Archives pour la catégorie Mathématiques

Comment évaluer l’espérance de vie d’un bébé qui vient de naître ?

Une fille vient de naître. Les médias nous apprennent qu’elle a une espérance de vie de 85 ans. D’où vient cette prédiction ? Que signifie l’espérance de vie ? Pour le comprendre, dans un premier temps, oubliez le sens commun du verbe « espérer » car la définition n’est claire que pour les générations entièrement décédées ! La voici. L’espérance de vie est la durée moyenne de vie des personnes nées la même année. La définition est étrange puisque, toutes ces personnes étant décédées, leur vie n’est plus une espérance. Si ce n’était le côté macabre, peut-être vaudrait-il mieux parler d’âge moyen à la mort ? La notion est identique, même si l’espérance de vie devient équivalente à celle de mort. Toutefois, le terme « espérance de vie » se comprend mieux pour les vivants.

Une définition macabre

Pour l’instant, restons malgré tout sur les générations passées car ce sont les seules qui permettent des calculs certains. Pour déterminer l’espérance de vie des gens nés en 1850 par exemple, il suffit de connaître tous les actes de naissance de 1850 et tous les actes de décès postérieurs. On en déduit les âges au décès et on en fait la moyenne… on trouve 41 ans. Cependant, ce calcul n’est possible que pour les générations entièrement décédées, pas pour les enfants qui viennent de naître !

Un modèle de la réalité

Pour prévoir l’espérance de vie de ceux qui viennent de naître, on imagine qu’ils subiront à chaque âge de leur vie la mortalité de l’année en cours. Plus précisément, on calcule le quotient de mortalité des deux sexes à chaque âge grâce à des estimations de population et de décès. En l’absence de toute migration, l’idée est très simple. Le premier janvier 2009, on compte 440428 hommes de 40 ans et 815 décès d’hommes de 40 ans pendant l’année 2 009. Le quotient de mortalité des hommes de 40 ans est donc estimé à 815 divisé par 440 428, soit 1,850 ‰. La méthode est fiable si on peut appliquer la loi des grands nombres. Ses résultats sont fantaisistes quand ce n’est pas le cas, particulièrement pour les grands âges.

À partir de ces quotients de mortalité des personnes de chaque âge, les statisticiens reconstruisent des tables de mortalité. On ne considère donc plus une population réelle mais une génération fictive de 100000 individus qui connaîtrait toute sa vie les conditions de mortalité par âge de l’année considérée. La table que l’on peut construire chaque année sur cette génération fictive est appelée la table du moment. C’est à partir de cette table qu’on calcule l’espérance de vie des enfants dès leur naissance. Cette méthode est fondée sur l’hypothèse que la situation de la mortalité restera identique à ce qu’elle est actuellement, et ceci alors même que nous savons qu’il n’en est rien ! Malgré tout, ces résultats donnent une idée plus vraisemblable de la réalité du futur que l’utilisation de tables de mortalité de générations décédées. Mieux vaut parfois une approximation raisonnable qu’une précision illusoire.

 

La taille des œufs de coucous

Certaines espèces de coucous font couver leurs œufs par des oiseaux de tailles très différentes. Chacune a sa stratégie de parasitage. Certains, dont le coucou gris, semblent adapter la taille de leurs œufs à celle de ceux de leur hôte involontaire.

Le coucou gris

Le coucou gris, qui a la taille d’un pigeon, parasite des passereaux. À première vue, le scénario est simple. La femelle coucou pond un œuf dans le nid de rousserolles, de roitelets, de fauvettes, ou d’autres. Son œuf est le premier à éclore. Le petit coucou expulse alors la couvée entière du nid. Les passereaux nourrissent ensuite l’intrus jusqu’à ce qu’il soit adulte.

Jeune coucou se faisant nourrir par une rousserolle.

Stratégies du coucou

Pour atteindre son but, le couple de coucous repère puis guette un nid de passereau, de l’espèce qui les a élevés de préférence. Ce choix n’est pas toujours possible, et une erreur peut être fatale au jeune coucou. Par exemple, si la femelle pond dans un nid de granivores, son petit mourra de faim, car le coucou est insectivore.

