Archives par mot-clé : trou noir

Première image du trou noir galactique Sagittarius A*: un décryptage inédit

Après cinq années de calculs et d’analyses, la collaboration internationale du télescope Event Horizon (EHT) a livré le 12 Mai 2022 l’image de Sagittarius A* (Sgr A*), le trou noir géant tapi au centre de notre galaxie (la Voie lactée), à 27 000 années-lumière de la Terre. Jusqu’à présent, on ne percevait qu’indirectement sa présence, à partir de quelques émissions dans le domaine radio et l’observation des trajectoires des étoiles orbitant à grande vitesse autour d’une masse gigantesque mais invisible. Après celle obtenue par l’EHT en 2019 du trou noir central de la lointaine galaxie M87, c’est donc la seconde image directe de ce type d’astre dont on dispose à ce jour.

Figure 1. Première image du trou noir géant Sagittarius A* situé au centre de la Voie lactée, dévoilée par les équipes du programme international de radioastronomie Event Horizon Telescope. © EHT Collaboration/ESO
Une recomposition complexe

Souvenez-vous. La toute première image télescopique d’un trou noir entouré d’un disque de gaz chaud avait été dévoilée en avril 2019 par les mêmes équipes de l’EHT : il s’agissait du trou noir M87* situé au centre de la galaxie elliptique géante M87, distante de 56 millions d’années-lumière. Les observations de Sgr A* avaient été effectuées en avril 2017, lors de la même campagne que celles de de M87*. S’il a fallu cinq années d’analyse pour Sgr A* contre deux pour M87*, c’est parce que durant le temps de pose des observations – de l’ordre de l’heure – , l’émission lumineuse du disque de gaz autour de Sgr A* est très variable, alors que celle autour de M87* est figée. La raison tient à ce que Sgr A* a une masse 1500 fois plus faible que M87* (4 millions de masses solaires pour SgrA* contre 6 milliards pour M87*), de sorte que l’échelle de temps caractéristique de la variabilité lumineuse, donnée par la simple formule  GM/c3, est beaucoup plus rapide : 20 secondes, contre plusieurs heures pour M87*.

Figures 2a-b. En haut, le montage illustre l’énorme différence de tailles entre M87* et SgrA*, rapportées à la taille de notre système solaire. En bas :en raison de sa taille géante, la structure lumineuse autour de M87* a très peu varié au cours des 4 jours d’observations effectuées en avril 2017.

Tenter de capturer une image nette de SgrA* dans un temps de pose d’une heure revenait donc à prendre la photo d’un chien courant après sa queue. Il a fallu un travail d’intégration  considérable pour reconstruire une image “moyenne” de SgrA* suffisamment nette, comme le montre clairement la figure 3.

Figures 3a-b. A gauche, plusieurs dizaines de clichés de SgrA* montrent sa grande variabilité temporelle, au point que la reconstruction d’une image moyennée ne peut reproduire précisément l’état du flot d’accrétion (position incertaine des surbrillances). A droite en revanche, pour M87*, en raison de sa taille géante, la structure lumineuse qui l’entoure a très peu varié au cours des 4 jours d’observations effectuées en avril 2017, de sorte que l’image moyenne reflète assez fidèlement l’état réel du flot d’accrétion.

Pour atteindre la résolution angulaire nécessaire pour imager SgrA* et M87*, équivalente à l’angle minuscule sous lequel nous verrions depuis la Terre une pomme sur la Lune, l’EHT a utilisé un réseau de radiotélescopes s’étendant de l’Antarctique à l’Amérique du Nord en passant par le Chili, les îles Hawaï et l’Europe de façon à avoir l’équivalent d’un instrument unique de taille planétaire, fonctionnant en mode interférométrique.    

Figure 4. Les huit radiotélescopes du réseau EHT utilisés en avril 2017

Ce qui frappe de prime abord, c’est que les deux photographies de M87* et de SgrA* se ressemblent beaucoup : au centre, une ombre noire, image de l’horizon des événements (nom donné, je le rappelle, à la surface intangible d’un trou noir) agrandie d’un facteur 2,6 – (comme je l’avais montré dans mon article de 1979, cf. fig. 5), entourée d’une couronne lumineuse jaune-orangée, floue et présentant des taches de surbrillance.

Figure 5. Schémas extraits de mon article de 1979 et de mon ouvrage de vulgarisation “Le destin de l’univers” (2006), illustrant comment “l’ombre” d’un trou noir est l’image agrandie de son horizon des événements d’un facteur 2,6, en raison d’un effet de lentille gravitationnelle. Un anneau de lumière très fin, appelé anneau de photons, l’encercle.
Figure 6. Les deux images télescopiques ressemblantes de M87* et SgrA*

La différence la plus importante est l’apparence de trois taches surbrillantes bien distinctes dans l’anneau lumineux de SgrA*, alors que l’anneau de M87 est continu avec deux zones de surbrillance contigues. De même, l’ombre centrale paraît moins ronde pour SgrA*, sans doute en raison du grand nombre d’images qu’il a fallu intégrer pendant les heures d’observations.

Un catalogue de plusieurs milliers de simulations numériques a été établi aux fins de comparaison avec les clichés de l’EHT et de fixer des plages de valeurs probables pour les caractéristiques physiques (angle de vue, spin, etc)  de SgrA*. Du gaz chaud ionisé tourne rapidement autour du trou noir, formant comme des bras spiraux qui deviennent plus brillants à leur tangence avec l’anneau de photons, où la lumière est amplifiée par lentille gravitationnelle forte. Ce sont ces points brillants qui sont intégrés au cours du temps, et qui donnent la structure générale des couronnes lumineuses.

Figure 7. Il a fallu effectuer des milliers de simulations numériques pour reconstruire une image nette de SgrA*
Disque d’accrétion ou anneau de photons?

Que révèlent au juste ces deux clichés historiques ? A première vue (vue réservée cependant à quelques connaisseurs) on est tenté de les comparer avec les simulations numériques effectuées en 1979 par moi-même et en 1989 avec mon collaborateur Jean-Alain Marck:

Figure 8. Première simulation numérique d’un trou trou noir entouré d’un disque d’accrétion, parue en janvier 1979, avec légendes ajoutées. L’ombre du trou noir est au centre. “L’image du dessus” est l’image directe (dite) primaire du disque d’accrétion, déformée cependant par le champ de gravité. L’ISCO (Inner Stable Circular Orbit) est la dernière orbite stable marquant le bord interne du disque d’accrétion. L’anneau lumineux qui entoure l’ombre  est la superposition de l’anneau de photons et des images secondaire, tertiaire, etc. du disque d’accrétion. L’effet Doppler dû au mouvement du gaz à vitesse relativiste explique la forte asymétrie du flux lumineux apparent vu à grande distance. Le flux lumineux calculé est  cependant “bolométrique”, c’est-à-dire intégré sur toutes les longueurs d’onde du rayonnement électromagnétique.
Figure 9. Simulations numériques effectuées avec Jean-Alain Marck en 1989, reprenant mes calculs de 1979 mais y ajoutant de fausses couleurs et des angles de vue variables, grâce aux progrès des ordinateurs de l’époque.

d’en relever les frappantes similitudes :

Figure 10. Ressemblances à première vue frappantes entre les images télescopiques (en haut) et les simulations numériques (en bas)

et d’en tirer des conclusions rapides concernant la structure du disque d’accrétion et l’angle sous lequel il est vu depuis la Terre:

Figure 11. Une interprétation à première vue tentante…

J’avoue m’être moi-même laissé entraîner par cette interprétation, qui d’une part flattait mes calculs pionniers, d’autre part n’était aucunement démentie par les chercheurs de l’EHT, qui m’ont au contraire déroulé un tapis rouge lors de la première conférence tenue sur le sujet à l’Université de Harvard en juin 2019.

Figure 12. Ma conférence de clôture de la Black Hole Initiative Conference tenue à l’Université de Harvard les 20-22 mai 2019 après la publication de la première image télescopique de M87*.

