En grec ancien, speirao signifiait « enrouler », de bandelettes en particulier, mot qui rapprochait les langes des enfants de ceux des momies. Notre mot « spirale » en dérive… pourtant, de ce temps, « spirale » se disait éliks … qui a donné notre « hélice ». Les deux mots viennent donc de l’idée d’enrouler, mais les spirales sont tombées dans le monde à deux dimensions tandis que les hélices se sont élevées dans celui à trois dimensions. Hélas, les spirales de la violence comme celles du chômage, ou d’autres encore, nous enfoncent sans cesse et sont donc plutôt des hélices que des spirales.
De façon plus gaie, nous devons à cette confusion première, entre hélice et spirale, les carnets à spirales, si chers à William Sheller, qui pourtant sont à hélices, pas celles des avions, celles plus prosaïques des mathématiques.
Les hélices, des mathématiques aux bateaux et aux avions
Quel rapport entre les hélices des mathématiciens et celles des avionneurs ? A priori, aucun. Pourtant, le premier engin destiné à mouvoir un liquide était la vis d’Archimède, qui est bien construite sur une hélice circulaire. Cette origine explique l’utilisation du terme « hélice » pour tous les engins destinés à mouvoir un fluide, ou à mouvoir un objet dans un fluide.
Une fille vient de naître. Les médias nous apprennent qu’elle a une espérance de vie de 85 ans. D’où vient cette prédiction ? Que signifie l’espérance de vie ? Pour le comprendre, dans un premier temps, oubliez le sens commun du verbe « espérer » car la définition n’est claire que pour les générations entièrement décédées ! La voici. L’espérance de vie est la durée moyenne de vie des personnes nées la même année. La définition est étrange puisque, toutes ces personnes étant décédées, leur vie n’est plus une espérance. Si ce n’était le côté macabre, peut-être vaudrait-il mieux parler d’âge moyen à la mort ? La notion est identique, même si l’espérance de vie devient équivalente à celle de mort. Toutefois, le terme « espérance de vie » se comprend mieux pour les vivants.
Une définition macabre
Pour l’instant, restons malgré tout sur les générations passées car ce sont les seules qui permettent des calculs certains. Pour déterminer l’espérance de vie des gens nés en 1850 par exemple, il suffit de connaître tous les actes de naissance de 1850 et tous les actes de décès postérieurs. On en déduit les âges au décès et on en fait la moyenne… on trouve 41 ans. Cependant, ce calcul n’est possible que pour les générations entièrement décédées, pas pour les enfants qui viennent de naître !
Un modèle de la réalité
Pour prévoir l’espérance de vie de ceux qui viennent de naître, on imagine qu’ils subiront à chaque âge de leur vie la mortalité de l’année en cours. Plus précisément, on calcule le quotient de mortalité des deux sexes à chaque âge grâce à des estimations de population et de décès. En l’absence de toute migration, l’idée est très simple. Le premier janvier 2009, on compte 440428 hommes de 40 ans et 815 décès d’hommes de 40 ans pendant l’année 2 009. Le quotient de mortalité des hommes de 40 ans est donc estimé à 815 divisé par 440 428, soit 1,850 ‰. La méthode est fiable si on peut appliquer la loi des grands nombres. Ses résultats sont fantaisistes quand ce n’est pas le cas, particulièrement pour les grands âges.
À partir de ces quotients de mortalité des personnes de chaque âge, les statisticiens reconstruisent des tables de mortalité. On ne considère donc plus une population réelle mais une génération fictive de 100000 individus qui connaîtrait toute sa vie les conditions de mortalité par âge de l’année considérée. La table que l’on peut construire chaque année sur cette génération fictive est appelée la table du moment. C’est à partir de cette table qu’on calcule l’espérance de vie des enfants dès leur naissance. Cette méthode est fondée sur l’hypothèse que la situation de la mortalité restera identique à ce qu’elle est actuellement, et ceci alors même que nous savons qu’il n’en est rien ! Malgré tout, ces résultats donnent une idée plus vraisemblable de la réalité du futur que l’utilisation de tables de mortalité de générations décédées. Mieux vaut parfois une approximation raisonnable qu’une précision illusoire.
Dans la Bible, le nombre quarante semble celui des épreuves, de la pénitence, de l’attente et de la préparation. Il nous en reste la quarantaine et le carême chrétien, qui durent 40 jours. Ainsi, le déluge dure également 40 jours, la vie de Moïse est divisée en trois périodes de 40 ans, qui sont autant d’épreuves, les Hébreux errent 40 ans dans le désert et, quand Moïse monte au Sinaï, il y confère 40 jours avec Dieu. En rappel de toutes ces épreuves, Jésus se retire 40 jours au désert avant son ministère.
