L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Suite du billet précédent L’univers holographique (2) : la gravité quantique façon théorie des cordes

Dans le cadre de la théorie des cordes, il s’agissait dans un premier temps de retrouver les lois de la thermodynamique classique des trous noirs, c’est-à-dire savoir calculer, en termes de mécanique statistique quantique, leur entropie et leur température en fonction de leur aire et de leur gravité de surface. La tâche n’est pas aisée. Comme en thermodynamique, l’entropie mesure le nombre total d’états microscopiques internes correspondant à un état externe donné du trou noir, défini par ses trois paramètres (M, J, Q). Encore faut-il comptabiliser les « vrais » états microscopiques, c’est-à-dire les degrés de liberté ultimes sur lesquels il faut calculer l’entropie. Pour évaluer le contenu ultime en informations d’un élément de matière, c’est-à-dire son entropie thermodynamique, il faut en toute rigueur connaître ses constituants fondamentaux au niveau le plus profond de structuration. Dans le modèle standard de la physique des particules, les quarks et les leptons semblent suffisants pour coder toute l’information. Mais dans la théorie des cordes et sa théorie-mère (M-theory), les quarks et les leptons sont des états excités de supercordes, qui deviennent alors les constituants les plus élémentaires du monde physique.

Gerard 't Hooft, né en 1946 aux Pays-Bas, est professeur à l'Institut de physique théorique de l'université d'Utrecht depuis 1977.
Gerard ‘t Hooft, né en 1946 aux Pays-Bas, est professeur à l’Institut de physique théorique de l’université d’Utrecht depuis 1977.

En 1993, Gerard t’Hooft (futur lauréat du prix de Nobel de physique 1999 pour ses travaux sur l’interaction électrofaible)  fut le premier à revisiter le travail de Hawking sur la thermodynamique des trous noirs dans le cadre de la théorie des cordes. Il calcula que le nombre total de degrés de liberté dans le volume d’espace-temps intérieur au trou noir était proportionnel à la superficie de son horizon[1]. La surface bidimensionnelle du trou noir peut être divisée en unités quantiques fondamentales appelées aires de Planck (10–66 cm2). Du point de vue de l’information, chaque bit sous forme de 0 ou de 1 correspond à quatre aires de Planck, ce qui permet de retrouver la formule de Bekenstein-Hawking S = A/4 pour l’entropie. Tout se passe comme si l’information perdue pour un observateur extérieur – l’entropie du trou noir – portée initialement par la structure 3D des objets ayant traversé l’horizon des événements, était codée sur sa surface 2D à la façon d’un hologramme, et t’Hooft en conclut que l’information avalée par un trou noir devait être intégralement restituée lors du processus d’évaporation quantique.

L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck (10–66 cm2) est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.
L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck  est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.

Continuer la lecture de L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Le Météore du 13 Août

« A la seconde où tu m’apparus, mon cœur eut tout le ciel pour l’éclairer. Il fut midi à mon poème. Je sus que l’angoisse dormait.»
René Char : Le Météore du 13 Août (Fureur et Mystère,  1948).

Des dizaines d’excellents billets de blog ici et sont consacrés à l’actualité des Perséides, cette pluie d’étoiles filantes qui illumine chaque année le ciel de la mi-août. Pour ne pas faire redondance, je me contenterai ici de quelques notes astronomico-poétiques.

Comme chacun sait (ou devrait savoir), ces belles mais fugitives étincelles nomades sont des grains cométaires microscopiques qui, en pénétrant dans l’atmosphère, s’échauffent par frottement. Leur température monte à trois mille degrés, et elles se consument dans la haute atmosphère, à quatre-vingts kilomètres d’altitude environ, créant ces traînées lumineuses qui ne durent souvent qu’une fraction de seconde. En fait, ce n’est pas la combustion du grain porté à blanc que l’on voit à si grande distance, mais la traînée d’ionisation qu’il laisse dans l’atmosphère. Les étoiles filantes sont la version miniaturisée et anodine des météores, le « bonzaï » du bolide.

Les étoiles filantes, si elles ne font pas d’argent ni ne répondent aux vœux, font parfois de beaux  poèmes:

A la pointe où se balance un mouchoir blanc
Au fond noir qui finit le monde
Devant nos yeux un petit espace
Tout ce qu’on ne voit pas
Et qui passe

Le soleil donne un peu de feu

Une étoile filante brille
Et tout tombe
Le ciel se ride
Les bras s’ouvrent
Et rien ne vient
Un cœur bat encore dans le vide

Un soupir douloureux s’achève
Dans les plis du rideau le jour se lève

Pierre Reverdy, Etoile filante (dans Plupart du temps, 1915-1922)

Leur taille ne dépasse pas quelques millimètres. Ce sont des silicates, analogues à des grains de sable. La luminosité des grains est fonction de leur masse. À la vitesse typique de soixante-dix kilomètres par seconde, un grain de seulement trois millimètres présente une luminosité égale à celle d’une étoile de première grandeur comme Sirius, mais pour un grain caractéristique d’un tiers de millimètre, l’intensité est tout juste visible à l’œil nu.

meteore_bolideLorsque, par une nuit quelconque, vous observez une étoile filante, il s’agit d’un météore sporadique. Par ciel dégagé, on peut en voir quelques-uns par heure, en principe davantage après minuit qu’avant, et davantage en automne qu’au printemps – du moins pour l’hémisphère nord.