Au point que, tant pour l’image de M87* que pour celle plus récente de SgrA*, cette interprétation a été reprise dans la plupart des médias de vulgarisation scientifique. D’autant que les articles spécialisés  publiés par les chercheurs de l’EHT, bourrés de détails techniques, restent étrangement vagues sur la question…

Or, la réalité physique est toujours plus complexe que nos premières grilles de lecture. Une analyse plus fine, faite depuis 2019 sur M87* et renforcée en 2022 par celle de SgrA*,  suggère que  la couronne lumineuse en forme de « donut » n’est pas l’image directe des disques d’accrétion gazeux orbitant autour de leurs trous noirs respectifs, et que les surbrillances ne reflètent pas complètement l’état réel du gaz autour du trou noir, ni ne traduisent  l’effet Doppler dû à la rotation relativiste du gaz  ! Continuer la lecture de Première image du trou noir galactique Sagittarius A*: un décryptage inédit

Le prix Nobel de physique 2020 pour les trous noirs (2/2) : Genzel et Ghez

Comme annoncé dans le billet précédent consacré à Roger Penrose, ce second billet « Nobel de physique 2020 » s’attache aux travaux de Genzel, Ghez et consorts sur le Centre Galactique et son putatif trou noir. Putatif, car rien ne prouve encore de façon irréfutable que l’objet compact et massif qui se tient au centre de notre galaxie, Sagittarius A*, est bel et bien un trou noir délimité par son horizon des événements, tel qu’il est décrit par la relativité générale, ou bien un objet exotique aux propriétés similaires, dont l’existence, bien qu’improbable, n’est pas interdite dans certaines théories alternatives de la gravité.

A cet égard il est intéressant de noter que le communiqué de l’Académie des sciences de Suède mentionne que Reinhard Genzel et Andrea Ghez sont récompensés pour « la découverte d’un objet compact supermassif dans le centre de notre galaxie », sans mentionner le terme de trou noir.

Et de fait, les remarquables travaux effectués depuis trente ans par les équipes de Genzel à l’Observatoire Européen Austral du Chili, puis de Ghez au télescope Keck de Hawai, ne démontrent aucunement l’existence d’un trou noir, même si en l’état actuel de nos connaissances cela reste l’hypothèse de loin la plus plausible. Si les observations télescopiques de l’ombre d’un trou noir, effectuées par l’Event Horizon Telescope (EHT) en avril 2017 et publiées en 2019 (dont on aurait pu croire qu’elle leur aurait valu rapidement le Nobel) avait pu fournir l’image de Sagittarius A* plutôt que celle de la plus lointaine source M87*, nul doute que le communiqué aurait été formulé différemment. Mais voilà, à cause de la trop grande variabilité temporelle de la luminosité du disque d’accrétion autour de Sagittarius A*, le complexe programme de reconstitution d’images de l’EHT a pour l’heure pu fournir une indication convaincante de l’existence d’un trou noir dans M87*, mais pas dans Sagittarius A*.

Comme je l’explique plus longuement ci-dessous, les travaux des lauréats Genzel et Ghez ont été consacrés à l’étude de la dynamique orbitale d’étoiles gravitant autour et très près du Centre Galactique, et à en déduire la valeur de la masse de l’objet compact responsable de leurs vitesses « anormalement » élevées.

Je reprends maintenant quelques éléments déjà publiés dans mon ouvrage de 2006 « Le destin de l’univers, trous noirs et énergie sombre » et réactualisés à travers diverses conférences sur le sujet que j’ai récemment données.

Le centre dynamique de la Galaxie, dans la direction de la constellation du Sagittaire, se dissimule à la vue des astronomes par de gigantesques bancs de gaz et de poussières cosmiques. Sur 1 000 milliards de photons émis dans le domaine visible, un seul survit au voyage de 25 000 années-lumière qui le sépare de la Terre. Dans ces conditions, l’observation du centre galactique au moyen des télescopes traditionnels est sans espoir. Par bonheur pour les astronomes, la radiation électromagnétique a un large spectre s’étendant des ondes radio aux rayons gamma, et certaines longueurs d’onde peuvent franchir l’obstacle des poussières. C’est le cas des rayonnements radio, infrarouge, X durs et gamma.

Tout se passe dans une région de 30 années-lumière. La luminosité « bolométrique » – somme de toutes les contributions radio, infrarouge, X, etc. – atteint 10 millions de fois la luminosité solaire. On y trouve deux sources radio : Sagittarius A Est, qui a toutes les caractéristiques d’un reste de supernova, et Sagittarius A Ouest, qui présente une superposition de deux types d’émission radio ; l’une est « thermique », c’est-à-dire qu’elle provient du rayonnement naturel d’un nuage d’hydrogène moléculaire en forme de mini-spirale ; l’autre, au cœur même de Sagittarius A Ouest, est produite par des électrons animés de vitesses proches de celle de la lumière – il s’agit du rayonnement synchrotron.

En haut à gauche: Image radio de Sagittarius A prise au VLA (en fausses couleurs). La région brillante est la source compacte Sagittarius A*, censée abriter un trou noir supermassif.
En bas à gauche:  Zoom sur Sagittarius A Ouest, montrant la structure spirale du nuage d’hydrogène moléculaire.
A droite :  Zoom sur le centre galactique dans le proche infrarouge obtenu en 2002 au VLT. La position de Sagittarius A* est indiquée par les flèches jaunes. Le champ embrasse un peu plus d’une année-lumière.

Cette source non thermique, baptisée Sagittarius A* (l’astérisque évoque son apparence ponctuelle et met en relief l’unicité de cette radiosource au sein du complexe plus large de Sagittarius A), est la plus puissante de toutes les radiosources de la Galaxie. Sa luminosité est 10 fois supérieure à la luminosité optique du Soleil. Mais le plus remarquable est sa compacité : l’émission provient d’une région plus petite que 3 milliards de kilomètres, c’est-à-dire de la taille de l’orbite de Saturne ou celle d’une géante rouge. Il est impossible de « caser » un amas d’étoiles dans un volume aussi faible. L’émission radio est donc due à un astre unique. Quels sont les types d’astres capables d’émettre du rayonnement radio synchrotron ? Pour diverses raisons, les hyopthèses d’un pulsar, d’une source X binaire ou d’un reste de supernova sont exclues. De toute façon, l’astre responsable de l’émission radio ne peut avoir une masse d’ordre stellaire. Si c’était le cas, il serait animé d’une vitesse propre typique de celle des étoiles dans le centre de la Galaxie, qui est de 150 km/s. Cette vitesse se traduirait par un lent déplacement de la source radio sur la sphère céleste. Un tel mouvement n’est pas observé. Les mesures confirment que l’astre doit rester au repos au centre de la Galaxie ; sa masse doit donc excéder largement celle d’une étoile. Reste l’hypothèse d’un trou noir de quelques millions de masses solaires, compatible avec les observations radioastronomiques. Continuer la lecture de Le prix Nobel de physique 2020 pour les trous noirs (2/2) : Genzel et Ghez

L’astronomie dans l’imaginaire collectif

Comment l’homme se forge-t-il des images mentales du cosmos, et quelle place ces représentations occupent-elles dans son imaginaire, qu’il soit scientifique, artistique, philosophique ou tout simplement populaire ?

Dans cet ouvrage d’épistémologie publié en 1938, Bachelard met l’accent sur le rôle des archétypes de la pensée dans la transition entre l’esprit « préscientifique » et l’esprit « scientifique ».

Il est intéressant d’analyser les différentes façons dont le cosmos est représenté dans la culture savante ou populaire, individuelle ou collective, et de les mettre en rapport avec le développement des connaissances astronomiques, afin d’y déceler ce que Bachelard appelait des « archétypes de la pensée ».

L’astronomie a souvent fécondé l’imaginaire collectif, au point d’imprégner notre quotidien, par le biais de mots de vocabulaire, des usages et représentations qui leur sont liés.

Prenons l’exemple de l’étoile – l’objet astronomique à la fois le plus familier et le plus transcendant. Le mot provient du latin stella, qui désignait tout ce qui scintille.

Nous devons aux Arabes d’avoir baptisé la plupart des étoiles les plus brillantes. Qui n’a pas entendu parler d’Aldébaran, de Véga ou de Bételgeuse, ne serait-ce qu’au travers de noms de marques ou de slogans publicitaires ? Et on ne compte plus les lieux, places, rues, chemins, enseignes, baptisés Sirius, Antarès, Procyon, Rigel, Deneb, Capella ou Algol. Quant aux motifs étoilés à cinq, six, huit, dix branches ou davantage, ils se retrouvent dans un immense éventail de réalisations humaines : sculptures, architecture des espaces publics, guides touristiques, drapeaux. Pensons aussi aux voûtes de tant de monuments – chapelles médiévales, cathédrales, tombeaux de rois et d’empereurs – qui rappellent la présence permanence de la voûte étoilée au-dessus de nos têtes. Notons l’utilisation très répandue du mot « zénith » pour baptiser salles de spectacles et centres de congrès. Le zénith astronomique est le point de la sphère céleste situé à la verticale au-dessus de la tête d’un observateur, tandis qu’au figuré, il désigne le degré le plus élevé. Peu de rapport a priori avec les vastes édifices de rassemblement populaire, sinon que les spectacles qui s’y déroulent mettent en scène des « stars » brillant de façon éphémère au firmament de leur carrière…

 

Continuer la lecture de L’astronomie dans l’imaginaire collectif

Hommage à Tristan Clais, compositeur et graphiste (1929-2017)

Vous n’avez très probablement jamais entendu du compositeur et graphiste Tristan Clais. Il vient de décéder le 4 janvier à l’âge de 88 ans. Il était mon ami et ce billet lui rend hommage.