Le nombre de fauteuils de l’académie française
Est-ce pour la même raison que l’Académie française comprend 40 membres ? Seul Armand du Plessis, cardinal de Richelieu (1585 – 1642), qui fixa ce nombre, pourrait répondre à cette question. Cependant, à lire Arsène Houssaye (1814 – 1896) dans l’histoire du 41e fauteuil, ce fauteuil immortellement vide fut sans doute toujours le mieux occupé puisqu’on a pu y voir des hommes comme Molière, Pascal ou Descartes quand l’immortel abbé Cotin, et d’autres de la même envergure, siégeaient parmi les 40 premiers. Cette expression transgressive, « le 41e fauteuil », peut être rapprochée du « 21e arrondissement de Paris », lieu de tous les miracles et sans doute le mieux famé de tous les arrondissements de la capitale puisque, selon une antique expression populaire, tous les couples illégitimes s’y marient.
L’an 40
Enfin, pour ne pas être en reste sur 40, notons l’expression : s’en moquer comme de l’an 40 qui signifie « s’en désintéresser totalement ». D’où vient ce mystérieux 40 ? Les hypothèses sont tellement nombreuses qu’il est difficile de toutes les citer. Dans tous les cas, il ne s’agit pas de 1940 car l’expression est attestée au XVIIIe siècle. Certains la voient d’origine québécoise où la fin du monde avait été prévue en 1740… et ne s’était apparemment pas produite. D’autres y voient la transformation d’une très ancienne expression : s’en moquer comme de l’alcoran, mot qui désignait le Coran au XIVe siècle. Dans la lignée de 40, on peut encore citer 400 comme nombre de la plénitude, mais péjorative, dans l’expression : faire les 400 coups, qui signifie faire toutes les bêtises possibles. De même, 1000 peut être utilisé pour dire « beaucoup » et 1001 encore plus comme dans les mille et une nuits ou aussi : je te l’ai dit mille et une fois !
Pourquoi dit-on « dans huit jours » pour dire « dans une semaine » ? Et 15 pour deux semaines, alors que 15 n’est même pas divisible par 2 ! De même, si nous sommes mardi 9 et que nous voulons parler du jeudi 11, nous disons « jeudi prochain », pour le suivant, le jeudi 18, « jeudi en huit » et pour le 25, « jeudi en quinze ».
Une origine biblique
L’origine n’est pas mathématique mais biblique ! En effet, nous retrouvons ce nombre 8 dans la Bible où il signifie qu’une semaine a été révolue. Le « huitième » est alors la marque du monde nouveau. Dans le judaïsme, la circoncision se pratique le huitième jour après la naissance. De même, l’auteur de l’évangile de Jean choisit le huitième jour pour faire apparaître Jésus Christ à Thomas, qui ne croyait pas les autres disciples.
Comme Platon, les mathématiciens sont des créateurs de mondes, tels celui du mythe de la caverne. Doit-on pour autant considérer les mathématiciens comme platoniciens ?
Qu’elle fut ou non gravée à l’entrée de son académie, la phrase Que nul n’entre ici s’il n’est géomètre est conforme à la pensée de Platon : il est bon que le philosophe apprenne la géométrie. Au livre VII de La république, il mentionne d’ailleurs son étude comme un pré requis à celle de la philosophie, et une matière indispensable dans le cursus du futur citoyen. Les mathématiques forgent la pensée de Platon, comme on le voit dans Le Ménon. Inversement, tout mathématicien est-il platonicien ?
Un créateur de mythes
Avant d’essayer de répondre à cette question, examinons le mode de pensée de Platon. Sa méthode fondamentale est la création de mythes. Le procédé est classique dans l’Antiquité où l’usage de métaphores permettait d’introduire des concepts abstraits à travers des expériences quotidiennes. Le mythe le plus célèbre inventé par Platon est celui de la caverne, où il introduit le concept de « monde des idées ». En voici un résumé rapide. Des hommes, enfermés dans une caverne, ne voient l’extérieur qu’à travers des ombres. Ils n’ont pas accès à la réalité mais seulement à son image. Ce mythe est une métaphore où la caverne est notre monde, et l’extérieur, le monde des idées. Une transposition est nécessaire pour comprendre le message de Platon, même si celle-ci est claire.
