Sur les chemins de l’Himalaya, jusqu’à 5000 mètres d’altitude, on rencontre sans cesse des porteurs et porteuses, parfois des enfants, surmontés de charges impressionnantes. Comment évaluer leurs poids ?
Compter les canettes
L’évaluation est relativement simple pour les porteurs de caisses de bière : on compte le nombre de canettes. le poids de chacune est facile à évaluer, un peu plus d’un tiers de kilo. Vingt paquets de dix donnent un fardeau de 70 kilogrammes … à porter sur des milliers de mètres de dénivelée !
Evaluer des volumes et des densités
Quel poids porte cette petite fille de 13 ans rencontrée sur le chemin de son village ?
Elle y transporte des feuilles, que l’on utilise pour transformer le produit des toilettes en compost. La charge correspond malgré tout aux bottes de foin ordinaires qui, pressées, pèsent environ 20 kilogrammes. Malgré le côté impressionnant de sa charge, il est peu probable que cette jeune fille transporte plus de 10 à 15 kilogrammes sur son dos. Cela reste important pour une enfant dont la croissance n’est manifestement terminée, mais reste comparable aux poids des cartables de certains de nos collégiens.
Une buse de fonte
Autrement plus impressionnante est la buse en fonte que transporte cet homme en route vers Namché Bazar. Elle est destinée à créer une conduite forcée, pour servir à une micro usine hydro électrique. Le progrès vient ici à dos d’homme. Quel est le poids de cette buse ? Il est relativement facile d’évaluer le volume de fonte. La longueur est de 2,5 mètre environ, le diamètre 30 centimètres et l’épaisseur 1 centimètre. En mètres cubes, le volume est donc égal à :
2,5 x (0,152 – 0,142) x 3,14
soit 0,018 m3. La fonte ayant une densité de 7,4 tonnes au m3, nous en déduisons un poids de 130 kilogrammes environ. Même si nous admettons une erreur de 20 % dans notre évaluation, nous aboutissons à un poids supérieur à 100 kilogrammes, ce qui est impressionnant.
Les paraboles sont utilisées dans l’Himalaya pour faire bouillir de l’eau. Pour cela, il suffit de diriger son axe vers le soleil. Ses rayons sont alors réfléchis vers le foyer où on a placé une casserole.
La parabole et son foyer
Selon la légende, Archimède aurait utilisé ce procédé pour incendier les voiles des navires romains lors du siège de Syracuse en 212 avant Jésus-Christ. Nous pouvons douter de la réalité de cette anecdote, car le moindre mouvement des bateaux suffit pour placer leurs voiles loin du foyer. Les servants du miroir parabolique auraient bien du mal à les suivre. Il est plus facile de chauffer une bouilloire immobile que la voile d’un navire en mouvement !
Les ponts himalayens sont des ouvrages souples suspendus par leurs deux extrémités. L’ancrage étant essentiel, leur altitude dépend de la qualité de la roche. Les deux extrémités doivent être approximativement à la même hauteur et indéracinables.
La courbe du pont
Globalement, le pont se comporte comme une chaîne suspendue par ses deux extrémités. Autrement dit, il prend la forme d’une courbe appelée chaînette pour cette raison. Les lignes électriques hautes tensions ainsi que les câbles de téléphériques en donnent d’autres exemples. Galilée pensait qu’il s’agissait d’une parabole, sans doute parce qu’elle est presque indiscernable de l’arc de parabole de même longueur suspendu entre les mêmes points. En fait, son équation est liée à la fonction exponentielle.
Minimiser la tension
En tendant fortement les câbles soutenant le pont, il serait possible que cette courbe se confonde avec une droite. L’observation montre que ce n’est jamais le cas. Pourquoi ? Tout simplement pour réduire la tension exercée aux extrémités qui, à terme, pourrait faire céder le pont. Pour la minimiser, la forme idéale est celle utilisée pour suspendre les lignes haute tension.
Pour cela, le calcul montre que la flèche doit être égale au tiers de la distance entre les points d’appui, s’ils sont à la même altitude. Bien entendu, dans la pratique, il suffit que la tension reste à un niveau raisonnable. La flèche est donc rarement aussi importante. Au départ, la descente serait d’ailleurs dangereuse ! En pratique, on dépasse rarement une flèche de l’ordre du dixième de la distance.
Stabiliser le pont
Un pont fabriqué ainsi est sujet à des mouvements de roulis et de tangages, ce qui rend sa traversée délicate dès que plusieurs utilisateurs l’empruntent. Le vent a également une influence non négligeable sur sa stabilité. Pour éviter ces inconvénients, le plus simple est de le stabiliser par des câbles exerçant une tension latérale.
