à ses deux fils, Ulugh Beg et Baysunghur. Continuer la lecture de Hommage à Ulugh Beg, prince des étoiles, né le 22 mars 1394→
La Perruque de Newton (Les bâtisseurs du ciel, tome 4)
EDITION ORIGINALE
354 pages, JC Lattès, Paris, 2010 – ISBN 978-2709624152
Que se cache-t-il sous la haute et lourde perruque d’Isaac Newton ? Un cerveau d’exception bien sûr, qui a dévoilé les lois de la gravitation universelle, et publié le plus grand livre scientifique de l’Histoire. Mais aussi un crâne dégarni, tant par les vapeurs de soufre et de mercure de ses expériences alchimiques que par les nuits d’insomnie passées à relire les Écritures pour calculer la date de l’Apocalypse. Le fondateur de la science moderne et rationnelle a, en effet, consacré plus de temps à mener des expériences alchimiques, à étudier la théologie qu’à pratiquer les sciences naturelles. La Perruque de Newton dresse le portrait stupéfiant d’un homme extraordinairement complexe qui, après une enfance solitaire, est devenu ombrageux, colérique, vindicatif, et profondément obsédé par Dieu. Cette figure de la raison, acclamée par les Lumières, également férue de recherches ésotériques, s’est révélée être un directeur impitoyable de la Monnaie et un président tyrannique de la Royal Society. Il sera enterré comme un roi après une longue vie de quatre-vingt-cinq ans où il n’aura jamais connu de femme. La face cachée d’un exceptionnel génie scientifique. Astrophysicien, romancier et poète, Jean-Pierre Luminet offre avec ce quatrièsme volume un nouvel épisode de sa grande série romanesque Les Bâtisseurs du ciel commencée avec Le Secret de Copernic, La Discorde céleste et L’Oeil de Galilée. Continuer la lecture de Mes romans (6) : La Perruque de Newton→
Pour détecter des ondes gravitationnelles de moindre amplitude ou de plus basse fréquence que celles accessibles à la génération d’interféromètres au sol comme LIGO et VIRGO, il faudra envoyer les détecteurs dans l’espace. C’est tout l’enjeu du projet phare de l’ESA baptisé eLISA (bel acronyme signifiant en anglais europeanlaserinterferometric space antenna, soit « antenne spatiale interférométrique à laser »). Il s’agit d’expédier trois satellites en orbite autour du Soleil, disposés chacun aux sommets d’un triangle équilatéral de 5 millions de kilomètres de côté et reliés par des faisceaux laser. Sur une aussi grande longueur, le passage d’une onde gravitationnelle de basse fréquence devrait engendrer une fluctuation significative de la distance entre les satellites, mesurable par les lasers embarqués. Reste bien sûr à stabiliser les distances entre les satellites avec une précision jamais atteinte, ce qui suppose de compenser par exemple la pression du vent solaire et autres influences parasites. C’est pour tester cet élément décisif que l’Agence Spatiale Européeenne a lancé fin 2015 la sonde “d’éclairage” LISAPathfinder, qui en janvier 2016 est parvenue au point de Lagrange L1, à 1,5 millions de km de la Terre et a libéré deux masses-étalon séparées seulement de 38 cm. Il s’agit de s’assurer qu’en l’absence d’onde gravitationnelle, cette distance ne varie pas de plus d’un millionième de l’épaisseur d’un cheveu humain, auquel cas le passage d’une onde gravitaitonnelle serait détectable. Si tout fonctionne, l’interféromètre complet eLISA pourrait être placé en orbite en … 2034. Un peu de patience est donc requise…
Le schéma de principe de l’observatoire eLISA consiste en trois satellites en formation équilatérale, séparés chacun de 5 millions de kilomètres, l’ensemble tournant autour du Soleil.
eLISA et les interféromètres au sol LIGO et VIRGO seront complémentaires ; leurs domaines de fréquences n’étant pas les mêmes, les sources observables seront différentes. Affranchi des ondes sismiques, eLISA travaillera dans les basses fréquences, comprises entre 0,0001 et 1 hertz – domaine intéressant pour capter les trous noirs massifs.