Quand la femelle passereau a pondu, celle du coucou profite de son absence, pour gober un œuf et le remplacer rapidement par l’un des siens. Son œuf éclot avant ceux des passereaux car il a commencé à incuber dans son corps. Sitôt né, encore aveugle, le petit coucou expulse tous les œufs du nid afin d’être nourri seul par ses parents adoptifs.

Oisillon coucou jetant un œuf hors du nid.

Les mathématiques du coucou

Bien que le coucou soit cinq à six fois plus grand que les passereaux qu’il parasite, sa femelle pond des œufs de taille comparable aux leurs. Plus étrange, elle semble adapter la taille de ses œufs à celle de ceux qui se trouvent dans le nid dans lequel elle pond. L’un des premiers scientifiques à avoir étudié la question quantitativement, Oswald Latter en 1902, a récolté 29 œufs de coucous dans des nids de roitelets et de fauvettes et notés les diamètres. En réunissant ces données dans deux histogrammes, nous obtenons deux courbes en cloche distinctes ce qui indique que nous avons affaire à deux populations distinctes. Autrement dit, la femelle coucou adapte bien la taille de ses œufs à ceux déjà présents dans le nid dans lequel elle pond.

Distributions des diamètres des œufs pondus dans les nids de roitelets (en orange) et de fauvettes (en vert).Cette étude a depuis été confirmée pour plusieurs espèces de coucous. La recherche est d’autant plus active sur la question que, suivant les espèces, les coucous pratiquent le parasitisme de couvée, ou non et, parmi les coucous parasites, certains sont éjecteurs (ils détruisent les œufs de leur hôte dès leur éclosion) et d’autres, non. Les seconds parasitent des espèces de taille comparable à la leur alors que les autres choisissent des oiseaux plus petits.

Le parasitisme de couvée

Les canards colverts pratiquent le parasitisme de couvée, mais à l’intérieur de leur espèce. © Hervé Lehning

Le parasitisme de couvée ne se limite pas à certaines espèces de coucous. Cependant, le phénomène d’adaptation de la taille de l’œuf à celle de ceux de l’hôte n’a pas forcément lieu. Par exemple, certaines canes colverts pondent dans des nids d’autres colverts. Les flamands roses font de même ainsi que bien d’autres espèces d’oiseaux (on en a dénombré 236). Dans d’autres cas, les oiseaux parasitent des espèces de taille similaire à la leur. Seuls ceux qui parasitent des oiseaux plus petits connaissent ce phénomène d’adaptation de la taille de leurs œufs.

 

 

 

La plus belle formule des mathématiques

Quand on leur pose la question “quelle est la plus belle formule des mathématiques ?”, la plupart des mathématiciens répondent :

e i π + 1 = 0

Cette formule est due à Leonhard Euler (1707 – 1783), auteur également de la formule plus utile mais moins belle :

e i x = cos x + i sin x

Remarque : Cette formule est utile en particulier en trigonométrie.

Beauté d’une formule

À quoi tient la beauté de cette formule ? Sans doute dans la réunion des cinq constantes les plus importantes des mathématiques : 0 et 1, les neutres de l’addition et de la multiplication, le nombre complexe i, racine carrée de –1 et les deux principales constantes transcendantes : e et π. Nous y voyons apparaître aussi les lois les plus usuelles : addition, multiplication et exponentiation tandis que le cercle se devine sous la présence du nombre d’Archimède : π. De plus, cette formule lie l’arithmétique (0 et 1), l’algèbre (le nombre i), la géométrie (le nombre π) et l’analyse (le nombre e et l’exponentielle).

Beauté d’une preuve

Cette beauté se retrouve dans une démonstration. D’après la formule d’Euler ci dessus, e i x est représenté dans le plan par le point du cercle trigonométrique (centre 0, rayon 1) à l’extrémité du rayon d’angle au centre x (avec l’horizontale). En faisant varier x de 0 à π, ce point passe de 1 à –1. En ajoutant 1 à e, on atteint alors 0. La formule :e i π + 1 = 0 est ainsi démontrée par le mouvement d’un point sur un cercle.

Beauté d’un objet

Lors du tricentenaire d’Euler, cette formule nous a inspiré un bel objet : une lampe en verre que nous vous laissons admirer. 