La courbe tendant ces câbles épouse la forme d’une parabole afin que la tension exercée soit constante le long du pont. Dans les ponts himalayens, on retrouve donc simultanément deux courbes : la chaînette et la parabole.
Selon les écrits de Gustave Eiffel, la forme de sa tour ne doit rien au hasard, même si le résultat pourrait plaider pour un simple souci d’esthétique. Selon lui, tout a été étudié mathématiquement pour résister au vent. Plus précisément, il affirme que le moment des forces appliquées par le vent en chaque point est égal et opposé au moment du poids de la structure en ce point. Les calculs mathématiques d’Eiffel n’ayant pas été publiés, on a longtemps soupçonné les ingénieurs d’Eiffel d’avoir opéré empiriquement pour obtenir la forme de type exponentiel qu’on connaît.
Reconstitution des calculs
Les calculs ont été repris en 2005 par deux mathématiciens américains, Patrick Weidman et Iosif Pinelis. En suivant les indications d’Eiffel, ils ont débouché sur une équation intégro-différentielle relativement simple … pour les spécialistes … dont la solution est bien une exponentielle.
Mais, en réalité, la tour Eiffel est composée de deux exponentielles pour tenir compte de la différence de forces du vent à la base et au sommet.
À Mouans-Sartoux, un étrange bâtiment cubique vert pomme, fondu dans le vert des arbres attire le regard du voyageur. Il est dédié à l’art concret …
Art concert et abstraction.
Rien n’est plus concret, plus réel qu’une ligne, qu’une couleur, qu’une surface. Cette phrase très platonicienne de Theo van Doesburg (alias de Christian Emil Marie Küpper, 1883 – 1931), fondateur du groupe « art concret » détrompera ceux qui interpréteraient le terme « concret » en contraire d’« abstrait ».
Pourquoi un espace de l’art concret à Mouans-Sartoux, petite commune entre Grasse et Cannes où la nature semble davantage appeler l’art figuratif ? La réponse tient en la rencontre d’un maire ouvert à l’art contemporain, et professeur de mathématiques, André Aschiéri, et d’un collectionneur et artiste, Gottfried Honegger. Ce dernier, avec sa compagne Sybil Albers, a fait donation de leur collection personnelle, en 2000 à l’État français, à laquelle se sont ajoutés des compléments importants telles que les Donations Aurèlie Nemours et Catherine & Gilbert Brownstone. Actuellement le fonds compte presque 600 œuvres. Elles sont exposées à l’Espace de l’Art Concret dans un cadre adapté.
La place des mathématiques et de l’optique
Dès la première salle, les mathématiques sont omniprésentes. Le tableau de Max Bill intitulé deux zones, claire et sombre évoquera avant tout l’irrationalité de racine de deux à l’amateur de mathématiques. En effet, il met en scène sa démonstration par Socrate dans Le Ménon de Platon.
On trouve également des rythmes classiques, comme des toiles fondées sur des rapports entre les surfaces de diverses couleurs ou des alignements.
Mais le but principal de Josef Albers dans son hommage au carré est de piéger l’œil du spectateur entre les couleurs des différents carrés si bien que le carré central, le plus pâle, semble flotter au centre de la composition. Un grand nombre de toiles sont ainsi fondées sur une sorte d’illusion d’optique qui piège l’œil entre plusieurs interprétations.
Des lignes au hasard
François Morellet utilise une technique étonnante pour créer certaines de ses œuvres : le hasard. Quand on observe ses toiles, on se demande cependant s’il n’a pas fait intervenir le hasard plusieurs fois pour choisir ensuite le plus esthétique, ce qui est presque la négation du hasard. Quelle est la probabilité pour que, parmi dix droites, quatre soient approximativement concourantes et forment un faisceau évoquant un projecteur ?
Bien sûr, notre argument n’a pas grande valeur puisque tout événement s’étant produit était de probabilité nulle avant de se produire. On peut s’interroger mais, peu importe, seul le résultat compte et il dégage une harmonie certaine, encore liée à l’incertitude du regard entre diverses interprétations.
François Morellet a d’ailleurs inventé la théorie de la « participation du spectateur ». Le regard comme la lumière sont au centre de l’art en général et de l’art concret en particulier. Cette importance devient évidente dans ses sculptures comme cette sphère découpée suivant deux séries de plans parallèles, perpendiculaires entre eux. Chaque déplacement du spectateur, chaque variation de la lumière font apparaître un treillage différent. La photographie ci-dessous est sans doute celle qui inspirera le plus le mathématicien.
