Le nombre 13 est surchargé de superstitions. Quoi de pire qu’être 13 à table ? L’origine de cette idée est assez claire : elle fait référence à la Cène (voir ci-dessus sa représentation dans l’église de Curahuara de Carangas en Bolivie), c’est-à-dire au dernier repas de Jésus-Christ où il désigne celui qui devait le trahir et qui se pendra plus tard. Même si les évangiles font plutôt penser au 14 ou au 15, certains affirment que Jésus fut crucifié le vendredi 13 du mois de Nisan… qui serait ainsi un jour de malheur. Pourtant, pour d’autres, il est censé porter chance. Cependant, les statistiques sont terribles. S’il y a trois fois plus de joueurs au Loto les vendredis 13, leur chance de gagner reste rigoureusement la même. Seule la Française des Jeux profite réellement des vendredis 13.
13 mois chez les Mayas
Un raisonnement rapide pourrait faire penser qu’il existe autant de vendredis 13 que de dimanches 13 ou de lundis 13, etc. C’est une erreur. Une étude mathématique précise du calendrier grégorien permet de montrer qu’il y en a légèrement plus… ce qui réjouira sans doute les superstitieux. Le calcul est un peu laborieux, nous le reportons plus loin pour les amateurs. Pour finir sur le nombre 13, on peut remarquer que, curieusement, le calendrier sacré maya comportait 13 mois de 20 jours chacun. Cette période est à rapprocher du mode de numération maya fondé sur la base 20. L’année comportait ainsi 260 jours, ce qui ne signifie pas grand-chose d’un point de vue astronomique mais que certains rapprochent de la durée de la grossesse, qui est de 266 jours en moyenne. Parmi les nombres porte-malheur, nous citerons 17 qui l’est en Italie car XVII est l’anagramme de vixi qui signifie « j’ai vécu » en latin et donc sous-entend « je suis mort ».
Nombre de vendredis 13
Depuis la réforme grégorienne du calendrier, de 1582, les années se reproduisent identiques tous les 400 ans et non tous les 28 ans comme auparavant dans le calendrier julien. En effet, si les années ordinaires ont toujours 365 jours et les années bissextiles 366, la règle pour déterminer si une année est bissextile a été modifiée : une année l’est si son millésime est divisible par 4 sauf s’il est divisible par 100 mais pas par 400. Le nombre d’années bissextiles d’une période de 400 ans est donc de 97 (et non de 100) ce qui donne 97 x 366 + 303 x 365 = 146 097 jours… qui se trouve divisible par 7. Ainsi, le premier janvier 1600 fut un samedi, et de même 400 ans plus tard, le premier janvier 2000. L’année 2000 fut identique à l’année 1600. Il y eut un seul vendredi 13 en 1600 (en octobre) et donc de même en 2000.
En comptant le nombre de treizième du mois sur 400 ans (ce qui peut se faire à la main mais plus rapidement par ordinateur), on trouve : 687 dimanches, 685 lundis, 685 mardis, 687 mercredis, 684 jeudis, 688 vendredis et 684 samedis. Le treize du mois a donc plus de chance d’être un vendredi que tout autre jour de la semaine ! Est-ce une bonne nouvelle ?
Sans doute pour éviter les nombres négatifs, Daniel Gabriel Fahrenheit (1686 – 1736) fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° et elle bout à 212° environ.
L’absolu du zéro
Ces choix étranges de Fahrenheit s’expliquent par la réticence de l’époque devant les nombres négatifs. On préférait d’ailleurs parler de quantités plutôt que de nombres. Il s’agissait d’artifices de calcul pour résoudre des équations, dont on écartait ensuite les solutions négatives. Tout en étant une origine, zéro véhicule une idée d’absolu, en dessous duquel on ne peut aller, comme on le voit chez Blaise Pascal (1623 – 1662) qui, dans ses Pensées, écrit cette phrase surprenante :
Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro.
Cette idée a perduré jusqu’au XIXe siècle, Lazare Carnot (1753 – 1823) écrivait encore :
Pour obtenir réellement une quantité négative isolée, il faudrait retrancher une quantité effective de zéro, ôter quelque chose de rien : opération impossible. Comment donc concevoir une quantité négative isolée ?