L’observation d’une coalescence de trous noirs massifs par eLISA sera spectaculaire. Pour un couple de trous noirs de 1 million de masses solaires chacun, eLISA surveillera les 40 derniers jours de leur phase spiralante, soit 600 orbites, et l’amplitude du signal atteindra 10–17 à la distance fabuleuse de 3 milliards d’années-lumière. Environ 10 000 fois supérieur au bruit, cet intense signal fournira une localisation extraordinairement précise d’un événement, et l’identification optique de l’amas de galaxies où il sera produit déterminera avec une précision du pour cent les paramètres clés des modèles cosmologiques, comme le taux d’expansion de l’Univers et sa densité d’énergie moyenne. On pourra alors confirmer ou non si notre Univers est essentiellement rempli d’une forme d’« énergie noire », dont l’effet accélérateur sur l’expansion cosmique modifierait le destin de l’Univers tout entier.
Malgré l’observation de quelques galaxies géantes à double noyau actif associées vraisemblablement à des couples de trous noirs géants, le phénomène de fusion de tels trous noirs massifs se produit rarement. En revanche, tapi au cœur d’une galaxie, un trou noir massif célibataire capture plus souvent des étoiles. Nous avons vu au chapitre précédent que, lorsqu’elles sont de type solaire, c’est-à-dire peu denses, les étoiles sont détruites par les forces de marée en s’approchant du trou noir. Cependant, les astres compacts comme les étoiles à neutrons et les trous noirs de masse stellaire perdurent sans être brisés et chutent en spiralant jusqu’à l’horizon du trou noir. eLISA détectera les ondes gravitationnelles émises par ce phénomène et assistera à la dernière année de la vie d’une étoile compacte chutant en spirale dans un trou noir de 1 million de masses solaires, et ce jusqu’à une distance de plusieurs centaines de millions d’années-lumière.
L’enregistrement du signal gravitationnel durant cette année de chute permettra de cartographier la structure de l’espace-temps autour du trou noir massif. On comparera alors cette structure observée à la solution mathématique de Kerr qui décrit les trous noirs en rotation. Cette solution prédit une forme de la courbure de l’espace-temps spécifique aux trous noirs : ni étoile ni amas d’étoiles ne peuvent courber l’espace-temps de cette manière. On pourra alors conclure définitivement à l’existence des trous noirs dans l’Univers.
L’histoire récente de l’astronomie a prouvé que, chaque fois que l’homme a scruté le ciel par d’autres yeux que les siens, de nouvelles merveilles lui sont apparues, le forçant à réviser ses conceptions et améliorant un peu plus sa compréhension de l’Univers.
Avec la détection de l’événement GW150914 en septembre 2015, la fenêtre gravitationnelle vient juste d’être ouverte. Maintenant que les premiers signaux directs sont captés, l’information sur le mouvement et la nature des sources reste encore noyée dans beaucoup de bruit parasite. Mais, animés de la certitude que l’astronomie gravitationnelle est celle des siècles futurs, nous lancerons bientôt dans l’espace de gigantesques interféromètres parfaitement isolés des secousses telluriques et de l’agitation humaine…
L’annonce historique de la première détection directe des ondes gravitationnelles a bel et bien été faite le jeudi 11 février 2016 par les équipes de chercheurs travaillant sur les interféromètres LIGO et VIRGO.
Il y a eu tant d’articles, billets de blog et autres interviews délivrés depuis dans les médias du monde entier que je ne vais pas développer longuement mon point de vue sur la découverte elle-même. Son intérêt majeur (on fera l’impasse sur les titres idiots du genre “Einstein avait raison”) n’est pas la détection en soi, prédite et attendue, mais: 1/ la confirmation directe de l’existence des trous noirs, vivement décriée par certains, 2/ non pas la fin d’une grande aventure scientifique comme c’était le cas avec la découverte du boson de Higgs-Englert (qui mettait un point final au modèle standard de la physique des particules, sans aller au-delà), mais au contraire le début d’une nouvelle ère pour l’astronomie expérimentale. Les fabuleuses prouesses technologiques mises en œuvre dans les interféromètres LIGO et VIRGO ont permis d’ouvrir enfin la fenêtre de l’astronomie gravitationnelle, avec vue à venir sur d’immenses territoires encore inconnus.