Comme l’a écrit l’un de ses amis, Joseph Mornet, dans un article-hommage, raconter la vie de Tristan Clais tient presque de l’impossible tant elle fut foisonnante. Né en 1929, Tristan avait fait des études musicales et théâtrales au Conservatoire Royal de Bruxelles, à la suite desquelles il s’était engagé comme comédien au Théâtre National de Belgique et autres scènes pendant plusieurs saisons. En 1958, il est entré à la Radio Télévision Belge où il a présenté les programmes musicaux et les concerts publics pendant seize ans. Parallèlement il a mené une carrière de concertiste en tant que baryton, particulièrement en Allemagne (oratorios, lied …), et de récitant dans des œuvres de Henri Pousseur, Michel Butor, Darius Milhaud, etc…

Tristan chez lui, devant quelques-unes de ses réalisations graphiques.
Tristan chez lui, devant quelques-unes de ses réalisations graphiques.

A cette époque il a reçu des cours particuliers de direction d’orchestre avec le grand chef Igor Markevitch. Une bourse du gouvernement italien lui a été attribuée en 1962 pour perfectionner sa formation musicale à l’Academia Belgica de Rome. C’est là qu’il a décidé de se consacrer définitivement à la composition. Pendant toutes ces années, Tristan Clais a participé en parallèle aux activités du groupe surréaliste Phases avec son ami l’excellent peintre belge  Jacques Lacomblez, écrivant des textes, participant à des « happenings », réalisant des collages et des graphismes.

A partir de 1971, ses œuvres musicales ont été régulièrement jouées et diffusées, en France et à l’étranger, fréquemment sous sa direction. Plusieurs d’entre elles ont été créées à Montpellier et sa région où le compositeur a vécu la dernière partie de sa vie. Son œuvre compte un nombre important d’opus utilisant divers ensembles instrumentaux, chanteurs et organistes, et montre un intérêt marqué pour la physique fondamentale et l’astrophysique, comme en témoignent les titres de nombre de ses œuvres : Alpha Céphéï II (1973, créé au Festival de Royan par I Solisti Veneti et Ars Nova sous la direction du compositeur), Jeu de Quarks I (ensemble 2E2M, direction Tristan Clais, Théâtre de l’Odéon 1975), et surtout la série des Cygnus initiée par Cygnus X1 pour piano et orchestre (1986, créé par l’ensemble 2E2M sous la direction du compositeur). Le titre est une référence explicite à la source X binaire Cygnus X1 – première source X répertoriée dans la constellation du Cygne, découverte en 1965 et qui, dans les années 1970, s’est révélée abriter le premier « candidat » trou noir de masse stellaire.

La toute première édition de mon livre sur les trous noirs, parue en novembre 1987 chez Belfond.
La toute première édition de mon livre sur les trous noirs, parue en novembre 1987 chez Belfond.

C’est en 1988 que Tristan Clais m’a écrit pour la première fois, exprimant son intérêt enthousiaste pour les phénomènes étranges de l’astrophysique. Particulièrement fasciné par les trous noirs, il venait de lire l’ouvrage de vulgarisation que je leur avais consacré en 1987 et souhaitait approfondir la question. Il venait de composer deux autres opus intitulés Cygnus X2 (pour orgue, 1986) et Cygnus X3 (sonate pour piano, 1986), sans doute bien informé que les observations effectuées en rayons X par des télescopes embarqués dans l’espace avaient effectivement découvert deux autres sources X binaires du même nom dans la constellation du Cygne…

Amateur de musique contemporaine et déjà désireux de tisser des liens fertiles entre astrophysique et musique, je lui ai répondu aussitôt. Une relation épistolaire s’est vite nouée. Dès lors Tristan a poursuivi son cycle en s’affranchissant des contraintes de catalogue, puisque la série s’est achevée par un Cygnus X21 parfaitement imaginaire… Écrites pour diverses formations instrumentales, ces pièces tentent toutes de transposer musicalement les phénomènes d’accrétion et d’engloutissement dans un trou noir. Dans Cygnus X-7 pour piano et orchestre, on entend par exemple un sifflement strident, persistant, voire exaspérant, évoquant le trou noir suçotant obstinément son étoile comme l’araignée sa proie. Des cascades pianistiques figurent le gaz qui dégringole en jetant ses derniers feux. Des grappes sonores nommées « clusters », constituées d’au moins trois sons conjoints et simultanés, souvent exécutées avec le poing, le coude ou l’avant-bras, dénotent la coagulation finale dans le trou noir. Certains nostalgiques de Dante y entendront les cris des âmes englouties. L’harmonie des sphères contemporaine n’est vraiment plus ce qu’elle était du temps de Kepler… Continuer la lecture de Hommage à Tristan Clais, compositeur et graphiste (1929-2017)

L’univers holographique (6) : Black Holism

Suite du billet précédent : L’univers holographique (5) : la quête des dualités ET FIN

Dans son livre, le brillant physicien canadien Lee Smolin s'élève contre l'hégémonie de la théorie des cordes et analyse les aspects sociologiques de la recherche fondamentale.
Dans son livre, le brillant physicien américain Lee Smolin s’élève contre l’hégémonie de la théorie des cordes et analyse les aspects sociologiques de la recherche fondamentale.

La correspondance AdS/CFT, et plus généralement les dualités holographiques, ont soulevé énormément d’enthousiasme dans la communauté des cordistes, suscité des milliers de publications et des centaines de thèses de doctorat – ce qui après tout constitue l’activité courante et « normale » de la recherche scientifique. On peut cependant rester perplexe devant un tel phénomène qui, au-delà de l’intérêt technique certain qu’il peut représenter, relève surtout d’une certaine dérive sociologique pointée du doigt par d’éminents chercheurs de la discipline[1].

Au crédit de la correspondance, il faut reconnaître qu’elle permet de troquer certains calculs difficiles, voire impossibles, contre des calculs plus faciles. A minima, la dualité holographique apparaît comme un intéressant outil de calcul en physique fondamentale. Le “dictionnaire” qu’elle propose entre le monde en espace-temps plat et le monde courbe où se trouve la gravitation fonctionne dans les deux sens. Certains calculs sont plus simples avec la supergravité que dans la théorie de jauge duale, de sorte qu’aucun de ces mondes n’est plus fondamental que l’autre. Mais ce n’est pas parce que l’on peut considérer des calculs plus simplement dans un espace-temps plat, sans gravitation et de plus basse dimension que celui de la théorie des cordes, qu’il en découle que la réalité cosmique est un hologramme ! On peut entièrement encoder la topographie 3D d’un terrain dans une carte 2D sur laquelle le relief est indiqué par des courbes de niveau (un encodage bien utile aux randonneurs), mais, selon le célèbre aphorisme d’Alfred Korzybski, il ne faut jamais perdre de vue que « la carte n’est pas le territoire »[2].

Une vue bien naïve de l'holographie appliquée à l'univers dans son ensemble, ce qu'on appelle en anglais du "wishful thinking"...
Une vue bien naïve de l’holographie appliquée à l’univers dans son ensemble, ce qu’on appelle en anglais du “wishful thinking”…

A son crédit également, et là je parle en ardent pratiquant de la théorie de la relativité générale classique dont nous célébrons cette année le centenaire[3], la dualité jauge/gravité a conféré à la théorie d’Einstein un statut beaucoup plus large. L’édifice intellectuel de la relativité générale a certes connu de remarquables succès au cours du siècle dernier, et fourni un édifice crucial pour toute la partie de la physique théorique traitant de la gravitation. La révolution conceptuelle qu’elle a entraînée sur la nature de l’espace et du temps a rendu la théorie populaire, au point qu’il serait difficile de trouver aujourd’hui une personne possédant un minimum de culture scientifique mais n’ayant jamais entendu parler de la théorie d’Einstein.

Continuer la lecture de L’univers holographique (6) : Black Holism

L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Suite du billet précédent L’univers holographique (2) : la gravité quantique façon théorie des cordes

Dans le cadre de la théorie des cordes, il s’agissait dans un premier temps de retrouver les lois de la thermodynamique classique des trous noirs, c’est-à-dire savoir calculer, en termes de mécanique statistique quantique, leur entropie et leur température en fonction de leur aire et de leur gravité de surface. La tâche n’est pas aisée. Comme en thermodynamique, l’entropie mesure le nombre total d’états microscopiques internes correspondant à un état externe donné du trou noir, défini par ses trois paramètres (M, J, Q). Encore faut-il comptabiliser les « vrais » états microscopiques, c’est-à-dire les degrés de liberté ultimes sur lesquels il faut calculer l’entropie. Pour évaluer le contenu ultime en informations d’un élément de matière, c’est-à-dire son entropie thermodynamique, il faut en toute rigueur connaître ses constituants fondamentaux au niveau le plus profond de structuration. Dans le modèle standard de la physique des particules, les quarks et les leptons semblent suffisants pour coder toute l’information. Mais dans la théorie des cordes et sa théorie-mère (M-theory), les quarks et les leptons sont des états excités de supercordes, qui deviennent alors les constituants les plus élémentaires du monde physique.