Lampe en hommage à Euler. © Hervé Lehning

Dans huit jours…

Pourquoi dit-on « dans huit jours » pour dire « dans une semaine » ? Et 15 pour deux semaines, alors que 15 n’est même pas divisible par 2 ! De même, si nous sommes mardi 9 et que nous voulons parler du jeudi 11, nous disons « jeudi prochain », pour le suivant, le jeudi 18, « jeudi en huit » et pour le 25, « jeudi en quinze ».

Une origine biblique

L’origine n’est pas mathématique mais biblique ! En effet, nous retrouvons ce nombre 8 dans la Bible où il signifie qu’une semaine a été révolue. Le « huitième » est alors la marque du monde nouveau. Dans le judaïsme, la circoncision se pratique le huitième jour après la naissance. De même, l’auteur de l’évangile de Jean choisit le huitième jour pour faire apparaître Jésus Christ à Thomas, qui ne croyait pas les autres disciples.

Quelle est la taille de la Française moyenne ?

Vous lisez dans la presse que la Française moyenne mesure 1 mètre 63. Si vous rencontrez une Française, quelle est la probabilité qu’elle ait cette taille ?

Moyenne et répartition

En l’absence d’informations supplémentaires, impossible de répondre à cette question. Pour cela, il faut connaître la répartition de la taille des Françaises. De plus, la question est mal formulée : la Française moyenne est un mythe … il est préférable de parler de la taille moyenne des Françaises. En fait, elles se répartissent en 25 % de petites (1 mètre 54 en moyenne), 50 % de moyennes (1 mètre 63 en moyenne) et 25 % de grandes (1 mètre 72 en moyenne). La répartition exacte suit une courbe en forme de cloche comme c’est le cas généralement quand on étudie une population homogène sous un certain critère.

Courbe de répartition de la taille des Françaises. Peu ont la taille moyenne !

Cette courbe ne suffit pas non plus pour répondre à la question, même si elle donne l’idée que la probabilité qu’une femme donnée mesure 1 mètre 63 se situe entre 10 et 20 %. Les données statistiques sont donc à analyser avec prudence.

La forteresse de Boukhara, l’hyperboloïde et le paraboloïde

A Boukhara, en Ouzbékistan, une étrange construction fait face à l’antique forteresse.  Ce monument, qui n’attire pas les touristes, est pourtant témoin d’un courant artistique  important du début du vingtième siècle : le constructivisme russe.

Un château d’eau

Cette tour a été construite en 1927 par Vladimir Choukhov (1853 – 1939) pour servir de château d’eau. Désaffecté à la fin des années quarante, il est alors devenu un café jusqu’à ce qu’un accident mortel interdise cet usage. Il vient d’être racheté par des Français pour devenir un point d’observation. Un ascenseur est prévu pour y accéder.

Le château d’eau est formé de deux séries de poutrelles d’acier qui en assurent la solidité.

Un hyperboloïde de révolution

La surface utilisée par Choukhov est célèbre en mathématiques et en architecture car elle est construite avec des droites. Pour comprendre sa fabrication, le plus simple est de partir d’un cylindre,   une surface simple à construire. Pour cela, il suffit de prendre un axe, d’y monter deux roues et d’y tendre des élastiques parallèles à l’axe. On obtient l’objet suivant.

Cylindre obtenu en tendant des élastiques entre deux roues fixées sur un axe. Les élastiques ont été choisis équidistants.

Les droites représentées par les élastiques sont les génératrices du cylindre.

On fait alors tourner la roue du haut d’un certain angle dans un sens et celle du bas du même angle dans le sens opposé. On obtient une nouvelle surface également générée par des droites.

Surface obtenue en tordant le cylindre.

Il se trouve qu’en tordant le cylindre du même angle dans un sens ou dans l’autre, on obtient la même surface, qui possède ainsi deux familles de génératrices.

Cette surface a été baptisée hyperboloïde de révolution à une nappe car elle est également obtenue en faisant tourner une hyperbole sur l’un de ses axes.

Pour des raisons physiques, cette surface est utilisée pour les tours de refroidissement des centrales nucléaires ou thermiques.

Les tabourets népalais

Cette surface est utilisée au Népal pour construire des tabourets avec des morceaux de bambous de longueurs égales.