La solution de Cauchy
La question semble cependant résolue avec Augustin Louis Cauchy (1789 – 1857) qui, dans son Cours d’analyse de l’Ecole royale polytechnique définit les nombres relatifs comme une partie numérique précédée d’un signe + ou – :
Le signe + ou – placé devant un nombre en modifiera la signification, à-peu-près comme un adjectif modifie celle du substantif.
Conversion entre degrés Celsius et degrés Fahrenheit
Les variations étant linéaires dans les deux cas, la relation est affine, c’est-à-dire de la forme : TF = a TC + b. Les deux coïncidences donnent les relations : b = 32 et 100 a + b = 212 d’où : a = 1,8 et b = 32. Nous en déduisons la formule : TF = 1,8 TC + 32. Ainsi la température de 37° Celsius donne : 1,8 x 37 + 32 = 98,6° Fahrenheit.
Au courant du XVIIe siècle, les mathématiques de feu le certificat d’études étaient en place. Les ouvrages d’apprentissage du nouveau calcul foisonnaient d’exercices. Sous des dehors liés à la vie de tous les jours, leur but était d’entraîner à l’utilisation des algorithmes des opérations (addition, soustraction, multiplication et division) ainsi qu’au raisonnement mathématique.
Un exemple de Simon Stevin
En particulier, La pratique de l’arithmétique de Simon Stevin (1548 – 1620) contient une foule d’exercices du type :
14 aunes de drap coûtent 5 livres, 2 sous et 8 deniers, combien coûteront 25 aunes ?
Pour résoudre cet exercice, inutile de savoir ce que représente une aune, il suffit de savoir qu’une livre vaut 20 sous et un sou, 12 deniers. Le plus simple pour le résoudre est de transformer la somme donnée en deniers. Une livre vaut 20 x 12 = 240 deniers donc 5 livres, 1200. Les 14 aunes valent donc 1232 deniers. On obtient le prix d’une aune en divisant par 14, ce qui donne 88 deniers. Le prix de 25 aunes est donc égal à 25 x 88 = 2200 deniers, qu’il reste à traduire dans le système initial. En divisant 2200 par 240, on obtient 9 livres et il reste 40 deniers, ce qui fait 3 sous et 4 deniers. Finalement, les 25 aunes coûtent 9 livres, 3 sous et 4 deniers.
Intérêt du système décimal
Heureusement, l’arithmétique est devenue plus simple avec le système décimal ! Pour le montrer, voici un exemple moderne :
Nicolas achète 350 grammes de pommes pour 1 €. Derrière lui, Pimprenelle en achète 1 kilo 435. Combien va-t-elle payer ?
Voici le raisonnement canonique pour résoudre ce type de problème. Ici le terme « canon » n’a rien à voir avec l’artillerie, il signifie « règle » comme toujours en mathématiques. Si 350 grammes coûtent 1 €, 1 gramme coûte 1 / 350 € et 1435, 1435 / 350 soit 4 € 10. Nous avons appliqué ici, sans l’écrire, une règle de trois que certains nomment produit en croix. Peu importe l’appellation, l’esprit vaut mieux que la lettre. Dans les deux cas, le raisonnement sous-jacent est abstrait puisqu’il consiste à inventer une fiction : la vente d’un gramme de pommes ! Il montre que, même dans les applications les plus élémentaires, il n’existe pas de mathématiques sans abstraction, ou sans réflexion. Leur apprentissage exige application, cogitation et quantité d’exercices, comme l’escalade, le tennis ou le football.
La voie royale
Cela n’est pas nouveau comme le montre l’anecdote suivante, qu’elle soit vraie ou non. Selon la légende, Euclide enseigna les mathématiques au roi d’Égypte. Rapidement, celui-ci demanda un accès au savoir simplifié, par égard à sa majesté. Euclide répondit : Désolé sire, en mathématiques, il n’y a pas de voie royale. Il n’en existe toujours pas, que cela soit pour les rois ou les enfants-rois. Vouloir en inventer sous prétexte de faciliter l’apprentissage des mathématiques est voué à l’échec. L’idée ne fait qu’en interdire l’accès.