Gerard 't Hooft, né en 1946 aux Pays-Bas, est professeur à l'Institut de physique théorique de l'université d'Utrecht depuis 1977.
Gerard ‘t Hooft, né en 1946 aux Pays-Bas, est professeur à l’Institut de physique théorique de l’université d’Utrecht depuis 1977.

En 1993, Gerard t’Hooft (futur lauréat du prix de Nobel de physique 1999 pour ses travaux sur l’interaction électrofaible)  fut le premier à revisiter le travail de Hawking sur la thermodynamique des trous noirs dans le cadre de la théorie des cordes. Il calcula que le nombre total de degrés de liberté dans le volume d’espace-temps intérieur au trou noir était proportionnel à la superficie de son horizon[1]. La surface bidimensionnelle du trou noir peut être divisée en unités quantiques fondamentales appelées aires de Planck (10–66 cm2). Du point de vue de l’information, chaque bit sous forme de 0 ou de 1 correspond à quatre aires de Planck, ce qui permet de retrouver la formule de Bekenstein-Hawking S = A/4 pour l’entropie. Tout se passe comme si l’information perdue pour un observateur extérieur – l’entropie du trou noir – portée initialement par la structure 3D des objets ayant traversé l’horizon des événements, était codée sur sa surface 2D à la façon d’un hologramme, et t’Hooft en conclut que l’information avalée par un trou noir devait être intégralement restituée lors du processus d’évaporation quantique.

L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck (10–66 cm2) est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.
L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck  est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.

Continuer la lecture de L’univers holographique (3) : De l’entropie à l’hypothèse holographique

L’univers holographique (1) : le paradoxe de l’information

Ce billet est le premier d’une série de 6 reprenant un article initialement publié en anglais dans la revue Inference : The International Review of Science, auquel j’ai rajouté des illustrations à caractère pédagogique.

Introduction

Lors d’un exposé donné le 25 août 2015 au KTH Royal Institute of Technology à Stockholm qui a fait l’objet d’un grand tapage médiatique, Stephen Hawking a annoncé avoir résolu un problème de la physique appelé paradoxe de l’information [1]. Ce dernier illustre un conflit potentiel entre la mécanique quantique et les modèles de trou noir décrits par la relativité générale ; à ce titre, il joue un rôle central en physique fondamentale et divise la communauté des théoriciens depuis quatre décennies. Selon Hawking, toute l’information sur la matière et l’énergie contenue dans le volume 3D du trou noir résiderait en réalité sur sa surface 2D, l’horizon des événements, codée sous forme d’hologramme.

hologram1
Un hologramme est une photographie d’un type particulier qui engendre une image tridimensionnelle quand on l’éclaire de façon appropriée ; toute l’information décrivant une scène en trois dimensions est encodée dans le motif de zones claires et sombres inscrit sur un film à deux dimensions.

Cette information pourrait ensuite être entièrement récupérée (bien que sous forme chaotique) grâce au rayonnement libéré lors de son évaporation quantique – un processus initialement prédit par le même Hawking quarante ans auparavant.

L’idée n’est pas nouvelle : elle fait appel à un modèle d’univers holographique précédemment étudié par des centaines de physiciens, et objet d’un tel engouement qu’il a conduit certains d’entre eux à imaginer des scénarios parfaitement surréalistes. Par exemple, S. Mathur a proposé qu’au lieu d’être détruit par des forces de marée gravitationnelles ou par un pare-feu quantique, un astronaute tombant dans un trou noir serait simplement converti en hologramme, sans se rendre compte de rien [2].

A l’annonce de Hawking la communauté scientifique a donc dans son ensemble réagi avec beaucoup de prudence et de scepticisme, pour ne pas dire d’embarras devant l’annonce prématurée d’une idée non élaborée sur le plan technique : comment l’information s’inscrit-elle dans l’horizon des événements, comment est-elle restituée au monde extérieur, aucun détail n’a encore été donné.[3]

Pour y voir plus clair, un retour en arrière sur la thermodynamique des trous noirs s’impose.

Thermodynamique des trous noirs et paradoxe de l’information

Au cours des années 1970 – âge d’or de la théorie des trous noirs en relativité générale classique -, il a été démontré d’une part que l’état final d’un trou noir à l’équilibre ne dépendait que de trois paramètres : sa masse M, son moment angulaire J et sa charge électrique Q, ce qui paradoxalement faisait de lui l’objet le plus simple de toute la physique ; d’autre part, que la dynamique des trous noirs en interaction se résumait en quatre lois présentant une analogie extrêmement frappante avec celles de la thermodynamique usuelle[4]. En particulier, la seconde loi stipule que l’aire d’un trou noir ne peut jamais décroître au cours du temps. Ce résultat fondamental suggère une connexion étroite entre l’aire d’un trou noir et l’entropie d’un système thermodynamique. Continuer la lecture de L’univers holographique (1) : le paradoxe de l’information

Evénements ondes gravitationnelles : un résumé en images

Les événements GW150914 et GW151226

Résumé en 5 images extraites d’une de mes présentations powerpoint sur les trous noirs
DiapoGW1
Le mystère des ondes gravitationnelles, posé il y a un siècle par Albert Einstein dans un article paru en mars 1916, met en jeu les infimes variations de courbure de l’espace-temps engendrées par le mouvement d’objets relativistes. En haut à gauche : vue d’artiste figurant les ondes gravitationnelles engendrées par un système binaires d’étoiles compactes (étoiles à neutrons et/ou trous noirs). En haut à droite : vue d’artiste des ondes gravitationnelles engendrées par l’effondrement (non sphérique) d’une étoile en trou noir. En bas au centre : rappel du fait que l’existence des ondes gravitationnelles a d’abord été prouvée indirectement en 1974 grâce à l’analyse d’un pulsar binaire (couple d’étoiles à neutrons), dont la période orbitale décroît à la suite de la perte d’énergie due aux ondes gravitationnelles.

 

DiapoGW2
Les premières détections directes des ondes gravitationnelles ont été effectuées le 14 septembre 2015 (événement GW150914) et le 26 décembre 2015 (événement GW151226) par les deux détecteurs du programme LIGO situés aux Etats-Unis. Séparés par 3000 km, les détecteurs reçoivent le même signal à un centième de seconde d’intervalle, puisque les ondes gravitationnelles se déplacent à la vitesse de la lumière dans le vide, 300 000 km/s.

 

DiapoGW3
La comparaison entre le calcul théorique (en haut) et les données reçues (en bas) montre sans ambiguïté que le signal gravitationnel provient de la fusion de deux trous noirs en un trou noir unique, en trois phases extrêmement brèves (le tout durant moins d’une seconde dans la bande de fréquence dans laquelle les détecteurs sont sensibles): phase d’approche des deux trous noirs, fusion (signal maximum), vibration et stabilisation du trou noir final.

 

La modélisation des événements GW150914 et GW152612 permet notamment de déduire les masses des trous noirs mis en jeu. Il s’agit en l’occurrence de trous noirs “stellaires”, bien que dans l’événement du 14 septembre 2015 les masses sont sensiblement plus élevées que la “normale”, ce qui soulève d’intéressantes questions sur la formation de tels couples. La masse du trou noir final est, dans les deux cas, inférieure à la somme des masses des trous noirs parents : en vertu de la formule E=mc2, la différence a précisément été évacuée sous forme d’énergie gravitationnelle propagée par les ondes. Dans les deux cas aussi, ces événements se sont produits il y a près de 1,5 milliards d’années dans le passé. Notons qu’un troisième événement similaire, semblant lui aussi émaner d’une fusion de trous noirs situés cette fois à plus de 3 milliards d’années-lumière, a été observé le 12 octobre 2015, mais sa signification statistique n’est pas suffisante pour le qualifier. Cela implique d’une part que les couples de trous noirs sont beaucoup plus nombreux que ce que prédisaient les modèles conventionnels, d’autre part que ces détections pourraient être faites à un rythme de quelques dizaines par an, bien plus grand que prévu.