Au moment de l’annonce j’étais en voyage au Maroc. Je n’ai donc pas pu assister à la conférence de presse, encore moins répondre aux nombreuses demandes d’interviews pour la presse écrite, la radio et la télévision. Peu importe, de nombreux chercheurs l’ont fait et très bien fait, notamment mon ancien collègue à l’Observatoire de Paris Thibault Damour dans cette excellente interview pour le journal Le Monde. Ayant été l’un des premiers théoriciens à calculer les courbes d’émission gravitationnelle issue de la coalescence de trous noirs, Damour mériterait de figurer sur la liste des physiciens nobélisables, au même titre que son homologue américain Kip Thorne ou que le directeur du programme LIGO, David Reitze. Hélas, l’histoire montre que les prix Nobel de physique sont rarement donnés aux théoriciens qui prédisent tel ou tel phénomène, ils sont très généralement attribués aux expérimentateurs qui confirment la prédiction (à cet égard le prix Nobel attribué à Higgs et Englert a été une heureuse exception).
Pour ma modeste part, je n’ai jamais travaillé directement sur le sujet des ondes gravitationnelles, mais je l’ai souvent évoqué dans des interviews (ci-dessous, sur ma chaîne youtube)
ainsi que dans mes articles et livres de vulgarisation. J’ai mis à profit les deux nuits blanches passées dans mon hôtel de Casablanca pour rédiger les deux billets de blogs précédents, ici et ici, qui reprenaient pour l’essentiel (en les actualisant légèrement) des éléments du chapitre que j’avais consacré à “La lumière gravitationnelle” dans mon livre de 2006, Le Destin de l’Univers : trous noirs et énergie sombre. Dans ce troisième billet je quitte le livre pour délivrer mes premières impressions sur la découverte annoncée jeudi. Dans un quatrième et dernier billet, je discuterai du futur de l’astronomie gravitationnelle. Continuer la lecture de La “lumière” gravitationnelle (3/4) : l’événément GW150914→
Un mot un seul mot suffit à perturber l’espace Jean-Marc Debenedetti
Pour capter la lumière, il faut des télescopes. Comment concevoir un télescope gravitationnel ?
Le principe est simple. De même que les ondes électromagnétiques font vibrer une antenne réceptrice, les ondes gravitationnelles font vibrer d’une certaine façon la matière qu’elles rencontrent ; les « rides de courbure » faisant légèrement onduler le tissu élastique de l’espace-temps allongent ou raccourcissent les distances sur leur passage. Si, par exemple, le détecteur est un bloc de matière solide, ses différentes parties sont enclines à se mouvoir dans différentes directions à la traversée de l’onde gravitationnelle. Remarquons que, en raison de la traversée permanente d’ondes gravitationnelles, aucun corps matériel, aussi rigide soit-il, n’est strictement indéformable.
Une collision de deux trous noirs stellaires au centre de la Galaxie se traduirait par un déplacement de 10–14 millimètre des extrémités d’un détecteur ayant la forme d’une barre de 1 mètre de long. L’amplitude correspondante, qui est le rapport entre le déplacement et la taille du détecteur, est donc de 10–17. Le même phénomène se déroulant dans l’amas de galaxies de la Vierge, à 60 millions d’années-lumière, ne nous offrirait plus qu’une amplitude de 10–20.
À titre de comparaison, lorsqu’une onde gravitationnelle de cette nature traverse notre planète, elle ne fait varier le diamètre du globe (12 700 kilomètres) que de la largeur d’un atome. La construction d’un détecteur d’ondes gravitationnelles est donc un véritable défi technologique.
En 1965, Joseph Weber fit construire à l’université du Maryland un grand cylindre d’aluminium de 50 centimètres de diamètre pour 2 mètres de long, censé répondre par une oscillation de ses extrémités aux ondes gravitationnelles en provenance du centre galactique. Quand une onde gravitationnelle traverse le cylindre, l’effet de marée qui en résulte tend à éloigner puis à attirer les deux extrémités de la barre métallique. Weber crut avoir observé des effets positifs et l’annonça avec fracas ; mais, comme l’ont montré diverses expériences analogues, réalisées par la suite dans plusieurs pays (dont une, en France, à l’observatoire de Meudon), il s’agissait d’une interprétation incorrecte d’erreurs expérimentales. En effet, une explosion de supernova dans le centre galactique produirait au mieux une onde d’amplitude 10–18, alors que la meilleure des barres de Weber ne pourrait détecter qu’une amplitude 10 milliards de fois plus grande. De plus, la détection gravitationnelle d’une supernova dans le centre de la Galaxie relèverait d’un hasard invraisemblable : dans l’ensemble de la Galaxie, il ne doit pas exploser plus d’une supernova tous les dix ans, et l’impulsion gravitationnelle d’une explosion ne dure qu’une fraction de seconde. Continuer la lecture de La “lumière” gravitationnelle (2/4) : de la barre à l’interféromètre→
Je voudrais poser une question à monsieur Einstein, à savoir, à quelle vitesse l’action de la gravitation se propage-t-elle dans votre théorie ? Max Born, 1913
Dans la théorie de Newton, la gravitation est une force agissant instantanément entre les corps massifs. Cette idée était inadmissible aux yeux de nombreux physiciens, Newton compris, et un siècle plus tard Laplace proposait une modification de la théorie dans laquelle l’interaction gravitationnelle se propageait à vitesse finie. L’idée fut vite abandonnée, car elle soulevait immédiatement une question à laquelle personne ne savait répondre : lorsqu’un corps massif est violemment perturbé, le champ gravitationnel qu’il engendre doit s’ajuster de proche en proche à la nouvelle configuration du corps ; sous quelle forme se propage le réajustement ?