Une façon d’effectuer les additions est d’utiliser les propriétés des longueurs : deux mètres plus trois mètres font cinq mètres. Ainsi, avec deux règles graduées, on peut facilement opérer une addition.
L’idée sous-jacente est tellement simple qu’on ne voit pas immédiatement l’analogie sous-jacente. Elle consiste pourtant à assimiler nombre et longueur, deux notions a priori distinctes. En grec, le sens premier d’analogie est « proportion mathématique ». On passe d’une quantité à une autre par l’application d’un certain rapport. Cependant, dès l’époque de Platon, ce terme a pris le sens plus général de correspondance, de ressemblance, de similitude. En mathématiques, il est aujourd’hui utilisé à plusieurs niveaux, du concret à l’abstrait, du rigoureux à l’approximatif ou à l’heuristique, c’est-à-dire à ce qui donne des idées.
Et les multiplications …
La fonction logarithme transformant une multiplication en addition donne alors une méthode analogique pour calculer un produit. Il suffit de transformer l’échelle linéaire en échelle logarithmique. On obtient un instrument de calcul utilisé avant l’avènement des calculatrices bon marché, et autrefois symbole de l’ingénieur.
Bien entendu, la règle à calcul permet d’effectuer également des divisions et toutes sortes de calculs plus complexes.
Le calcul analogique
De façon plus générale, l’idée du calcul analogique est de représenter les nombres par des grandeurs géométriques (longueurs, aires, volumes, angles) ou physiques (mécaniques, électriques, hydrauliques, chimiques), et d’exploiter des phénomènes géométriques ou physiques dont la modélisation mathématique est fondée sur les équations que l’on veut résoudre. En particulier, des systèmes électriques permettent de résoudre automatiquement certaines équations : celles qui les régissent. Les calculateurs analogiques ont été en usage jusqu’à ce que les ordinateurs, ou calculateurs numériques, les supplantent, c’est-à-dire jusqu’au début des années 70. Dans le domaine du calcul scientifique, numérique est ainsi devenu l’opposé d’analogique.
Mes règles à calcul
Mes premières règles à calcul ont été fabriquées en bambou, c’était alors un symbole de qualité.
Les suivantes sont en matière plastique comme celle-ci.
Petite règle à calcul en matière plastique de la marque Graphoplex. Longueur 15 cm.La dernière ressemble à une règle à calcul mais ne possède par de réglette mobile. C’est en fait une règle de conversion entre les unités internationales (mètres, etc.) et les unités américaines (pieds, etc.).
L’ADN (ou acide désoxyribonucléique) est le support de l’hérédité. Cette molécule, présente dans chaque cellule, prend la forme d’une double hélice, qui s’enroule sur elle-même, formant ainsi un nœud.
Duplication des molécules
La duplication des informations contenues dans une molécule d’ADN se fait au moyen d’enzymes. Pour « voir » le processus, imaginez une longue fermeture éclair qu’on ouvre avant de la séparer en deux. Cela n’est possible que si le nœud peut être dénoué. Certains virus attaquent les molécules d’ADN en les coupant et en les recollant de sorte qu’ils soient impossibles à dénouer. Le type de nœud obtenu après l’attaque virale est caractéristique de chaque virus. La signature de ces virus est de nature topologique !
Par ailleurs, cette question du dénouement est au cœur de la théorie mathématique des nœuds. Certains sont faciles à dénouer, d’autres bien plus compliqués, voire impossible (voir la figure ci-dessous). À l’envers de celle des virus, la seule méthode est celle qu’Alexandre le Grand employa pour dénouer le nœud gordien : couper la corde !
Nœuds et mathématiques
Mathématiquement, les nœuds sont des courbes fermées de l’espace de dimension trois, que l’on représente souvent comme une courbe plane. Elle a alors des points doubles, où il faut distinguer la branche « au-dessus » de celle « en-dessous ». Si en essayant de démêler un nœud, on passe à un autre, les deux nœuds sont dits équivalents. La théorie des nœuds consiste donc à étudier si un nœud est équivalent à une courbe non nouée, comme le cercle, et plus généralement si deux nœuds sont équivalents. Pour étudier ce type de problème, on essaye d’introduire des invariants, c’est-à-dire des objets mathématiques invariants quand on passe d’un nœud à un nœud équivalent. Henri Poincaré (1854 – 1912) en a trouvé un particulièrement subtil, que l’on appelle le groupe du nœud, malheureusement son étude est délicate.