 

DiapoGW5

Et pour approfondir le sujet des ondes gravitationnelles, voir ma suite de 4 billets de février dernier consacrés au sujet :

https://blogs.futura-sciences.com/luminet/2016/02/10/la-lumiere-gravitationnelle-1/

https://blogs.futura-sciences.com/luminet/2016/02/10/la-lumiere-gravitationnelle-22/

https://blogs.futura-sciences.com/luminet/2016/02/13/la-lumiere-gravitationnelle-34-levenement-gw150914/

https://blogs.futura-sciences.com/luminet/2016/02/20/la-lumiere-gravitationnelle-44-le-futur-est-dans-lespace/

Astronomie et imaginaire collectif

Comment l’homme se forge-t-il des images mentales du cosmos, et quelle place ces représentations occupent-elles dans son imaginaire, qu’il soit scientifique, artistique, philosophique ou tout simplement populaire ?

Il est fascinant d’analyser les diverses façons d’imaginer le cosmos à travers la culture savante ou populaire, individuelle ou collective, et de les mettre en rapport avec le développement des connaissances astronomiques afin d’y déceler ce que Bachelard appelait des « archétypes de la pensée ». Nombre de thèmes astronomiques ont toujours été féconds pour l’imaginaire collectif et imprègnent l’univers quotidien de l’homme sous des formes diverses, comme le vocabulaire, l’usage qui en est fait et les représentations qu’il va créer.

place_d-orion_cropPrenons l’exemple basique de l’étoile – l’objet astronomique à la fois le plus familier et le plus transcendant. Le mot provient du latin stella, qui désignait tout ce qui scintille. Nous devons aux Arabes d’avoir baptisé la plupart des étoiles les plus brillantes. Qui n’a pas entendu parler d’Aldébaran, de Véga ou de Bételgeuse, ne serait-ce qu’à travers des marques de produits ou de slogans publicitaires ? Et on ne compte plus les lieux, places, rues, chemins, enseignes, marques baptisés Sirius, Antarès, Procyon, Rigel, Deneb, Capella ou Algol. Quant aux motifs étoilés à cinq, six, huit, dix branches ou davantage, ils se retrouvent dans un immense éventail de réalisations humaines : sculptures, architecture des espaces publics, guides touristiques, drapeaux, etc. Pensons aussi aux voûtes de tant de monuments – chapelles médiévales, cathédrales, tombeaux de rois et d’empereurs – qui rappellent la présence permanence de la voûte étoilée au-dessus de nos têtes. Continuer la lecture de Astronomie et imaginaire collectif

La “lumière gravitationnelle” (4/4) : le futur est dans l’espace

Suite du billet précédent : L’événement GW150914

Pour détecter des ondes gravitationnelles de moindre amplitude ou de plus basse fréquence que celles accessibles à la génération d’interféromètres au sol comme LIGO et VIRGO, il faudra envoyer les détecteurs dans l’espace. C’est tout l’enjeu du projet phare de l’ESA baptisé eLISA (bel acronyme signifiant en anglais european laser interferometric space antenna, soit « antenne spatiale interférométrique à laser »). Il s’agit d’expédier trois satellites en orbite autour du Soleil, disposés chacun aux sommets d’un triangle équilatéral de 5 millions de kilomètres de côté et reliés par des faisceaux laser. Sur une aussi grande longueur, le passage d’une onde gravitationnelle de basse fréquence devrait engendrer une fluctuation significative de la distance entre les satellites, mesurable par les lasers embarqués. Reste bien sûr à stabiliser les distances entre les satellites avec une précision jamais atteinte, ce qui suppose de compenser par exemple la pression du vent solaire et autres influences parasites. C’est pour tester cet élément décisif que l’Agence Spatiale Européeenne a lancé fin 2015 la sonde “d’éclairage” LISAPathfinder, qui en janvier 2016 est parvenue au point de Lagrange L1, à 1,5 millions de km de la Terre et a libéré deux masses-étalon séparées seulement de 38 cm.  Il s’agit de s’assurer qu’en l’absence d’onde gravitationnelle, cette distance ne varie pas de plus d’un millionième de l’épaisseur d’un cheveu humain, auquel cas le passage d’une onde gravitaitonnelle serait détectable.   Si tout fonctionne, l’interféromètre complet eLISA pourrait être placé en orbite en … 2034. Un peu de patience est donc requise…

Le schéma de principe de l’observatoire eLISA consiste en trois satellites en formation équilatérale, séparés chacun de 5 millions de kilomètres, l’ensemble tournant autour du Soleil.

Le schéma de principe de l’observatoire eLISA consiste en trois satellites en formation équilatérale, séparés chacun de 5 millions de kilomètres, l’ensemble tournant autour du Soleil.

eLISA et les interféromètres au sol LIGO et VIRGO seront complémentaires ; leurs domaines de fréquences n’étant pas les mêmes, les sources observables seront différentes. Affranchi des ondes sismiques, eLISA travaillera dans les basses fréquences, comprises entre 0,0001 et 1 hertz – domaine intéressant pour capter les trous noirs massifs.

Les instruments au sol VIRGO et LIGO ne seront pas rendus obsolètes par l’interféromètre spatial LISA, car leurs domaines de fréquences et de sensibilité seront différents. VIRGO et LIGO détecteront les effondrements de supernovae en trous noirs, et les coalescences d’étoiles à neutrons et de trous noirs stellaires. LISA fonctionnera dans la gamme des sources X binaires situées dans notre galaxie, et celle des couples de trous noirs géants dans les galaxies lointaines.
Les instruments au sol VIRGO et LIGO ne seront pas rendus obsolètes par l’interféromètre spatial LISA, car leurs domaines de fréquences et de sensibilité seront différents. VIRGO et LIGO détecteront les effondrements de supernovae en trous noirs, et les coalescences d’étoiles à neutrons et de trous noirs stellaires. LISA fonctionnera dans la gamme des sources X binaires situées dans notre galaxie, et celle des couples de trous noirs géants dans les galaxies lointaines.

L’observation d’une coalescence de trous noirs massifs par eLISA sera spectaculaire. Pour un couple de trous noirs de 1 million de masses solaires chacun, eLISA surveillera les 40 derniers jours de leur phase spiralante, soit 600 orbites, et l’amplitude du signal atteindra 10–17 à la distance fabuleuse de 3 milliards d’années-lumière. Environ 10 000 fois supérieur au bruit, cet intense signal fournira une localisation extraordinairement précise d’un événement, et l’identification optique de l’amas de galaxies où il sera produit déterminera avec une précision du pour cent les paramètres clés des modèles cosmologiques, comme le taux d’expansion de l’Univers et sa densité d’énergie moyenne. On pourra alors confirmer ou non si notre Univers est essentiellement rempli d’une forme d’« énergie noire », dont l’effet accélérateur sur l’expansion cosmique modifierait le destin de l’Univers tout entier.

Malgré l’observation de quelques galaxies géantes à double noyau actif associées vraisemblablement à des couples de trous noirs géants, le phénomène de fusion de tels trous noirs massifs se produit rarement. En revanche, tapi au cœur d’une galaxie, un trou noir massif célibataire capture plus souvent des étoiles. Nous avons vu au chapitre précédent que, lorsqu’elles sont de type solaire, c’est-à-dire peu denses, les étoiles sont détruites par les forces de marée en s’approchant du trou noir. Cependant, les astres compacts comme les étoiles à neutrons et les trous noirs de masse stellaire perdurent sans être brisés et chutent en spiralant jusqu’à l’horizon du trou noir. eLISA détectera les ondes gravitationnelles émises par ce phénomène et assistera à la dernière année de la vie d’une étoile compacte chutant en spirale dans un trou noir de 1 million de masses solaires, et ce jusqu’à une distance de plusieurs centaines de millions d’années-lumière.

La galaxie active Markarian 315 possède un noyau double, résultant de la fusion de deux galaxies. Chaque noyau abrite vraisemblablement un trou noir massif, en orbite l’un autour de l’autre. Actuellement distants de 6 000 années-lumière, ils finiront par fusionner et par produire une bouffée d’ondes gravitationnelles de forte amplitude mais de basse fréquence, détectable par un interféromètre spatial.
La galaxie active Markarian 315 possède un noyau double, résultant de la fusion de deux galaxies. Chaque noyau abrite vraisemblablement un trou noir massif, en orbite l’un autour de l’autre. Actuellement distants de 6 000 années-lumière, ils finiront par fusionner et par produire une bouffée d’ondes gravitationnelles de forte amplitude mais de basse fréquence, détectable par un interféromètre spatial.

L’enregistrement du signal gravitationnel durant cette année de chute permettra de cartographier la structure de l’espace-temps autour du trou noir massif. On comparera alors cette structure observée à la solution mathématique de Kerr qui décrit les trous noirs en rotation. Cette solution prédit une forme de la courbure de l’espace-temps spécifique aux trous noirs : ni étoile ni amas d’étoiles ne peuvent courber l’espace-temps de cette manière. On pourra alors conclure définitivement à l’existence des trous noirs dans l’Univers.