L’hyperboloïde à une nappe vu par Patrice Jeener

Patrice Jeener, surnommé le graveur d’équations, s’est inspiré de cette surface :

Sur ce dessin, on voit particulièrement bien l’hyperbole qui génère l’hyperboloïde par rotation autour de l’un de ses axes. En changeant d’axe, on obtient un

L’hyperboloïde à deux nappes :

Les fleurs  sur ce deuxième dessin sont également des objets mathématiques qu’affectionne Patrice Jeener. Dans son œuvre, on trouve une surface apparentée, également engendrée par deux familles de droites : le paraboloïde hyperbolique :

Paraboloïde hyperbolique avec ses deux familles de génératrices. On aperçoit une parabole en contour au fond et une hyperbole a été tracée sur la surface.

Construction du paraboloïde hyperbolique

La méthode utilisée pour construire l’hyperboloïde peut l’être en remplaçant le cylindre par un plan. Autrement dit, on garde le dispositif initial : axe et roues mais, au lieu de tendre les élastiques entre les deux roues, on les tend entre deux rayons parallèles, avant de tourner les roues. On obtient une nouvelle surface admettant deux familles de droites génératrices comme la précédente, il s’agit du paraboloïde hyperbolique.

Cette surface est utilisée en architecture pour fabriquer des toits. Le Corbusier et Iannis Xenakis (le musicien dont on oublie souvent qu’il fut architecte ont ainsi construit le pavillon Philips pour l’exposition universelle de Bruxelles en 1958.

Pavillon Philips de l’exposition universelle de Bruxelles en 1958 Une partie du toit est en forme de paraboloïde hyperbolique, celle qui semble plus foncée sur la photo.

Les valeurs de π

En 1897, une résolution établissant que π = 4 fut proposée au vote des représentants de l’état de l’Indiana (États-Unis d’Amérique). Avant de sourire, le mathématicien se posera une question : pour quelle notion de distance ?

Qu’est-ce que π ?

Archimède a répondu à cette question voici fort longtemps. Il s’agit du rapport entre la circonférence d’un cercle et son diamètre. Qu’est-ce qu’un cercle ? L’ensemble des points du plan à égale distance d’un point donné. Qu’est-ce que la distance ? Ici, nous ne pouvons que marquer une pause dans nos réponses toutes faites. Plusieurs distances sont envisageables !

Distance à vol d’oiseau

En mathématiques, la distance la plus utilisée est qualifiée d’euclidienne. Dans la vie courante, on parle souvent de distance à vol d’oiseau. La distance d’un point A à un point B est la longueur du vecteur V qui mène de A à B. En tenant compte du théorème de Pythagore, elle s’exprime sous la forme :

| V |2 = x2 + y2.

Les cercles associés à cette distance ont la forme ronde usuelle. Le nombre π a la valeur connue, 3,14 à 0,01 près.

Distance Manhattan

Même pour un oiseau, la distance euclidienne correspond à une certaine vision du monde, où le vol est possible dans toutes les directions. À Manhattan, même pour voler, mieux vaut suivre les avenues, qui forment un maillage rectangulaire. La longueur d’un vecteur s’y exprime sous la forme :

| V | = | x | + | y |.

La distance Manhattan correspond au plus court chemin, si l’on marche le long des rues d’une ville au plan rectangulaire (comme Manhattan)

Le cercle unité a alors la forme d’un losange, sa circonférence est égale à 8 donc, pour cette distance, π = 4.

On retrouve la valeur 4 pour une autre distance (appelée distance infinie), celle donnant comme longueur à V, la plus grande des valeurs absolues de ses coordonnées. Les cercles ont alors une forme de carré.

Les “cercles” de même centre et de même rayon pour les trois distances.

Le décret de l’Indiana : humour ou sottise ?

Nous avons trouvé deux fois 4 et une seule fois 3,14. On pourrait en conclure que π = 4 est la valeur la plus raisonnable à retenir. Quand les rues des villes se coupent à angle droit, la distance Manhattan est la plus pertinente. Est-ce pour cette raison qu’une loi visant à adopter la valeur π = 4 fut proposée au vote de l’assemblée générale de l’état de l’Indiana ? Vous pouvez en juger vous-même en allant lire le texte plein d’humour de ce projet de loi sur l’Internet (utilisez un moteur de recherche pour en trouver une copie). Nous laisserons de toutes façons la question aux amateurs d’histoire (s).

Autres distances

Les trois distances utilisées se généralisent en utilisant un nombre p ³ 1 quelconque. Plus précisément, on pose :

| V |p = | x | p + | y | p.