William Thurston a découvert une réalisation concrète de ce groupe, liée à la géométrie des espaces de dimension trois, ce qui lui a valu la médaille Field en 1982, et explique son implication en biologie ainsi que celles de Stephen Smale ou de Mikhail Gromov, spécialistes de ce domaine, souvent présenté très loin de toute application.
La quadrature du cercle consiste à construire un carré de même aire qu’un cercle donné. Si le cercle a pour rayon R, il s’agit donc de construire un carré de côté R multiplié par la racine carrée du nombre Pi. On peut donc réaliser la quadrature du cercle avec une règle graduée à la précision que l’on veut.
Des règles qui changent tout
Quand le problème est apparu dans l’Antiquité, il n’était pas question d’approximations, la règle était que la construction devait être exacte. Il en existe plusieurs. L’une d’entre elle demande de faire rouler un cercle sur une droite. La voici sous forme de tableau :
En utilisant uniquement le théorème de Pythagore, on démontre que le carré est de côté racine de Pi, ce qui prouve que le carré et le cercle ont même aire (voir à la fin pour une démonstration).
Cette utilisation d’un procédé mécanique (faire rouler le cercle) ne convenait pas aux anciens, il fallait construire le carré à la règle (non graduée) et au compas. Dans ces conditions, le problème devient impossible, ce qui n’a été prouvé qu’au XIX-ième siècle en démontrant que le nombre Pi est transcendant c’est-à-dire qu’il n’est pas solution d’une équation algébrique à coefficients entiers.
De façon étonnante, un problème purement géométrique et très conditionné par des visions antiques a eu des conséquences importantes en algèbre et en analyse.
Un peu de géométrie
La figure essentielle est la suivante :
En appliquant le théorème de Pythagore dans les trois triangles rectangles HBC, HC et ABC, on obtient :
Voici une question autrefois pratique, qui reste aujourd’hui ludique. Elle suppose l’utilisation d’une balance de Roberval, qui fut inventée par Gilles Personier de Roberval (1602 – 1675). Nous en donnons le schéma mais, pour comprendre l’usage que l’on en fait, il suffit de savoir que les deux plateaux s’équilibrent quand les masses qui s’y trouvent sont égales.
Pesée binaire de Leibniz
Leibniz a montré que, si on dispose d’une série de poids dont chacun est le double du précédent, on peut réaliser toutes les pesées possibles. Pour voir comment, imaginons un objet de 713 grammes à peser avec des poids de 1, 2, 4, 8, 16, 32, 64, 128, 256 et 512 grammes. L’objet étant dans un plateau, nous commençons par placer le plus gros poids possible, c’est-à-dire celui de 512 grammes dans l’autre. Nous recommençons ensuite itérativement jusqu’à l’équilibre.
Voyons les étapes de ce processus. Le déficit est de 713 – 512 = 201 grammes. Nous utilisons alors le poids de 128 grammes (le plus gros possible). Il reste 201 – 128 = 73 grammes. Après le poids de 64 grammes, il ne reste plus que 9 grammes. Nous terminons en décomposant 9 en 8 + 1. Finalement, nous avons équilibré le poids de 713 grammes avec les poids prévus. D’un point de vue arithmétique, cela s’écrit :
713 = 512 + 128 + 64 + 8 + 1.
Ce résultat correspond à l’écriture de 713 en base deux : 713 = 29 + 27 + 26 + 23 + 20 ce que l’on peut noter : 1011001001. En base dix, nous écrivons : 713 = 7.102+ 101+ 3.100. La différence apparente est que l’écriture en base deux n’implique que des additions, pas de multiplication. En fait, il n’en est rien puisque les chiffres en base deux sont seulement 0 et 1 au lieu de 0, 1, …, 9. La propriété est générale, notre démarche prouve d’ailleurs que tout nombre s’écrit en binaire.