L’histoire récente de l’astronomie a prouvé que, chaque fois que l’homme a scruté le ciel par d’autres yeux que les siens, de nouvelles merveilles lui sont apparues, le forçant à réviser ses conceptions et améliorant un peu plus sa compréhension de l’Univers.

Avec la détection de l’événement GW150914 en septembre 2015, la fenêtre gravitationnelle vient juste d’être ouverte. Maintenant que les premiers signaux directs sont captés, l’information sur le mouvement et la nature des sources reste encore noyée dans beaucoup de bruit parasite. Mais, animés de la certitude que l’astronomie gravitationnelle est celle des siècles futurs, nous lancerons bientôt dans l’espace de gigantesques interféromètres parfaitement isolés des secousses telluriques et de l’agitation humaine…

La “lumière” gravitationnelle (3/4) : l’événément GW150914

Suite du billet précédent : De la barre à l’interféromètre

L’annonce historique de la première détection directe des ondes gravitationnelles a bel et bien été faite le jeudi 11 février 2016 par les équipes de chercheurs travaillant sur les interféromètres LIGO et VIRGO.

Il y a eu tant d’articles, billets de blog et autres interviews délivrés depuis dans les médias du monde entier que je ne vais pas développer longuement mon point de vue sur la découverte elle-même. Son intérêt majeur (on fera l’impasse sur les titres idiots du genre “Einstein avait raison”) n’est pas la détection en soi, prédite et attendue, mais:
1/ la confirmation directe de l’existence des trous noirs, vivement décriée par certains,
2/ non pas la fin d’une grande aventure scientifique comme c’était le cas avec la découverte du boson de Higgs-Englert (qui mettait un point final au modèle standard de la physique des particules, sans aller au-delà), mais au contraire le début d’une nouvelle ère pour l’astronomie expérimentale. Les fabuleuses prouesses technologiques mises en œuvre dans les interféromètres LIGO et VIRGO ont permis d’ouvrir enfin la fenêtre de l’astronomie gravitationnelle, avec vue à venir sur d’immenses territoires encore inconnus.

Au moment de l’annonce j’étais en voyage au Maroc. Je n’ai donc pas  pu assister à la conférence de presse, encore moins répondre aux nombreuses demandes d’interviews pour la presse écrite, la radio et la télévision.  Peu importe, de nombreux chercheurs l’ont fait et très bien fait, notamment mon ancien collègue à l’Observatoire de Paris Thibault Damour dans cette excellente interview pour le journal Le Monde. Ayant été l’un des premiers théoriciens à calculer les courbes d’émission gravitationnelle issue de la coalescence de trous noirs, Damour mériterait de figurer sur la liste des physiciens nobélisables, au même titre que son homologue américain Kip Thorne ou que le directeur du programme LIGO, David Reitze. Hélas, l’histoire montre que les prix Nobel de physique sont rarement donnés aux théoriciens qui prédisent tel ou tel phénomène, ils sont très généralement attribués aux expérimentateurs qui confirment la prédiction (à cet égard  le prix Nobel attribué à Higgs et Englert a été une heureuse exception).

Pour ma modeste part, je n’ai jamais travaillé directement sur le sujet des ondes gravitationnelles, mais je l’ai souvent évoqué dans des interviews (ci-dessous, sur ma chaîne youtube)

Pour en savoir beaucoup plus...

ainsi que dans mes articles et livres de vulgarisation. J’ai mis à profit les deux nuits blanches passées dans mon hôtel de Casablanca pour rédiger les deux billets de blogs précédents, ici et ici, qui reprenaient pour l’essentiel (en les actualisant légèrement) des éléments du chapitre que j’avais consacré à “La lumière gravitationnelle” dans mon livre de 2006, Le Destin de l’Univers : trous noirs et énergie sombre. Dans ce troisième billet je quitte le livre pour délivrer mes premières impressions sur la découverte annoncée jeudi. Dans un quatrième et dernier billet, je discuterai du futur de l’astronomie gravitationnelle. Continuer la lecture de La “lumière” gravitationnelle (3/4) : l’événément GW150914

La “lumière” gravitationnelle (2/4) : de la barre à l’interféromètre

Suite du billet précédent  Principes de base

Nouvelles lucarnes

Un mot un seul mot suffit
à perturber l’espace
Jean-Marc Debenedetti

Pour capter la lumière, il faut des télescopes. Comment concevoir un télescope gravitationnel ?

Le principe est simple. De même que les ondes électromagnétiques font vibrer une antenne réceptrice, les ondes gravitationnelles font vibrer d’une certaine façon la matière qu’elles rencontrent ; les « rides de courbure » faisant légèrement onduler le tissu élastique de l’espace-temps allongent ou raccourcissent les distances sur leur passage. Si, par exemple, le détecteur est un bloc de matière solide, ses différentes parties sont enclines à se mouvoir dans différentes directions à la traversée de l’onde gravitationnelle. Remarquons que, en raison de la traversée permanente d’ondes gravitationnelles, aucun corps matériel, aussi rigide soit-il, n’est strictement indéformable.

Une collision de deux trous noirs stellaires au centre de la Galaxie se traduirait par un déplacement de 10–14 millimètre des extrémités d’un détecteur ayant la forme d’une barre de 1 mètre de long. L’amplitude correspondante, qui est le rapport entre le déplacement et la taille du détecteur, est donc de 10–17. Le même phénomène se déroulant dans l’amas de galaxies de la Vierge, à 60 millions d’années-lumière, ne nous offrirait plus qu’une amplitude de 10–20.

À titre de comparaison, lorsqu’une onde gravitationnelle de cette nature traverse notre planète, elle ne fait varier le diamètre du globe (12 700 kilomètres) que de la largeur d’un atome. La construction d’un détecteur d’ondes gravitationnelles est donc un véritable défi technologique.

Joseph Weber et sa barre gravitationnelle en 1965
Joseph Weber et sa barre gravitationnelle en 1965

En 1965, Joseph Weber fit construire à l’université du Maryland un grand cylindre d’aluminium de 50 centimètres de diamètre pour 2 mètres de long, censé répondre par une oscillation de ses extrémités aux ondes gravitationnelles en provenance du centre galactique. Quand une onde gravitationnelle traverse le cylindre, l’effet de marée qui en résulte tend à éloigner puis à attirer les deux extrémités de la barre métallique. Weber crut avoir observé des effets positifs et l’annonça avec fracas ; mais, comme l’ont montré diverses expériences analogues, réalisées par la suite dans plusieurs pays (dont une, en France, à l’observatoire de Meudon), il s’agissait d’une interprétation incorrecte d’erreurs expérimentales. En effet, une explosion de supernova dans le centre galactique produirait au mieux une onde d’amplitude 10–18, alors que la meilleure des barres de Weber ne pourrait détecter qu’une amplitude 10 milliards de fois plus grande. De plus, la détection gravitationnelle d’une supernova dans le centre de la Galaxie relèverait d’un hasard invraisemblable : dans l’ensemble de la Galaxie, il ne doit pas exploser plus d’une supernova tous les dix ans, et l’impulsion gravitationnelle d’une explosion ne dure qu’une fraction de seconde. Continuer la lecture de La “lumière” gravitationnelle (2/4) : de la barre à l’interféromètre

La “lumière” gravitationnelle (1/4) : principes de base

Je voudrais poser une question à monsieur Einstein, à savoir, à quelle vitesse l’action de la gravitation se propage-t-elle dans votre théorie ?
Max Born, 1913

Dans la théorie de Newton, la gravitation est une force agissant instantanément entre les corps massifs. Cette idée était inadmissible aux yeux de nombreux physiciens, Newton compris, et un siècle plus tard Laplace proposait une modification de la théorie dans laquelle l’interaction gravitationnelle se propageait à vitesse finie. L’idée fut vite abandonnée, car elle soulevait immédiatement une question à laquelle personne ne savait répondre : lorsqu’un corps massif est violemment perturbé, le champ gravitationnel qu’il engendre doit s’ajuster de proche en proche à la nouvelle configuration du corps ; sous quelle forme se propage le réajustement ?

La théorie de la relativité générale d’Einstein permet d’organiser en un schéma cohérent les intuitions sur la propagation de la gravitation. Einstein s’était demandé si une masse en mouvement accéléré pouvait rayonner des ondes de gravité, de la même façon qu’une charge électrique en mouvement accéléré rayonne des ondes électromagnétiques. Dès 1916, il découvrit effectivement des solutions de ses équations du champ gravitationnel représentant des ondulations de la courbure de l’espace-temps se propageant à la vitesse de la lumière. Il venait d’inventer la  “lumière gravitationnelle”.