La distance euclidienne correspond au cas : p = 2, la distance Manhattan au cas : p = 1. On démontre, par un passage à la limite, que la distance infinie correspond bien au cas : p = ∞.

Pour chacune de ces distances, nous obtenons une valeur de π, que nous notons πp. Comment en calculer une valeur approchée ? Tout simplement en procédant comme dans le cas de la distance euclidienne, c’est-à-dire en remplaçant le cercle par des polygones réguliers ayant un grand nombre de côtés. Si nous effectuons ces calculs pour p variant de 1 à 2 avec une précision de 0,001, nous obtenons le tableau :

 

p 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0
πp 4,000 3,757 3,573 3,434 3,333 3,260 3,209 3,176 3,155 3,145 3,142

 

Ainsi, πp semble décroissant de 1 à 2. Le phénomène inverse se produit de 2 à l’infini. On est amené à plusieurs conjectures :

1) π est la valeur minimale des πp,

2) πp prend toutes les valeurs entre π et 4,

3) πp = πq si 1/p + 1/q = 1.

On démontre que les trois sont exactes, en utilisant des raisonnements de calcul intégral dépassant le cadre de cet article.

Pour ces calculs, voir sur mon site.

 

 

Les vols d’étourneaux

Les étourneaux, et d’autres oiseaux se comportent souvent comme une unité filant parfois dans une direction précise pour s’en détourner soudain. Les mouvements des bancs de poisson sont similaires. D’où viennent ces comportements ?

Un vol d’étourneaux

La défense contre les prédateurs

La raison essentielle de ces regroupements est la défense contre les prédateurs. Par exemple, quand les étourneaux sont effrayés, ils s’élèvent, se rassemblent et volent en formant la masse la plus compacte possible. Un rapace évite de fondre sur ce groupe de crainte de se blesser. Il cherche plutôt à sélectionner des retardataires ou des oiseaux affaiblis.

La nuée vire et tourne de telle sorte qu’il est difficile de prévoir ses mouvements, qui semblent aléatoires. De nos jours, les zoologistes sont persuadés que ce ballet ne doit rien à la présence d’un mystérieux chef d’orchestre ou à un esprit surnaturel du groupe. Dans les années 1980, Wayne Potts, professeur à l’université d’Utah, a filmé des nuées de bécasseaux pour s’apercevoir que n’importe quel individu pouvait initier un mouvement du groupe, qui se propageait ensuite très rapidement par ondes rayonnant autour de l’initiateur, et cela dans tous les sens. De plus, ces ondes se propagent bien plus rapidement que la vitesse de réaction normale d’un individu isolé peut le laisser penser. En revanche, les mouvements des oiseaux séparés du groupe ne l’influencent pas. Ils sont les cibles privilégiées des prédateurs, donc ne sont pas suivis. Cette règle a l’avantage d’accélérer la réponse du groupe à une attaque.

Un modèle mathématique

D’après l’étude de Wayne Potts, chaque oiseau réagit à ce qui l’entoure, et uniquement à cela. Son comportement peut donc être modélisé : chacun ne réagit qu’à ses voisins. En 1986, un informaticien, Craig Reynolds, précisa des règles qui simulent le comportement des nuées d’oiseaux comme celui des bancs de poissons. Il a nommé « boids » ces oiseaux virtuels (un mot à faible distance linguistique de « birds »). On peut trouver des animations sur internet utilisant son modèle (chercher Boids avec votre moteur de recherche préféré). Les trois règles sont toutes de nature locale, chaque oiseau ne réagit qu’aux mouvements de ses voisins.

Séparation

Si un oiseau est trop proche de ses voisins, il s’en écarte pour éviter les collisions.

Alignement

Alignement dans la direction du vol des oiseaux qui l’entourent.

Cohésion

Cohésion pour aller vers la position moyenne des oiseaux qui l’entourent.

Si vous voulez programmer une simulation de vol d’étourneaux, il vous reste à définir plusieurs paramètres : rayon du cercle de voisinage (en gris clair sur les figures), vitesses, accélération utilisée pour rejoindre la position idéale définie par les trois règles. Ces principes ont été utilisés pour la première fois dans Le retour de Batman en 1992, pour générer des vols de chauves-souris.