Pesée ternaire de Bachet
À l’occasion d’une récréation mathématique, Claude Bachet de Mériziac (1581 – 1638) a montré que, à condition d’utiliser les deux plateaux, on peut peser n’importe quel objet à l’aide d’une série de poids dont chacun est le triple du précédent. Voyons comment sur l’exemple précédent et des poids de 1, 3, 9, 27, 81, 243 et 729 grammes. L’idée précédente fonctionne si on dispose de deux poids de chaque sorte. Il suffit d’écrire 713 en ternaire. On commence par retrancher deux fois 243 à 713, il reste 227. On recommence avec deux fois 81, il reste 65. On retranche alors deux fois 27, il reste 11 ce qui fait 9 plus deux fois 1. Cette suite d’opérations fournit l’écriture ternaire : 222102 ce que l’on peut écrire : 713 = 2.35 + 2.34 + 2.33 + 32 + 2.30. Pour conclure, l’idée essentielle est d’éliminer les 2 du membre de droite de cette égalité en remarquant que : 3 = 2 + 1. Plus précisément : 713 + 35 + 34 + 33 + 30 = 36 + 35 + 34 + 32 + 31 ce qui se simplifie en : 713 + 33 + 30 = 36 + 32 + 31, c’est-à-dire en : 713 + 27 + 1 = 729 + 9 + 3. Il suffit donc de disposer des poids de 27 et 1 grammes dans le plateau de gauche et de 729, 9 et 3 grammes dans celui de droite.
L’un des problèmes pour construire des fortifications à l’époque de Vauban (1633 – 1707) était :
Comment défiler une fortification des tirs de l’ennemi ?
Le verbe « défiler » doit s’entendre ici au sens commun de « se défiler ». Comment cacher l’intérieur d’un ouvrage aux vues et aux tirs de l’agresseur ? Bien entendu, il suffit de bâtir partout des remparts assez hauts. L’ennui est que la hauteur fragilise les remparts. Le tout doit rester équilibré. Sur le terrain, les bons ingénieurs comme Vauban savaient défiler leurs ouvrages mais comment s’y prendre à partir d’un simple plan côté ?
La géométrie descriptive
Gaspard Monge (1746 – 1818) inventa la géométrie descriptive pour résoudre ce problème. De façon générale, elle permettait d’étudier certains objets de l’espace comme l’intersection de deux tores dans l’épure qui suit. Le résultat pouvait être très esthétique, comme on peut le voir dans ce cas.
Les déblais et remblais
Le même Monge, sans doute également motivé par la construction de fortifications, publia un Mémoire sur la théorie des déblais et des remblais où il se proposait de résoudre un problème très concret : comment déplacer des tas de sable vers un certain nombre de destinations de la manière la plus économique possible ?
Ici il s’agit de déblayer la zone de gauche pour remblayer celle de droite (ou l’inverse puisque les deux problèmes sont équivalents). Dans son mémoire, Monge étudie ce problème mais ne le résout pas dans sa généralité. Voir l’article d’Étienne Ghys dans Image des mathématiques.
Le transport optimal
Ce problème se généralise en problème du transport optimal : comment un fournisseur peut-il livrer un certain nombre de points de vente de façon à minimiser ses coûts ? Le problème de Monge a ainsi été redécouvert par Léonid Kantorovitch (1912 – 1986) qui obtint le prix Nobel d’économie en 1975 pour ses avancées sur la question en ouvrant un nouveau domaine, celui de la programmation linéaire. Plus récemment, Cédric Villani (né en 1973) a obtenu la médaille Fields en revisitant le problème du transport optimal en le rapprochant du problème de la diffusion des gaz. Cette capacité de rapprochement entre des domaines a priori différents est un marqueur des grands mathématiciens.
Cosme II de Médicis, Grand-duc de Toscane, avait remarqué qu’en jetant trois dés, le total dix sortait plus souvent que le neuf. Pourtant, il existait autant de façons de décomposer neuf et dix en somme de trois nombres entre un et six, ce qui lui semblait contradictoire.
Ce paradoxe est connu sous le nom de paradoxe de Toscane.