La théorie de la relativité générale d’Einstein permet d’organiser en un schéma cohérent les intuitions sur la propagation de la gravitation. Einstein s’était demandé si une masse en mouvement accéléré pouvait rayonner des ondes de gravité, de la même façon qu’une charge électrique en mouvement accéléré rayonne des ondes électromagnétiques. Dès 1916, il découvrit effectivement des solutions de ses équations du champ gravitationnel représentant des ondulations de la courbure de l’espace-temps se propageant à la vitesse de la lumière. Il venait d’inventer la “lumière gravitationnelle”.
Good Vibrations
Et quel vent d’outre-monde emporte au gré des ondes la promesse de toutes les germinations? Charles Dobzynski
L’analogie entre ondes gravitationnelles et ondes électromagnétiques est utile pour la conception du phénomène, mais elle ne conduit guère plus loin. La structure d’une onde gravitationnelle et ses effets sur la matière sont bien plus complexes que ceux de l’onde électromagnétique. Une première différence notable vient du fait que la gravitation est purement attractive ; la masse, c’est-à-dire la « charge gravitationnelle », a toujours le même signe. Il en résulte qu’un oscillateur gravitationnel élémentaire, constitué de deux masses vibrant aux extrémités d’un ressort, ne rayonne pas le même type d’ondes que deux charges électriques de signe opposé. Dans le cas électromagnétique, le rayonnement est du type dipolaire, dans le cas gravitationnel il est du type quadripolaire.
Une autre complication vient de ce que le graviton, l’hypothétique particule médiatrice de l’onde gravitationnelle, transporte une charge gravitationnelle associée à son énergie, tandis que le photon, particule médiatrice de l’interaction électromagnétique, ne transporte pas de charge électrique. Par conséquent, l’onde de gravitation produite par une masse accélérée est elle-même source de gravitation : la gravitation gravite. En termes techniques, on dit qu’elle est non linéaire. Cette non-linéarité introduit des difficultés considérables dans la résolution des problèmes apparemment les plus simples, comme le calcul du champ gravitationnel engendré par deux corps en mouvement. Continuer la lecture de La “lumière” gravitationnelle (1/4) : principes de base→
En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le sixième et dernier. Merci de m’avoir lu jusqu’au bout!
L’équation ultime
Vers la fin d’Interstellar, on voit la scientifique Murph écrire une équation censée résoudre l’incompatibilité entre la relativité générale et la mécanique quantique. On aperçoit dans le fond une série de tableaux noirs couverts de diagrammes et d’équations supposées aboutir à l’équation ultime, celle d’une « Théorie de Tout ». Le sort de l’humanité en dépend. Mise à part la naïveté d’une telle représentation, il est intéressant de se demander si les équations fugitivement montrées dans la scène ont la moindre signification.
A première vue, la longue suite de formules paraît fastidieuse. Aujourd’hui, l’unification de la relativité générale et de la mécanique quantique n’est toujours pas résolue. Diverses approches du problème, comme la gravité quantique à boucles, la théorie des cordes et la géométrie non-commutative, font l’objet d’intenses recherches en cours[1]. Continuer la lecture de La physique étrange d’Interstellar (6/6) : l’équation ultime→
En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le cinquième.