Ellipse d’acier
David et Royden Rabinowitch, des frères jumeaux, travaillent ensemble mais signent parfois leurs œuvres indépendamment. Cela explique que vous puissiez trouver des sculptures très comparables signées de l’un ou de l’autre. L’espace de l’art concret possède l’une des sculptures signées par David. Elle inspirera le mathématicien, même s’il risque de la trouver énigmatique.
Les droites tracées sur l’ellipse ci-dessus évoquent l’hexagramme mystique de Pascal. Cependant, cette interprétation est fausse : la conique ne contient que trois droites et non six. D’autre part, les points percés sur la surface sont alors bien mystérieux, comme distribués au hasard. Si les quatre masses se trouvent, où sont les deux échelles ? Le titre apparemment très précis invite le spectateur à compter, et le perd entre plusieurs interprétations.
Au Luxembourg, des balustrades circulaires du XVIIIe siècle ferment la perspective des jardins.
Rien que des coniques
On les voit donc sous forme de coniques, c’est-à-dire de sections planes d’un cône.
Vues de l’intérieur, il s’agit donc d’une hyperbole parfaite, que l’on peut comparer avec la bouche d’égout elliptique au sol. La parabole quant à elle appartient au monde des idées, cas limite entre l’hyperbole et l’ellipse, que l’on pourrait voir en se positionnant parfaitement sur la colonnade.
Patrice Jeener est un graveur tombé amoureux des mathématiques en visitant l’institut Henri Poincaré quand il était étudiant aux beaux-arts. Il suivait ainsi la trace de Man Ray, qui découvrit les modèles de l’institut dans les années 30 et s’en inspira pour sa série de tableaux équations shakespeariennes comme celui-ci intitulé le roi Lear :
Les surfaces minimales
Patrice Jeener s’est particulièrement intéressé aux surfaces minimales, c’est-à-dire aux surfaces dont les aires sont minimales pour un bord donné. On peut matérialiser la plupart d’entre elles par des bulles de savon s’appuyant sur un contour, car le film de savon tend à minimiser son énergie, donc sa surface. Elles ont des applications pratiques mais notre propos n’est pas là. Sur la photographie ci-dessous, notez la petite tige en bas à droite qui permet de tenir l’objet quand on le trempe dans l’eau savonnée :
Nous n’écrirons pas leurs équations ici, nous nous contenterons d’en admirer l’esthétique à travers quelques gravures.
L’étude des surfaces réservent quelques surprises comme l’apparition surprenante d’une chouette là où l’on attendait une simple surface minimale. Ce genre de surprises explique sans doute ce vers de Lautréamont :
O mathématiques sévères, je ne vous ai pas oubliées, depuis que vos savantes leçons, plus douces que le miel, filtrèrent dans mon cœur, comme une onde rafraîchissante.
Philippe Leblanc a exposé chez Philomuses, au quartier latin à Paris, une série d’œuvres a priori abstraites. Les titres même font mystère. Par exemple, la suivante se nomme Chinacci 25.
L’écriture chinoise ancienne des nombres
En lisant le tableau en colonne, le mathématicien sera frappé par la régularité des premiers termes : 1, 1, 2, 3, 5 où chaque nombre est la somme des deux précédents. Le suivant peut facilement être interprété comme un 8. De fait, le tableau de Philippe Leblanc utilise un système d’écriture des nombres inventé en Chine quelques siècles avant Jésus-Christ. À cette époque, les Chinois comptaient au moyen de baguettes et non de bouliers comme plus tard. Ils imaginèrent ainsi une façon d’écrire les nombres. Pour cela, ils utilisaient deux notations qu’ils alternaient pour éviter les confusions entre unités, dizaines, centaines, etc. Voici donc les chiffres de 1 à 9 écrits de deux façons différentes.
La suite de Fibonacci
On s’aperçoit ainsi que le tableau représente les 25 premiers termes de la suite de Fibonacci, le dernier terme en bas à droite du tableau valant 75025. Le titre de l’œuvre prend alors son sens, Chinacci 25 étant une contraction de Chinois-Fibonacci, 25 premiers termes. Après cette première analyse, on peut se demander ce que signifient les différences de couleurs, entre jaune et bleu. Pour le voir, il faut réaliser que les bâtons de l’œuvre sont découpés au laser dans une tôle d’acier, qui cache une boîte lumineuse. C’est le fond de cette boîte qui est peinte selon plusieurs bandes verticales dont les largeurs suivent également la suite de Fibonacci : une bande de largeur X en jaune, une deuxième bande de largeur X en bleu foncé, une bande de largeur 2X en jaune orangé, une quatrième bande de largeur 3X en bleu clair. La deuxième œuvre Mayanacci 25 s’éclaire alors d’elle-même.