La solution de Galilée
Galilée (1564 – 1642), qui fut le précepteur de Cosme II, trouva la raison de cette bizarrerie. On peut comprendre son mécanisme en considérant le jeu de pile ou face. Si la pièce n’est pas pipée, la probabilité d’obtenir pile est égale à ½ et de même celle d’obtenir face. Si on joue deux fois de suite, chacune des possibilités PP, PF, FP et FF est équiprobable donc leurs probabilités sont toutes égales à ¼. Si on jette les deux pièces à la fois, les probabilités d’avoir deux piles ou deux faces sont égales à ¼ mais celle d’avoir un pile et un face est égale à ½ car elle regroupe les deux cas PF et FP. Il en va exactement de même dans le paradoxe de Toscane. Les décompositions de neuf et dix ne sont pas équivalentes de ce point de vue. La différence tient en la décomposition de neuf en trois fois le même nombre, ce qui est impossible pour dix. Le calcul permet d’établir que la probabilité d’obtenir neuf est égale à 25/216 alors que celle d’obtenir dix est égale à 27 / 216 soit 1/8. Ces deux nombres montrent que Cosme était fin observateur, et vraiment très grand joueur, car les probabilités ne diffèrent que de 1 %.
Les scientifiques essayent d’expliquer le monde dans lequel ils vivent, en utilisant du mieux qu’ils le peuvent leurs connaissances, fondées sur l’observation. Cela n’a pas été toujours sans difficultés, erreurs et tâtonnements en fonction des savoirs du moment. Ainsi en a-t-il été de la forme de la Terre ou de sa position et de son mouvement dans le système Solaire.
Le goût des métaphores
Aux époques où l’érudition, et le savoir en général, était, dans chaque pays, détenu par les autorités religieuses, les débats se sont souvent enlisés dans des joutes stériles entre rationnel et irrationnel. Les religions se sont, en général, construites sur des écrits d’époques reculées ou l’emploi de métaphores était courant. Ainsi l’affirmation que l’on trouve au chapitre 5 de l’évangile de Matthieu “vous êtes le sel de la Terre” n’indique pas que les disciples de Jésus étaient faits en sel et non en chair et en os ! Il en est de même des quatre coins de la Terre !
Le géocentrisme fait de la résistance
Ces époques lointaines devraient être révolues car si la fabrication du savoir est entre les mains de scientifiques de plus en plus performants, la connaissance que l’on a de ce savoir est maintenant l’affaire de chacun, de sa propre culture et de son accès à l’information. Quelques cas resteront cependant irréductibles : en 1999, année de l’éclipse totale de Soleil en France, j’ai été pris à parti un jour dans un café, par un consommateur qui croyait encore et doit croire toujours que le Soleil tourne autour de la Terre. Mais, hélas, la crédulité des uns fait le bonheur des autres.
La Terre est plate !
Les peuples de marins peuvent difficilement ignorer que la Terre est ronde. Même par ciel dégagé, les bateaux disparaissent graduellement derrière l’horizon. Ceci ne s’expliquerait pas si la Terre était plate. En revanche, si elle est sphérique, c’est logique. De nos jours, nous disposons d’une preuve qui semble incontournable : les photographies prises de l’espace.
Pour certains, cela prouve simplement l’existence d’un complot international pour faire croire que la Terre est ronde ! L’obscurantisme a toujours fait recette à travers les siècles. D’autres sont des personnes cultivant un sens de l’humour atypique. Ainsi, on peut lire sur internet, plaisanterie ou délire ?
La Terre est plate, elle a la forme d’un disque avec, au centre, le Pôle Nord et les continents groupés autour de lui sauf l’Antarctique qui correspond en fait à la circonférence du disque. Personne n’est jamais tombé du disque car personne n’a jamais pu traverser l’Antarctique…
Les expériences d’un ingénieur anglais
Au XIXe siècle, un ingénieur anglais et original, Samuel Rowbotham (1816 – 1864) décida de réaliser des expériences pour décider si la Terre était ronde ou plate. L’idée était de vérifier, en utilisant un télescope, si une rivière, la Bedford, en l’occurrence s’incurvait ou pas. Si la Terre est bien ronde, on ne peut voir un bateau plat sur une rivière à plus de cinq kilomètres… or Rowbotham réussit à en voir un à plus de dix kilomètres ! Preuve que la Terre est plate ? Non, sans doute mais l’expérience est troublante… En fait, elle s’explique par la réfraction de la lumière, le phénomène qui explique les mirages dans le désert. Même si notre ingénieur était animé d’un esprit malicieux, sa démarche était sans contexte de nature scientifique… et son expérience ne fait que raffermir la théorie selon laquelle la Terre est ronde.