Gargantua, une machine à remonter le temps
Au cours d’une scène de la dernière partie du film, Cooper plonge dans Gargantua, de façon à s’assurer que le vaisseau Endurance puisse bien atteindre la troisième et dernière planète. En dépit de la menace posée par les forces de marée, Cooper survit. Il est donc chanceux, car les forces de marée deviennent infinies quand r tend vers 0. Ainsi, même pour un trou noir supermassif comme Gargantua, une fois passé sain et sauf l’horizon des événements, tout corps s’approchant de la singularité centrale doit être en fin de compte détruit. Heureusement, Gargantua est un trou noir en rotation rapide, et sa létale singularité a la forme d’un anneau évitable.
En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le quatrième.
Dilatation temporelle
La théorie de la relativité restreinte d’Einstein prédit que des observateurs placés dans des référentiels différemment accélérés perçoivent le temps différemment. Ce phénomène bien connu de « dilatation » temporelle a été vérifié expérimentalement à un haut degré de précision. Les conséquences de la dilation temporelle se font sentir tout au long de l’histoire d’Interstellar.
Près de l’horizon des événements d’un trou noir, où le champ gravitationnel est énorme, la dilatation temporelle est également énorme. Les horloges sont fortement ralenties par rapport aux horloges lointaines. Une heure sur Miller (temps propre de Miller) équivaut à sept années sur Terre. Ceci correspond à un facteur de dilatation de 60 000. Bien que la dilatation temporelle tende vers l’infini quand l’horloge tend vers l’horizon des événements, un facteur de dilatation de 60 000 est impossible pour une planète en orbite stable autour d’un trou noir.
Dans son livre, The Science of Interstellar, Kip Thorne explique qu’un facteur de dilatation temporelle de cette grandeur était une exigence non négociable de la part du réalisateur[1]. Après quelques heures de calcul, Thorne est parvenu à la conclusion que le scénario, bien que très peu vraisemblable, était marginalement possible. Le facteur-clé est la période de rotation du trou noir. Un trou noir de Kerr (tournant) se comporte très différemment d’un trou noir de Schwarzschild (statique). L’équation de dilatation temporelle dérivée de la métrique de Kerr s’écrit:
En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable “blockbuster” hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le troisième.
Visualisation du disque d’accrétion
Interstellar est le premier film long métrage d’Hollywood qui tente de représenter correctement un trou noir tel qu’il apparaîtrait à un observateur proche de lui. L’image sans doute la plus captivante du film est le spectacle de Gargantua et de son disque d’accrétion se déployant tout autour et devant lui.
Un trou noir engendre des déformations extrêmes de l’espace-temps. Il crée aussi les déviations de rayons lumineux les plus fortes possibles. Cela engendre de spectaculaires illusions d’optique de type « mirage gravitationnel ». Pour les représenter, la compagnie en charge des effets spéciaux du film, Double Negative, a développé en collaboration avec Kip Thorne un logiciel capable d’intégrer les équations de propagation de la lumière dans l’espace-temps courbe du trou noir[1]. Les équations produites pour le film ont permis de décrire le mirage gravitationnel produit sur les étoiles d’arrière-plan, tel qu’il serait vu par une caméra proche de l’horizon des événements[2].