La suite de Fibonacci s’y écrit en lignes puisque la première se lit 1, 1, 2, 3 en comptant les points. La barre qui suit signifie alors probablement 5. On peut ainsi décrypter les nombres suivants. Il s’agit en fait de l’écriture des nombres qu’utilisaient les Mayas, en base vingt. Les unités, les vingtaines, etc. s’empilent de bas en haut. Les couleurs respectent une règle différente de celle du tableau précédent puisque, dans chacune des cinq lignes et des cinq colonnes, on trouve une et une seule fois chacune des cinq couleurs présentes.
Ce glaçon étrange, que j’ai nommé les colombes givrées s’était détaché d’un glacier pour tomber dans un fjord et était venu s’échouer sur une plage où je venais de débarquer. Un rayon de soleil illuminait cette œuvre d’art éphémère que le hasard avait façonnée, l’art consistait à trouver le bon angle permettant de capturer la lumière malgré la légère pluie qui tombait.
Le glacier à l’origine du glaçon
Voici le front du glacier d’où s’échappent les glaçons plus ou moins gros :
Comme on peut le voir sur cette photographie, la vie animale est riche à l’endroit où le glacier se jette dans la mer. Les oligo-éléments charriés par le glacier attirent le plancton, qui attire le poisson, qui attire des oiseaux pêcheurs et quelques phoques.
À l’époque où les jeunes filles de la cour d’Espagne étaient très surveillées, elles inventèrent un code fondé sur la position et les mouvements de leurs éventails, qui devinrent ainsi des instruments de séduction. Par exemple, le placer près du cœur signifiait « tu as gagné mon amour », bouger l’éventail entre les mains, « je te hais », le faire glisser sur la joue pour aller jusqu’au menton, « je t’aime », le placer sur les lèvres, « embrasse-moi ». Il existait ainsi une trentaine de codes, assez pour faire passer ses sentiments et ses envies à celui qui est face à vous. La connaissance de ces codes est utile pour comprendre certains films, même si les mimiques peuvent aussi suggérer le message. Il s’agit d’une sorte de cryptographie gestuelle.
Sur la toile de Klimt, la façon dont la femme tient son éventail signifie « tu as gagné mon amour ». L’histoire ne dit pas si Klimt l’a placé ainsi volontairement.
Extrait du code
S’éventer lentement
Je suis mariée
… rapidement
Je suis fiancée
Laisser l’éventail reposer sur sa joue droite
Oui
… sur sa joue gauche
Non
Tenir l’éventail dans la main droite
Vous êtes entreprenant
Maintenir l’éventail sur l’oreille gauche
Laissez-moi tranquille
Tournoyer l’éventail avec la main droite
J’en aime un autre
… avec la main gauche
Nous sommes surveillés
Toucher avec le doigt sa partie haute
Je voudrais te parler
Descendre l’éventail, le laisser pendre
Nous serons amis
Le placer devant le visage en main gauche
À quoi penses-tu ?
… avec la main droite
Suis-moi
Le tenir en main gauche face au visage
Je désire un entretien
Le porter ouvert dans la main gauche
Allons parle-moi
Ouvrir complètement l’éventail
Attends-moi
L’éventail placé près du cœur
Tu as gagné mon amour
Bouger l’éventail autour de la joue
Je t’aime
Cacher ses yeux derrière l’éventail ouvert
Je t’aime
Rendre l’éventail fermé
M’aimes-tu ?
Le glisser sur la joue jusqu’au menton
Je vous aime
Porter l’éventail ouvert dans la main droite
Je suis très amoureuse
L’éventail moitié ouvert posé sur les lèvres
Peux-tu m’embrasser ?
Placer l’éventail sur les lèvres
Embrasse-moi
Tourner l’éventail avec la main gauche
On nous voit
Le fermer complètement ouvert, lentement
Je promets de t’épouser
Le fermer en se touchant l’œil droit
Quand te verrai-je ?
Le nombre de branches ouvertes donne…
La réponse à la question
Mouvement menaçant, éventail fermé
Ne sois pas imprudent
Le placer ouvert devant l’oreille gauche
Cache notre secret
Bouger l’éventail autour du front
Tu as changé
Approcher l’éventail autour des yeux
Je suis désolée
Ouvrir et fermer l’éventail plusieurs fois
Tu es cruel
Placer l’éventail derrière la tête
Ne m’oublie pas
Les mains jointes serrant l’éventail ouvert
Oublie-moi !
L’éventail derrière la tête, doigts tendus
Au revoir, adieu
Bouger l’éventail entre les mains
Je te hais
Comment comprendre le monde moderne sans culture mathématique ? Accéder à celle-ci n’exige cependant pas d’apprendre à résoudre la moindre équation.