Le modèle peut être amélioré en limitant le voisinage à un secteur de cercle, correspondant à la vision de l’oiseau, à la considération d’obstacles que l’oiseau évitera et également aux prédateurs éventuels.

 

L’énigme du tunnel de Samos

Dans l’île grecque de Samos, on peut visiter un tunnel qui, selon Hérodote, fut creusé au VIe siècle avant notre ère, simultanément par ses deux extrémités … et l’erreur au point de rencontre ne fut que de 60 centimètres, comme le tracé du tunnel l’atteste toujours. On ne sait pas comment son architecte, Eupalinos, en fit les plans, mais on sait qu’ils ne doivent rien au hasard. La plupart des historiens qui se sont penchés sur la question en on déduit qu’Eupalinos avait anticipé les instruments et les mathématiques inventés plusieurs siècles après sa mort. Est-ce vraisemblable ? Pourquoi les aurait-on oubliés ensuite ? De plus, pourquoi faire des hypothèses inutiles ? Il est plus raisonnable d’essayer d’imaginer des méthodes compatibles avec les mathématiques et les instruments connus de l’époque.

Un aqueduc extérieur imaginaire …

De la source captée jusqu’à l’entrée du tunnel, l’eau suit des conduites extérieures, quoique enterrées. On peut imaginer que, dans un premier temps, l’aqueduc allait ainsi jusqu’à la sortie du tunnel en suivant grossièrement les lignes de niveaux du terrain. La topographie le permet comme le montre la carte du lieu.

Les lignes de niveaux aux alentours du tunnel de Samos (entrée en A, sortie en B) montrent qu’il est possible de contourner la montagne par l’ouest (voir l’orientation sur le dessin) en restant à niveau (ligne ACB). Le trajet fait alors environ 2200 mètres (le double du trajet direct AB).

…qui aide à trouver la sortie

Cette hypothèse est difficile à soutenir car aucun vestige d’un tel ouvrage ne nous est parvenu. De plus, le tunnel est quasiment horizontal, seul le canal qui le longe a une déclivité de six mètres sur un peu plus d’un kilomètre. Cette hypothèse d’un aqueduc extérieur donne cependant une première approche du problème, naturelle pour un constructeur d’aqueduc. Pour déterminer l’entrée et la sortie, il s’agit de se déplacer à l’horizontale au flanc de la montagne, pour rejoindre un point duquel l’aqueduc peut continuer. Des preuves archéologiques montrent que les Samiens disposaient d’instruments pour déterminer l’horizontale. Le principe en est simple. Il s’agissait de longues gouttières en terre cuite dans lesquelles on versait de l’eau. L’horizontale était obtenue quand l’eau ne s’écoulait pas. De même, ils utilisaient des fils à plomb, ce qui permettait de déterminer la verticale. On peut imaginer suivre l’horizontale ainsi en plantant des pieux dont les sommets restent au même niveau. Si le niveau mesure 2 mètres de long, et que l’incertitude est inférieure à 1 millimètre pour chaque pieu, nous obtenons une incertitude totale de 1,10 mètres. L’erreur effective à la jonction des deux branches du tunnel étant de 60 centimètres, l’utilisation de cette méthode est vraisemblable. Cependant, elle exige de planter 1100 pieux. On peut la simplifier de ce point de vue en utilisant des visées oculaires permettant d’espacer les pieux.

Pour cela, on plante deux pieux à 10 mètres l’un de l’autre, dont les sommets sont à l’horizontale et on les aligne avec un pieu à cent mètres environ, tenu par un assistant. Ceci permet de passer à un total d’une cinquantaine de pieux (deux tous les 100 mètres environ).

Visée pour maintenir l’horizontale. Les pieux A et B sont alignés grâce à un niveau à eau. Si l’erreur entre les deux est limitée à 2 millimètres, celle entre A et C sera limitée à 2 centimètres. La capacité de l’œil humain rend insensible l’erreur due à l’acuité visuelle.

L’œil humain a une capacité de résolution de 0,5 minute environ (1 / 120 degré). Avec un viseur, sur cent mètres, nous pouvons espérer une incertitude inférieure à 2 centimètres. Sur une distance de 2 200 mètres, cela donne une incertitude totale de 44 centimètres, ce qui est compatible avec l’erreur effective de 60 centimètres.