Si de nombreux météores apparaissent la même nuit et semblent provenir du même endroit du ciel, il s’agit d’une pluie d’étoiles filantes. On voit alors dix, voire cinquante météores et plus par heure, dans un ciel sombre sans Lune et loin des lumières des villes. Continuer la lecture de Le Météore du 13 Août

L’univers holographique (2) : La gravité quantique façon théorie des cordes

Suite du billet précédent L’univers holographique (1) : le paradoxe de l’information

Le paradoxe de l’information lié aux trous noirs reflète notre incapacité actuelle à élaborer une théorie cohérente de la gravité quantique. L’approximation semi-classique de Hawking cesse d’être valide quand le trou noir devient suffisamment petit pour que le rayon de courbure à l’horizon des événements atteigne la longueur de Planck, 10-33 cm, autrement dit lorsque non seulement la matière et l’énergie, mais aussi le champ gravitationnel doivent être quantifiés. La description finale de l’évaporation et la restitution partielle ou complète de l’information exigent donc un traitement complet en gravité quantique, branche fondamentale de la physique qui cherche à décrire la gravitation en utilisant les principes de la mécanique quantique.

Richard Feynman (1918-1988), prix Nobel de physique 1965, auteur des diagrammes du même nom.
Richard Feynman (1918-1988), prix Nobel de physique 1965, auteur des diagrammes du même nom.

L’application de la mécanique quantique aux objets physiques tels que le champ électromagnétique, qui s’étendent dans l’espace et le temps, a connu un succès éclatant avec la théorie quantique des champs[1]. Celle-ci forme la base de la compréhension du modèle standard de la physique des particules élémentaires, rendant compte des interactions électromagnétiques, nucléaire forte et nucléaire faible. Elle permet de calculer les probabilités d’événements en utilisant les techniques de la théorie des perturbations. Les diagrammes de Feynman décrivent les chemins de particules ponctuelles et leurs interactions. Chaque diagramme représente une contribution à un processus d’interaction. Pour leurs calculs, les physiciens additionnent en premier lieu les contributions les plus fortes, puis les plus petites, et ainsi de suite, jusqu’à atteindre la précision désirée.

Diagramme de Feynman. Lorsque deux particules (ici deux électrons venant du bas) interagissent, elles peuvent le faire « simplement », en échangeant un seul photon (schéma du haut). Mais ce photon peut lui-même se matérialiser puis de dématérialiser en chemin. Sur le schéma du bas, par exemple, il crée une paire électron-positron qui recrée ensuite le photon. Si l’on tient compte de cette aventure, la description de l’interaction des deux électrons de départ n’est plus la même. Cela n’est en fait que la « première correction ». En effet, il peut arriver au photon des histoires beaucoup plus compliquées qui représentent des corrections d’ordre 2,3,4… La physique quantique exige de tenir compte de l’infinité de ces corrections pour le moindre calcul. Cette difficulté considérable a conduit à incorporer à la physique quantique l’idée de renormalisation.
Diagramme de Feynman. Lorsque deux particules (ici deux électrons venant du bas) interagissent, elles peuvent le faire « simplement », en échangeant un seul photon (schéma du haut). Mais ce photon peut lui-même se matérialiser puis de dématérialiser en chemin. Sur le schéma du bas, par exemple, il crée une paire électron-positron qui recrée ensuite le photon. Si l’on tient compte de cette aventure, la description de l’interaction des deux électrons de départ n’est plus la même. Cela n’est en fait que la « première correction ». En effet, il peut arriver au photon des histoires beaucoup plus compliquées qui représentent des corrections d’ordre 2,3,4… La physique quantique exige de tenir compte de l’infinité de ces corrections pour le moindre calcul. Cette difficulté considérable a conduit à incorporer à la physique quantique l’idée de renormalisation.

 

Mais ce procédé ne marche que si les contributions deviennent réellement négligeables à mesure qu’un plus grand nombre d’interactions est pris en compte. Lorsqu’il en va ainsi, la théorie est dite “faiblement couplée” et les calculs convergent vers des valeurs physiques finies. S’il en va différemment, la théorie est dite “fortement couplée” et les méthodes standard de la physique des particules échouent. C’est notamment ce qui arrive avec le graviton, supposé être la particule médiatrice du champ gravitationnel. Le graviton, créant de la masse-énergie, interagit avec lui-même, ce qui crée de nouveaux gravitons, qui à leur tour interagissent, et ainsi de suite, jusqu’à la divergence. L’échec de la technique des perturbations pour quantifier la gravité a donc conduit les physiciens à explorer d’autres voies. Continuer la lecture de L’univers holographique (2) : La gravité quantique façon théorie des cordes