Compte tenu des immenses distances mises en jeu dans l’observation astronomique des trous noirs et de la trop faible résolution de nos télescopes actuels, aucune image détaillée de disque d’accrétion n’a encore été obtenue[3]. Mais en 1979, j’ai été le premier à simuler (en noir et blanc) l’aspect d’un disque d’accrétion mince gravitationnellement déformé par un trou noir sphérique, tel qu’il serait vu par un observateur lointain ou saisi par une plaque photographique[4]. Continuer la lecture de La physique étrange d’Interstellar (3/6): disque d’accrétion et forces de marée→
405 pages, JC Lattès, Paris, 2009 – ISBN 978-2709629027
Le 21 août 1609, à Venise, Galilée monte les escaliers du campanile de la place Saint-Marc : derrière lui les princes de la ville, de l’église et de la famille Médicis. La première démonstration officielle de sa lunette astronomique va fasciner toute l’Europe. Bientôt il fait appel aux meilleurs verriers de Murano pour ciseler des lentilles et perfectionner l’invention. Les astronomes du monde entier vont découvrir, tantôt émerveillés tantôt consternés, le spectacle des satellites de Jupiter, la surface de la Lune et les profondeurs du cosmos, qui mettent à bas l’enseignement d’Aristote au profit du système de Copernic… Pendant ce temps, à Prague, le mathématicien impérial de Rodolphe II, Johann Kepler, n’a pas attendu la lunette pour révolutionner l’astronomie. Il a déjà découvert les lois mathématiques des mouvements planétaires et les principes de base de l’optique. Lui seul comprend le fonctionnement de la lunette astronomique et peut attester de la réalité des observations de son confrère italien. L’œil de Galilée, c’est lui, Kepler. Dans son nouveau roman, Jean-Pierre Luminet conte comment ces deux géants de la science se sont progressivement apprivoisés sans jamais se rencontrer : Kepler, aux prodigieuses capacités mathématiques mais fasciné par les mondes occultes ; Galilée et son génie rationnel de la mécanique, prudent sous le regard menaçant du Saint-Office. Après Le Secret de Copernic et La discorde céleste, Jean-Pierre Luminet continue à nous faire découvrir l’histoire de ces bâtisseurs du ciel, qui ont définitivement changé notre façon de voir l’univers. Continuer la lecture de Mes romans (5) : L’Œil de Galilée→
Un de mes « distingués » collègues, dont je tairai poliment le nom mais qui est suffisamment connu par ses nombreux ouvrages de vulgarisation pour que beaucoup devinent son identité, va délivrer en janvier prochain, à Paris et à grand renfort de publicité, une conférence grand public intitulée « Du Big Bang à l’homme, une grande fresque cosmique avec des implications philosophiques. »
Son texte de présentation, que l’on peut trouver sur internet, est le suivant :
« Depuis 1543, quand Copernic a délogé la Terre de sa place centrale dans l’univers, les découvertes scientifiques n’ont cessé de rapetisser la place de l’homme dans le cosmos, à la fois dans l’espace et dans le temps. Nous avons assisté à un désenchantement du monde, faisant écho au fameux cri d’angoisse de Pascal: “Le silence éternel des espaces infinis m’effraie”. Mais XXX nous montrera comment la cosmologie moderne a réenchanté le monde et redécouvert l’ancienne alliance entre l’homme et le cosmos: nous sommes tous des poussières d’étoiles. La science nous apprend que l’univers a été réglé de façon extrêmement précise pour permettre l’émergence de la vie et de la conscience. Si l’univers est si grand, c’est pour permettre la présence d’un Observateur qui va s’émerveiller devant sa beauté, son harmonie et sa complexité, et lui donner un sens. »
Reprenons et commentons phrase après phrase.
• « Depuis 1543, quand Copernic a délogé la Terre de sa place centrale dans l’univers […] »
Pareille formulation, devenue un poncif de l’histoire des sciences, est pour le moins malheureuse. Copernic ne s’est certainement pas transformé en un géant qui, pareil à Atlas, aurait porté notre planète sur ses épaules pour l’arracher de sa position supposée fixe au centre de l’Univers et la faire virevolter autour du Soleil. Il s’est contenté – et c’est déjà énorme – de reprendre et développer l’hypothèse cosmologique dite héliocentrique, selon laquelle la Terre est animée d’un double mouvement : rotation sur elle-même en 24 heures et révolution autour du Soleil en une année. Continuer la lecture de Les méfaits du finalisme cosmologique→
En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable “blockbuster” hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le deuxième.
Un trou noir supermassif en rotation rapide
Ayant franchi sans encombre le trou de ver artificiel d’Interstellar, le vaisseau spatial Endurance émerge dans un système de trois planètes gravitant autour de Gargantua, un trou noir supermassif. A première vue, une telle proximité entres les planètes et le trou noir semble invraisemblable.
Les trous noirs supermassifs, dont les masses courent de quelques millions à plusieurs milliards de masses solaires, sont censés occuper le centre de la plupart des galaxies[1]. Notre propre Voie lactée abrite un tel objet, Sagittarius A*, dont la masse mesurée indirectement vaut quatre millions de fois celle du soleil[2]. D’après Thorne, Gargantua serait semblable au trou noir encore plus gros qui se trouve au centre de la galaxie d’Andromède, rassemblant 100 millions de masses solaires[3].