La direction de la sortie

La deuxième extrémité trouvée, comment déterminer la direction dans laquelle le tunnel doit être percé ? Une idée simple tient à la topographie du terrain. Il s’en faut de peu que l’on ne puisse voir les deux extrémités du tunnel du haut de l’Acropole. Dans ce cas, il aurait suffi d’y disposer trois pieux alignés et, par approximations successives de les aligner à des pieux plantés aux extrémités du tunnel à construire. L’opération est semblable à la précédente, sans mise à niveau.

Si le sommet S est visible des extrémités A et B, il suffit d’aligner cinq pieux, trois en S, un en A et un en B pour déterminer la direction AB. Cette opération peut être faite par essais successifs.

En fait, la topographie du terrain ne permet pas cette solution. On peut malgré tout l’appliquer, soit en surélevant le sommet au moyen d’une tour de dix mètres environ, soit en plantant des pieux intermédiaires. Une station supplémentaire, éventuellement légèrement surélevée, suffit pour réaliser un alignement visible de proche en proche.

En disposant des relais (comme I) entre les extrémités A et B et le sommet, il est possible de réaliser un alignement de pieux entre A et B. On vérifie cet alignement comme précédemment, de proche en proche.

Ceci fait, les deux pieux à chaque extrémité donnent la direction à suivre. Il est facile de la conserver ensuite. Cependant, pour être sûr de se rencontrer, le mieux est d’obliquer légèrement un peu avant le milieu des travaux car, dans un plan, deux droites non parallèles se rencontrent toujours. L’une des branches du tunnel effectivement construit par Eupalinos présente des portions en zigzag montrant qu’il n’était pas certain de ses mesures et voulait éviter de manquer le deuxième tronçon qui, lui, reste rectiligne.

Le problème de la longueur du tunnel est accessoire. Même s’il est utile de la connaître pour savoir quand obliquer pour être sûr de la rencontre, il suffit d’en avoir une approximation grossière. Une fois le tunnel construit, on peut la calculer de façon plus précise et en déduire la pente à donner au canal. Finalement, sa profondeur varie de 3 à 9 mètres pour assurer un flux constant.

Les mathématiciens sont-ils tous platoniciens ?

Comme Platon, les mathématiciens sont des créateurs de mondes, tels celui du mythe de la caverne. Doit-on pour autant considérer les mathématiciens comme platoniciens ?

Qu’elle fut ou non gravée à l’entrée de son académie, la phrase Que nul n’entre ici s’il n’est géomètre est conforme à la pensée de Platon : il est bon que le philosophe apprenne la géométrie. Au livre VII de La république, il mentionne d’ailleurs son étude comme un pré requis à celle de la philosophie, et une matière indispensable dans le cursus du futur citoyen. Les mathématiques forgent la pensée de Platon, comme on le voit dans Le Ménon. Inversement, tout mathématicien est-il platonicien ?

Un créateur de mythes

Avant d’essayer de répondre à cette question, examinons le mode de pensée de Platon. Sa méthode fondamentale est la création de mythes. Le procédé est classique dans l’Antiquité où l’usage de métaphores permettait d’introduire des concepts abstraits à travers des expériences quotidiennes. Le mythe le plus célèbre inventé par Platon est celui de la caverne, où il introduit le concept de « monde des idées ». En voici un résumé rapide. Des hommes, enfermés dans une caverne, ne voient l’extérieur qu’à travers des ombres. Ils n’ont pas accès à la réalité mais seulement à son image. Ce mythe est une métaphore où la caverne est notre monde, et l’extérieur, le monde des idées. Une transposition est nécessaire pour comprendre le message de Platon, même si celle-ci est claire.