Le monde des idées
Ce monde des idées, existe-t-il ? Platon l’a postulé, ce qui l’a mené à adopter la thèse de l’immortalité de l’âme. Elle lui permet d’affirmer qu’elle vient de ce monde et, pour cette raison, en garde une vague mémoire. La philosophie grecque a parfois ce côté jusqu’au boutiste, que l’on retrouve facilement chez les mathématiciens. Pas question pour eux que 2 + 2 fasse 3,99. C’est 4 sans discussion possible. Cette démarche, correcte quand elle reste dans son cadre, peut aboutir parfois à des extravagances inutiles, comme l’idée d’une âme immortelle, même dans le passé. Platon en avait besoin pour expliquer notre accès instinctif à son monde des idées. Pour lui, on n’apprend pas, on se souvient. Cette remarque explique la pédagogie de Socrate dans Le Ménon, quand il fait démontrer le théorème de Pythagore à un esclave. Celui-ci est censé retrouver des connaissances lointaines, du temps où son âme n’était pas prisonnière de son corps. Socrate aide son interlocuteur à « accoucher » de ce qui existe déjà en lui. Dans ce sens, l’invention est impossible, seul « trouver » l’est. Ce vocabulaire correspond à celui utilisé en général en mathématiques. L’expression « il invente des théorèmes » est souvent péjorative, car elle sous entend qu’ils sont faux.
Le monde des idées mathématiques
De même, les mathématiciens inventent des mondes, semblables au monde des idées de Platon. Aucun point du monde réel n’est jamais le point idéal que nous imaginons. Il a forcément une certaine épaisseur. Il en est de même de la droite et du cercle. Nous en avons des idées que nous visualisons et même matérialisons, mais c’est sur les idées que nous raisonnons. Pour rendre ses résultats plus solides, depuis l’Antiquité, le monde de la géométrie est régi par un certain nombre d’axiomes, c’est-à-dire de résultats considérés comme vrais sans démonstration. Cette méthode a été généralisée et approfondie par David Hilbert au début du XXe siècle. De nos jours, chaque théorie (arithmétique, géométrie, etc.) a ses axiomes, qui la structurent.
L’ombre des idées
Ces théories ont un rapport complexe avec la réalité. Officiellement, pour les mathématiciens, les axiomes résultent du libre arbitre des créateurs de ces théories. Est-il raisonnable de le prétendre, ou est-ce un moyen de se libérer de la réalité ? Restons dans le domaine de la géométrie pour donner un exemple. On y démontre une propriété de la parabole, liée à son foyer (appelée propriété focale pour cela), que nous résumons par un dessin.
Cette propriété a des conséquences visibles dans notre univers quotidien : paraboles sur les toits des immeubles, fours solaires petits et grands, phares des voitures ou des bords de mer. La propriété des paraboles existant dans le monde de la géométrie s’applique dans notre monde.
Peu de mathématiciens doutent réellement de cette efficacité, même si certains scientifiques l’estiment « déraisonnable ».
Vérité des axiomes
La raison de cette « estimation » est l’opinion exprimée par les mathématiciens contemporains eux-mêmes. Si vous les questionnez sur ce que sont les axiomes, il est probable qu’ils répondront comme nous l’avons exposé plus haut. Ce sont des règles que l’on se donne de manière arbitraire, et sur lesquelles on développe une théorie cohérente, en suivant les règles de la logique. De ce point de vue, cette théorie n’est pas plus « réelle » ou « vraie » que les axiomes qui la fondent. Cependant, les résultats acquis sont extrêmement solides. Si on admet la « vérité » des axiomes, celle des théorèmes suit.
Les théories mathématiques : des modèles
Si cette vérité est conditionnelle, pourquoi les résultats des mathématiques sont-ils utiles dans le monde réel ? La réponse est simple. Les axiomes ne sont pas choisis arbitrairement ! Plutôt que de le prétendre, il serait préférable de dire que, s’ils l’étaient, on pourrait encore parler de mathématiques. Mais ils ne le sont pas ! Le fait est que l’on ne s’intéresse pas à ces mathématiques du bon plaisir. Ils sont choisis pour que les théories mathématiques qui en découlent soient de bons modèles de la réalité. Pour cela, ils s’en inspirent. Comme Platon, les mathématiciens inventent des mondes idéaux, dont la réalité est un reflet. En ce sens, ils sont platoniciens mais des platoniciens rarement dupes de leurs modèles. Ils ont conscience que leur monde des idées est une abstraction dont ils sont l’origine. Ce n’est pas un monde préexistant de toute éternité, comme le monde des idées de Platon.
Certains écoliers peinent avec la règle des signes et en particulier avec le terrifiant « moins par moins égal plus ». Dans La vie de Henry Brulard, son roman autobiographique, Stendhal s’en amuse ainsi :
Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ?