Good Vibrations

Et quel vent d’outre-monde emporte au gré des ondes
la promesse de toutes les germinations?
Charles Dobzynski

L’analogie entre ondes gravitationnelles et ondes électromagnétiques est utile pour la conception du phénomène, mais elle ne conduit guère plus loin. La structure d’une onde gravitationnelle et ses effets sur la matière sont bien plus complexes que ceux de l’onde électromagnétique. Une première différence notable vient du fait que la gravitation est purement attractive ; la masse, c’est-à-dire la « charge gravitationnelle », a toujours le même signe. Il en résulte qu’un oscillateur gravitationnel élémentaire, constitué de deux masses vibrant aux extrémités d’un ressort, ne rayonne pas le même type d’ondes que deux charges électriques de signe opposé. Dans le cas électromagnétique, le rayonnement est du type dipolaire, dans le cas gravitationnel il est du type quadripolaire.

La nature quadripolaire des ondes gravitationnelles. La figure montre l’effet d’une onde gravitationnelle parvenant perpendiculairement au plan d’un anneau de particules test. Selon la relativité générale, les ondes gravitationnelles peuvent adopter deux motifs particuliers, ou états de polarisation. La polarisation du haut, dite "plus", dilate et contracte alternativement l’anneau sans changer la direction de ses axes principaux ; la polarisation du bas, dite "en croix", tourne de 45° les directions de compression et d’étirement.
La nature quadripolaire des ondes gravitationnelles. La figure montre l’effet d’une onde gravitationnelle parvenant perpendiculairement au plan d’un anneau de particules test. Selon la relativité générale, les ondes gravitationnelles peuvent adopter deux motifs particuliers, ou états de polarisation. La polarisation du haut, dite “plus”, dilate et contracte alternativement l’anneau sans changer la direction de ses axes principaux ; la polarisation du bas, dite “en croix”, tourne de 45° les directions de compression et d’étirement.

Une autre complication vient de ce que le graviton, l’hypothétique particule médiatrice de l’onde gravitationnelle, transporte une charge gravitationnelle associée à son énergie, tandis que le photon, particule médiatrice de l’interaction électromagnétique, ne transporte pas de charge électrique. Par conséquent, l’onde de gravitation produite par une masse accélérée est elle-même source de gravitation : la gravitation gravite. En termes techniques, on dit qu’elle est non linéaire. Cette non-linéarité introduit des difficultés considérables dans la résolution des problèmes apparemment les plus simples, comme le calcul du champ gravitationnel engendré par deux corps en mouvement. Continuer la lecture de La “lumière” gravitationnelle (1/4) : principes de base

La physique étrange d’Interstellar (5/6) : machines à remonter le temps et cinquième dimension

Suite du billet précédent La physique étrange d’Interstellar (4/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le cinquième.

Gargantua, une machine à remonter le temps

Au cours d’une scène de la dernière partie du film, Cooper plonge dans Gargantua, de façon à s’assurer que le vaisseau Endurance puisse bien atteindre la troisième et dernière planète. En dépit de la menace posée par les forces de marée, Cooper survit. Il est donc chanceux, car les forces de marée deviennent infinies quand r tend vers 0. Ainsi, même pour un trou noir supermassif comme Gargantua, une fois passé sain et sauf l’horizon des événements, tout corps s’approchant de la singularité centrale doit être en fin de compte détruit. Heureusement, Gargantua est un trou noir en rotation rapide, et sa létale singularité a la forme d’un anneau évitable.

La structure interne d'un trou noir en rotation montre une singularité en forme d'anneau, qui peut donc être évitée selon certaines trajectoires.
La structure interne d’un trou noir en rotation montre une singularité en forme d’anneau, qui peut donc être évitée selon certaines trajectoires.

Cooper utilise donc le trou de ver associé au trou noir géant pour se transporter dans une autre région de l’espace-temps, un univers pentadimensionnel auquel le film se réfère sous le nom de tesseract. Continuer la lecture de La physique étrange d’Interstellar (5/6) : machines à remonter le temps et cinquième dimension

La physique étrange d’Interstellar (4/6) : dilatation temporelle et processus de Penrose

Suite du billet précédent La physique étrange d’Interstellar (3/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le quatrième.

Dilatation temporelle

La théorie de la relativité restreinte d’Einstein prédit que des observateurs placés dans des référentiels différemment accélérés perçoivent le temps différemment. Ce phénomène bien connu de « dilatation » temporelle a été vérifié expérimentalement à un haut degré de précision. Les conséquences de la dilation temporelle se font sentir tout au long de l’histoire d’Interstellar.

Les fameuses "montres molles" de Salvador Dali sont une belle métaphore de l'élasticité du temps prévue par la relativité d'Einstein.
Les fameuses “montres molles” de Salvador Dali sont une belle métaphore de l’élasticité du temps prévue par la relativité d’Einstein.

Près de l’horizon des événements d’un trou noir, où le champ gravitationnel est énorme, la dilatation temporelle est également énorme. Les horloges sont fortement ralenties par rapport aux horloges lointaines. Une heure sur Miller (temps propre de Miller) équivaut à sept années sur Terre. Ceci correspond à un facteur de dilatation de 60 000. Bien que la dilatation temporelle tende vers l’infini quand l’horloge tend vers l’horizon des événements, un facteur de dilatation de 60 000 est impossible pour une planète en orbite stable autour d’un trou noir.

Dans son livre, The Science of Interstellar, Kip Thorne explique qu’un facteur de dilatation temporelle de cette grandeur était une exigence non négociable de la part du réalisateur[1]. Après quelques heures de calcul, Thorne est parvenu à la conclusion que le scénario, bien que très peu vraisemblable, était marginalement possible. Le facteur-clé est la période de rotation du trou noir. Un trou noir de Kerr (tournant) se comporte très différemment d’un trou noir de Schwarzschild (statique). L’équation de dilatation temporelle dérivée de la métrique de Kerr s’écrit:

1 – (dτ/dt)2 = 2GMr/c2rho2, où rho2 = r2 + (J/Mc)2cos2θ.

En substituant dτ = 1 heure et dt = 7 ans, on obtient:

formule-dilation Continuer la lecture de La physique étrange d’Interstellar (4/6) : dilatation temporelle et processus de Penrose

La physique étrange d’Interstellar (3/6): disque d’accrétion et forces de marée

Suite du billet précédent La physique étrange d’Insterstellar (2/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable “blockbuster” hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le troisième.

Visualisation du disque d’accrétion

Interstellar est le premier film long métrage d’Hollywood qui tente de représenter correctement un trou noir tel qu’il apparaîtrait à un observateur proche de lui. L’image sans doute la plus captivante du film est le spectacle de Gargantua et de son disque d’accrétion se déployant tout autour et devant lui.

La simulation de trou noir entouré d'un disque d'accrétion montrée dans "Interstellar"
La simulation de trou noir entouré d’un disque d’accrétion montrée dans “Interstellar”

Un trou noir engendre des déformations extrêmes de l’espace-temps. Il crée aussi les déviations de rayons lumineux les plus fortes possibles. Cela engendre de spectaculaires illusions d’optique de type « mirage gravitationnel ». Pour les représenter, la compagnie en charge des effets spéciaux du film, Double Negative, a développé en collaboration avec Kip Thorne un logiciel capable d’intégrer les équations de propagation de la lumière dans l’espace-temps courbe du trou noir[1]. Les équations produites pour le film ont permis de décrire le mirage gravitationnel produit sur les étoiles d’arrière-plan, tel qu’il serait vu par une caméra proche de l’horizon des événements[2].

Mirage gravitationnel produit par un trou noir situé sur la ligne de visée du Grand Nuage de Magellan (LMC). En haut de l'image on reconnaît aisément la partie méridionale de la Voie Lactée avec, en partant de la gauche, Alpha et Beta Centauri, la Croix du Sud. L'étoile la plus brillante proche du LMC est Canopus (vue deux fois). La seconde étoile plus brillante est Achernar, vue aussi deux fois© Alain Riazuelo, CNRS/IAP
Mirage gravitationnel produit par un trou noir situé sur la ligne de visée du Grand Nuage de Magellan (LMC). En haut de l’image on reconnaît aisément la partie méridionale de la Voie Lactée avec, en partant de la gauche, Alpha et Beta Centauri, la Croix du Sud. L’étoile la plus brillante proche du LMC est Canopus (vue deux fois). La seconde étoile plus brillante est Achernar, vue aussi deux fois© Alain Riazuelo, CNRS/IAP

Compte tenu des immenses distances mises en jeu dans l’observation astronomique des trous noirs et de la trop faible résolution de nos télescopes actuels, aucune image détaillée de disque d’accrétion n’a encore été obtenue[3]. Mais en 1979, j’ai été le premier à simuler (en noir et blanc) l’aspect d’un disque d’accrétion mince gravitationnellement déformé par un trou noir sphérique, tel qu’il serait vu par un observateur lointain ou saisi par une plaque photographique[4]. Continuer la lecture de La physique étrange d’Interstellar (3/6): disque d’accrétion et forces de marée

La physique étrange d’Interstellar (2/6)

Suite du billet précédent La physique étrange d’Insterstellar (1/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable “blockbuster” hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le deuxième.