Le monde des idées

Ce monde des idées, existe-t-il ? Platon l’a postulé, ce qui l’a mené à adopter la thèse de l’immortalité de l’âme. Elle lui permet d’affirmer qu’elle vient de ce monde et, pour cette raison, en garde une vague mémoire. La philosophie grecque a parfois ce côté jusqu’au boutiste, que l’on retrouve facilement chez les mathématiciens. Pas question pour eux que 2 + 2 fasse 3,99. C’est 4 sans discussion possible. Cette démarche, correcte quand elle reste dans son cadre, peut aboutir parfois à des extravagances inutiles, comme l’idée d’une âme immortelle, même dans le passé. Platon en avait besoin pour expliquer notre accès instinctif à son monde des idées. Pour lui, on n’apprend pas, on se souvient. Cette remarque explique la pédagogie de Socrate dans Le Ménon, quand il fait démontrer le théorème de Pythagore à un esclave. Celui-ci est censé retrouver des connaissances lointaines, du temps où son âme n’était pas prisonnière de son corps. Socrate aide son interlocuteur à « accoucher » de ce qui existe déjà en lui. Dans ce sens, l’invention est impossible, seul « trouver » l’est. Ce vocabulaire correspond à celui utilisé en général en mathématiques. L’expression « il invente des théorèmes » est souvent péjorative, car elle sous entend qu’ils sont faux.

Le monde des idées mathématiques

De même, les mathématiciens inventent des mondes, semblables au monde des idées de Platon. Aucun point du monde réel n’est jamais le point idéal que nous imaginons. Il a forcément une certaine épaisseur. Il en est de même de la droite et du cercle. Nous en avons des idées que nous visualisons et même matérialisons, mais c’est sur les idées que nous raisonnons. Pour rendre ses résultats plus solides, depuis l’Antiquité, le monde de la géométrie est régi par un certain nombre d’axiomes, c’est-à-dire de résultats considérés comme vrais sans démonstration. Cette méthode a été généralisée et approfondie par David Hilbert au début du XXe siècle. De nos jours, chaque théorie (arithmétique, géométrie, etc.) a ses axiomes, qui la structurent.

L’ombre des idées

Ces théories ont un rapport complexe avec la réalité. Officiellement, pour les mathématiciens, les axiomes résultent du libre arbitre des créateurs de ces théories. Est-il raisonnable de le prétendre, ou est-ce un moyen de se libérer de la réalité ? Restons dans le domaine de la géométrie pour donner un exemple. On y démontre une propriété de la parabole, liée à son foyer (appelée propriété focale pour cela), que nous résumons par un dessin.

Propriété focale de la parabole : Si une droite D parallèle à l’axe d’une parabole coupe celle-ci en un point M, la droite symétrique de D par rapport à la tangente en M à la parabole passe par son foyer.

Cette propriété a des conséquences visibles dans notre univers quotidien : paraboles sur les toits des immeubles, fours solaires petits et grands, phares des voitures ou des bords de mer. La propriété des paraboles existant dans le monde de la géométrie s’applique dans notre monde.

Parabole en montagne. L’utilisation d’un miroir en forme de parabole permet de focaliser les rayons du soleil en un point et donc de faire bouillir de l’eau. © Hervé Lehning

Peu de mathématiciens doutent réellement de cette efficacité, même si certains scientifiques l’estiment « déraisonnable ».

Vérité des axiomes

La raison de cette « estimation » est l’opinion exprimée par les mathématiciens contemporains eux-mêmes. Si vous les questionnez sur ce que sont les axiomes, il est probable qu’ils répondront comme nous l’avons exposé plus haut. Ce sont des règles que l’on se donne de manière arbitraire, et sur lesquelles on développe une théorie cohérente, en suivant les règles de la logique. De ce point de vue, cette théorie n’est pas plus « réelle » ou « vraie » que les axiomes qui la fondent. Cependant, les résultats acquis sont extrêmement solides. Si on admet la « vérité » des axiomes, celle des théorèmes suit.

Les théories mathématiques : des modèles

Si cette vérité est conditionnelle, pourquoi les résultats des mathématiques sont-ils utiles dans le monde réel ? La réponse est simple. Les axiomes ne sont pas choisis arbitrairement ! Plutôt que de le prétendre, il serait préférable de dire que, s’ils l’étaient, on pourrait encore parler de mathématiques. Mais ils ne le sont pas ! Le fait est que l’on ne s’intéresse pas à ces mathématiques du bon plaisir. Ils sont choisis pour que les théories mathématiques qui en découlent soient de bons modèles de la réalité. Pour cela, ils s’en inspirent. Comme Platon, les mathématiciens inventent des mondes idéaux, dont la réalité est un reflet. En ce sens, ils sont platoniciens mais des platoniciens rarement dupes de leurs modèles. Ils ont conscience que leur monde des idées est une abstraction dont ils sont l’origine. Ce n’est pas un monde préexistant de toute éternité, comme le monde des idées de Platon.