Gargantua est décrit comme un trou noir supermassif en rotation rapide. Sa rotation dépend de deux paramètres: la masse M et le moment angulaire J. Contrairement aux étoiles qui sont en rotation différentielle, les trous noirs tournent de façon parfaitement rigide. Tous les points de leur surface, l’horizon des événements, se meuvent à la même vitesse angulaire. Il y a cependant une valeur critique du moment angulaire, Jmax, au-dessus de laquelle l’horizon des événements se disloque. Cette limite correspond à une surface tournant à la vitesse de la lumière. Pour de tels trous noirs dits « extrémaux », le champ de gravité à l’horizon des événements serait annulé, l’attraction gravitationnelle étant contrebalancée par d’énormes forces centrifuges répulsives. Il est bien possible que la plupart des trous noirs formés dans l’univers réel aient un moment angulaire proche de cette limite critique[4]. Continuer la lecture de La physique étrange d’Interstellar (2/6)→
Il y a tout juste un an, en novembre 2014 donc, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable “blockbuster” hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. Moi-même, sollicité par la presse, j’y ai un peu sacrifié de mon temps, par exemple ici sur slate.fr ou là sur figaro.fr .
A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre ici la traduction française, découpée en 6 billets.
Petit rappel pour les lecteurs qui n’ont pas vu le film (c’est tout à fait permis!). Interstellar conte les aventures d’un groupe d’astronautes partis en quête de planètes habitables situées dans une autre galaxie, dans l’espoir d’une colonisation future. Sur Terre en effet, ravages climatiques et famines ont conduit l’humanité à chercher un nouvel habitacle dans les mondes lointains.
Le scénario d’Interstellar s’appuie en grande partie sur des développements de la physique contemporaine. Le film se réfère constamment à une vaste palette de sujets relevant de l’astrophysique, de la relativité générale et de la cosmologie, allant de concepts relativement bien établis comme les trous noirs en rotation, les disques d’accrétion, les forces de marée et les distorsions temporelles, à des idées beaucoup plus spéculatives comme les trous de ver, les dimensions spatiales supplémentaires et la « Théorie de Tout ».
La promotion d’Interstellar a beaucoup insisté sur le réalisme et la crédibilité scientifiques du film. Mention particulière a été faite de l’implication de Kip Thorne comme conseiller scientifique et producteur exécutif. Thorne a écrit un ouvrage de vulgarisation expliquant comment il avait tenté d’assurer au film la plus grande exactitude scientifique possible, malgré les exigences parfois exorbitantes des scénaristes. Selon ses dires, il a fait de son mieux[1]… Continuer la lecture de La physique étrange d’Interstellar (1/6)→
La discorde céleste : Kepler et le trésor de Tycho Brahé (Les Bâtisseurs du ciel, tome 2)
EDITION ORIGINALE
514 pages, JC Lattès, Paris, 2008 – ISBN 978-2709625678
Tycho Brahé, Johann Kepler… tout les opposait : l’âge, la naissance, la fortune, le caractère, jusqu’à leur apparence physique. Le premier, un lion, est né au Danemark ; de ses ancêtres vikings, il a gardé le cheveu flamboyant, la gloutonnerie d’un ogre, la violence barbare, prête à éclater à la moindre occasion. L’autre, un renard, est né vingt-cinq ans plus tard, en 1571, dans une misérable auberge en Forêt-Noire ; son visage est grêlé par la vérole, mangeant peu, buvant moins encore et ne riant jamais. L’un avec sa fortune va bâtir le plus grand observatoire de tous les temps sur l’île de Venusia et devient le despote du royaume d’Uranie – il accumule comme un maniaque des milliers d’observations célestes. L’ autre, frémissant d’une sorte de fièvre qui avait pour nom ” révolte “, rusant avec les puissants, courant les universités et les palais, révèle des capacités prodigieuses de penseur et de calculateur… jusqu’â la rencontre entre les deux hommes : un choc violent, passionnel, presque cruel. De ce duel sortit pourtant un grand vainqueur : la vérité sur l’Univers. Après Le Secret de Copernic, et avec ce nouveau volume de la série Les Bâtisseurs du ciel, Jean-Pierre Luminet, astrophysicien, romancier et poète, fait revivre l’affrontement de ces deux génies qui va changer la vision du monde. Continuer la lecture de Mes romans (4) : La discorde céleste→
J’eus le vertige et je pleurai car mes yeux avaient vu cet objet secret et conjectural dont les hommes usurpent le nom, mais qu’aucun homme n’a regardé : l’inconcevable univers. Jorge Luis Borges, L’Aleph (1949)