Un trou noir supermassif en rotation rapide

Ayant franchi sans encombre le trou de ver artificiel d’Interstellar, le vaisseau spatial Endurance émerge dans un système de trois planètes gravitant autour de Gargantua, un trou noir supermassif. A première vue, une telle proximité entres les planètes et le trou noir semble invraisemblable.

Les trous noirs supermassifs, dont les masses courent de quelques millions à plusieurs milliards de masses solaires, sont censés occuper le centre de la plupart des galaxies[1]. Notre propre Voie lactée abrite un tel objet, Sagittarius A*, dont la masse mesurée indirectement vaut quatre millions de fois celle du soleil[2]. D’après Thorne, Gargantua serait semblable au trou noir encore plus gros qui se trouve au centre de la galaxie d’Andromède, rassemblant 100 millions de masses solaires[3].

CGal_IR_1al
Une vue du Centre Galactique en rayons X

CGal_*Keck
L’analyse des trajectoires des étoiles gravitant autour du Centre Galactique conduit à estimer la masse du trou noir central à 4 millions de masses solaires

Andromede_spiral
La Galaxie d’Andromède M31, située à 2,2 millions d’années-lumière

coeurM31_HST
Détail du noyau de la Galaxie d’Andromède par le Hubble Space Telescope. Il abriterait un trou noir d’environ cent millions de masses solaires.

Gargantua est décrit comme un trou noir supermassif en rotation rapide. Sa rotation dépend de deux paramètres: la masse M et le moment angulaire J. Contrairement aux étoiles qui sont en rotation différentielle, les trous noirs tournent de façon parfaitement rigide. Tous les points de leur surface, l’horizon des événements, se meuvent à la même vitesse angulaire. Il y a cependant une valeur critique du moment angulaire, Jmax, au-dessus de laquelle l’horizon des événements se disloque. Cette limite correspond à une surface tournant à la vitesse de la lumière. Pour de tels trous noirs dits « extrémaux », le champ de gravité à l’horizon des événements serait annulé, l’attraction gravitationnelle étant contrebalancée par d’énormes forces centrifuges répulsives. Il est bien possible que la plupart des trous noirs formés dans l’univers réel aient un moment angulaire proche de cette limite critique[4]. Continuer la lecture de La physique étrange d’Interstellar (2/6)

La physique étrange d’Interstellar (1/6)

Il y a tout juste un an, en novembre 2014 donc, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable “blockbuster” hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. Moi-même, sollicité par la presse, j’y ai un peu sacrifié de mon temps, par exemple ici sur  slate.fr ou là sur figaro.fr .

A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre ici la traduction française, découpée en 6 billets.

interstellar-posterPetit rappel pour les lecteurs qui n’ont pas vu le film (c’est tout à fait permis!). Interstellar conte les aventures d’un groupe d’astronautes partis en quête de planètes habitables situées dans une autre galaxie, dans l’espoir d’une colonisation future. Sur Terre en effet, ravages climatiques et famines ont conduit l’humanité à chercher un nouvel habitacle dans les mondes lointains.

Le scénario d’Interstellar s’appuie en grande partie sur des développements de la physique contemporaine. Le film se réfère constamment à une vaste palette de sujets relevant de l’astrophysique, de la relativité générale et de la cosmologie, allant de concepts relativement bien établis comme les trous noirs en rotation, les disques d’accrétion, les forces de marée et les distorsions temporelles, à des idées beaucoup plus spéculatives comme les trous de ver, les dimensions spatiales supplémentaires et la « Théorie de Tout ».

La promotion d’Interstellar a beaucoup insisté sur le réalisme et la crédibilité scientifiques du film. Mention particulière a été faite de l’implication de Kip Thorne comme conseiller scientifique et producteur exécutif. Thorne a écrit un ouvrage de vulgarisation expliquant comment il avait tenté d’assurer au film la plus grande exactitude scientifique possible, malgré les exigences parfois exorbitantes des scénaristes. Selon ses dires, il a fait de son mieux[1]Continuer la lecture de La physique étrange d’Interstellar (1/6)

Un mini-trou noir au CERN ? Absurde !

Les trous noirs artificiels

Qu’est-ce qui arrive dans ces machines atomiques ? La matière se réduit en bouillie, vous y mettez du gruyère et il en sort du quark, des trous noirs, de l’uranium centrifugé ou que sais-je encore ?
Umberto Eco, Le Pendule de Foucault

 Après deux années de travaux intenses de maintenance et de consolidation et plusieurs mois de préparation en vue du redémarrage, le Grand collisionneur de hadrons (LHC) du CERN, le plus puissant accélérateur de particules du monde, est de nouveau en service. Il fonctionnera à une énergie sans précédent, près de deux fois l’énergie obtenue lors de la première campagne qui avait conduit à la découverte du boson de Brout-Englert-Higgs. Les collisions proton-proton de 14 TeV attendues avant l’été permettront aux expériences LHC d’explorer de nouveaux territoires de la physique.
Mais déjà les titres absurdes fleurissent dans les médias : “mini-trou noirs et univers parallèles : ce que nous réserve le CERN”, “LHC can help detect parallel universes”, etc., pour ne pas parler des délires dignes d’un asile d’aliénés, type :   “ouverture imminente des portes de l’enfer”, “black hole doomsday”, etc.

Cette psychose du désastre n’est pas nouvelle; elle est même profondément ancrée dans l’esprit humain, ou tout au moins dans certains esprits à tendance paranoiaque. Déjà, dans son édition du 18 juillet 1999, l’hebdomadaire britannique Sunday Times annonçait la mise en chantier du nouvel accélérateur de particules du laboratoire de Brookhaven (États-Unis) d’une manchette tonitruante : « La machine à big-bang pourrait détruire la Terre ». Suivait un commentaire fantaisiste, suggérant que le risque d’engendrer, lors d’une collision de particules à haute énergie, un mini-trou noir capable d’aspirer la Terre n’était pas négligeable. Malgré les démentis des physiciens, l’émoi provoqué par ce titre fut planétaire – ce qui était bien l’effet recherché.
En 2007, rebelote et surenchère avec la mise en œuvre du LHC. Comme aucun mini-trou noir n’a évidemment pointé son nez, les médias se sont un peu calmés. Et maintenant, cela recommence de plus belle avec la remise en service de l’accélérateur qui s’est effectuée cette semaine, et la montée en puissance prévue pour l’été. Continuer la lecture de Un mini-trou noir au CERN ? Absurde !

Un trou noir à Hollywood (3) : Pile et face

Suite du billet précédent : Retour aux bases

Le calcul de la trajectoire des rayons lumineux autour d’un trou noir suppose une bonne connaissance de la nature de la source lumineuse. Si les trous noirs existent réellement dans la nature (et il semble bien que ce soit le cas), ils ont de bonnes chances d’être éclairés par des sources extérieures de lumière. Une situation intéressante est celle où la source d’éclairage est une série d’anneaux matériels en orbite autour du trou noir. On pense que de nombreux trous noirs sont entourés de telles structures, nommées disques d’accrétion. Les anneaux de la planète Saturne sont un exemple célèbre de disque d’accrétion ; ils sont constitués d’un amalgame de cailloux et de glace qui réfléchit la lumière du Soleil lointain.

La planète Saturne et ses anneaux. On considère que le disque d'accrétion d'un trou noir, bien que constitué de gaz, a une forme similaire, c'est-à-dire des anneaux circulaires et une faible épaisseur.
La planète Saturne et ses anneaux. On considère que le disque d’accrétion d’un trou noir, bien que constitué de gaz, a une forme similaire, c’est-à-dire des anneaux circulaires et une faible épaisseur.

En revanche, dans le cas d’un trou noir, les anneaux d’accrétion se composent d’un gaz chaud qui rayonne lui-même. Ce gaz tombe peu à peu en spirale dans le trou noir, de façon analogue au mouvement de l’eau entraînée dans un tourbillon. Sa chute s’accompagne d’une élévation de sa température et d’une émission de rayonnement. Voilà donc une bonne source d’éclairage : les anneaux d’accrétion brillent et illuminent le trou noir central. On peut alors s’interroger : quelle est l’image apparente du disque d’accrétion autour d’un trou noir ? Continuer la lecture de Un trou noir à Hollywood (3) : Pile et face