La Terre est creuse !
L’existence de vastes cavernes souterraines est une évidence. Tous les spéléologues peuvent en témoigner. Les théories selon lesquelles certaines seraient occupées par des animaux fantastiques ou des civilisations intra-terrestres sont plus hasardeuses. C’est parfait quand elles ne sont que l’occasion d’œuvres littéraires fantastiques, comme chez Jules Verne et son Voyage au centre de la Terre et chez Edgar Jacobs et L’énigme de l’Atlantide.
C’est beaucoup plus ennuyeux quand certains commencent à croire à une Terre réellement creuse et habitée à l’intérieur. Au XVIIe siècle, l’astronome Edmund Halley, celui qui prédit correctement le retour de la comète qui depuis porte son nom, a envisagé une Terre creuse faite de plusieurs coquilles séparées par des atmosphères. Son but était d’expliquer des anomalies dans le champ magnétique. L’hypothèse d’une atmosphère lumineuse à l’intérieur de la Terre expliquait de plus les aurores boréales en s’échappant vers l’extérieur… d’où l’hypothèse d’entrées au niveau des pôles. Halley alla jusqu’à émettre l’hypothèse que ces trois mondes intérieurs pouvaient être habités.
Cette hypothèse n’a pas convaincu ses collègues scientifiques de l’époque… mais plaît davantage à toutes sortes d’ésotériques modernes. Certains voient même un soleil intérieur et des habitants vivants dans un monde concave, donc les pieds en l’air, ce miracle ayant lieu grâce à la force centrifuge. Bien entendu, la physique nous apprend que c’est impossible !
L’annulation du champ magnétique
Le champ magnétique terrestre s’inverse avec une période fluctuant entre quelques milliers et quelques millions d’années, c’est-à-dire que le pôle nord magnétique est parfois au pôle nord géographique, parfois au pôle sud. La polarité des roches magmatiques, qui dépend du champ magnétique à l’époque de leur solidification, montre que celui-ci s’est inversé plusieurs fois. Que se passe-t-il entre ces deux phases ? Si un champ passe de la valeur –1 à la valeur +1 de manière continue, il semble clair qu’il doit passer par 0 entre les deux. Quand le champ est annulé, le pire devient probable sinon certain, car le magnétisme terrestre est une protection contre les bombardements cosmiques ! On ne peut cependant pas attribuer les principales extinctions de masse (celle du Permien, celle des Dinosaures ou celle des Mammouths) à une inversion du champ magnétique terrestre, comme certains l’ont proposé, car les dates ne correspondent pas ! De plus, un champ continu sur une sphère peut s’inverser sans jamais s’annuler. Il s’agit d’un résultat mathématique. En revanche, il est exact qu’une valeur réelle continue ne peut changer de signe sans s’annuler. Le danger de l’annulation du champ magnétique terrestre est un mythe.
La Terre, être vivant !
1979, un chimiste, James Lovelock, puisant dans la mythologie, assimila la Terre à un organisme vivant, qu’il nomma Gaïa, du nom de la déesse grecque qui personnifie notre planète. En fait, son idée personnelle n’était pas aussi radicale. Il voyait plutôt l’atmosphère terrestre comme un système autorégulé, pas comme un être vivant. Malheureusement, comme on pouvait s’y attendre, cette idée a suscité un bon nombre de dérives mystiques aussi dangereuses qu’inconséquentes. Nous voyons les dangers d’une déification de notre planète ! Respecter notre environnement est une chose, sacrifier l’humanité à une soi-disant déesse en est une autre.
Si le fragile vaisseau Terre doit être préservé, c’est essentiellement pour offrir à l’humanité qui y vit la meilleure chance de se développer.
Comment comprendre le monde moderne sans culture mathématique ? Accéder à celle-ci n’exige cependant pas d’apprendre à résoudre la moindre équation.