Brahmagupta invente le zéro
L’usage des termes mathématiques hors contexte peut donner des résultats surprenants. La raison de la règle des signes est d’une autre nature (voir les dangers de philosopher sur les nombres). L’important est que les règles de calcul habituelles sur les nombres soient respectées. C’est ce que fait l’inventeur du nombre zéro et des nombres négatifs, le mathématicien indien Brahmagupta, (VIIe siècle de notre ère) quand il donne les règles régissant zéro, ainsi que nombres positifs ou négatifs, en termes de dettes et de fortunes :
Une dette moins zéro est une dette. Une fortune moins zéro est une fortune. Zéro moins zéro est zéro. Une dette soustraite de zéro est une fortune. Une fortune soustraite de zéro est une dette. Le produit de zéro par une dette ou une fortune est zéro. Le produit de zéro par zéro est zéro. Le produit ou le quotient de deux fortunes est une fortune. Le produit ou le quotient de deux dettes est une fortune. Le produit ou le quotient d’une dette et d’une fortune est une dette. Le produit ou le quotient d’une fortune et d’une dette est une dette.
Le zéro absolu
Pour revenir à notre écolier moderne, pardonnons-lui car la question n’est pas si simple. Ainsi, dans ses Pensées, Blaise Pascal (XVIIe siècle), pourtant grand mathématicien, écrit cette phrase surprenante :
Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro.
Sans le vouloir, Pascal pointe ici l’une des difficultés à considérer zéro comme un nombre véritable : l’idée du zéro absolu, celui en dessous duquel on ne peut descendre. Il n’aurait sans doute pas admis nos températures négatives, et aurait donc préféré les degrés Fahrenheit aux Celsius. Pour cette raison, sans aucun doute, Daniel Gabriel Fahrenheit (XVIIIe siècle) fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° et elle bout à 212° environ.
La règle des signes n’est donc pas si simple … mais source de poésie !
Pourquoi les Grecs n’ont-ils découvert ni les réels, ni le zéro et n’admettaient même pas le « un » dans la confrérie des nombres ? La raison tient à la philosophie, voire la mystique, dont ils encombraient ces notions. Le même schéma se retrouve à l’œuvre dans les temps modernes.
Idée pythagoricienne des nombres
Les nombres sont nés englués de mystique. Pour Pythagore, le « un » représente le divin. Plus précisément, voici comment il parle du nombre triangulaire : 1 + 2 + 3 + 4 = 10.
Pour lui, le « un » est le divin, le principe de toute chose … Le « deux » est le couple masculin, féminin, la dualité … Le « trois », les trois niveaux du monde, l’enfer, la terre et le ciel … Le « quatre », les quatre éléments, l’eau, l’air, la terre et le feu … Enfin, le tout fait « dix », la totalité de l’univers, le divin compris ! On peut trouver ces idées poétiques mais, avec de telles prémisses, on peut aussi craindre le pire ! C’est pour de telles raisons mystiques que Pythagore proclama : « tout est nombre » ce qui, dans son esprit, signifie « nombre entier naturel ». L’idée venait de la « raison ». Elle était rationnelle.
Les grandeurs commensurables
Pourtant, pour être égaux aux rapports entre nombres entiers, il est nécessaire que les longueurs (ou les quantités de façon générale) aient une commune mesure, soient commensurables en d’autres termes. Cela signifie que si AB et BC sont deux segments contigus, on peut placer un point U tel que AB et AC soient multiples de AU (AU est la commune mesure).
L’échec des fractions
Malheureusement pour sa doctrine, Pythagore prouva lui-même qu’il existe des grandeurs incommensurables, le côté et la diagonale d’un carré par exemple. Son raisonnement est fondé sur la figure suivante.
En factorisant l’égalité : AB . AB = 2 CD . CD, Pythagore obtint une absurdité. Son idée s’écroule : il existe des longueurs incommensurables. Son dogme « tout est nombre » ne retrouvera vie que dans les temps modernes, quand d’autres « objets » seront admis dans le champ des nombres, en particulier, le rapport de la diagonale au côté du carré, racine de 2 que nous disons toujours irrationnelle.
Le “un” est-il un nombre ?
Que les idées mystiques aboutissent à des erreurs semble normal. Plus étrangement, le « bon sens » peut faire de même. Les anciens Grecs ne considéraient pas l’unité comme un nombre, car elle ne représente pas une multiplicité. On ne dénombre qu’à partir de deux ! Selon Euclide, un nombre est un assemblage composé d’unités. Autrement dit, l’unité est la source et l’origine de tout nombre. Avant de compter, il est nécessaire de distinguer l’unité qui, de ce fait, a un statut à part. Qu’est-ce qu’un sommet en montagne ? Cette question peut sembler simpliste, elle demande pourtant de savoir distinguer une antécime d’un sommet. Il en est de même si on veut compter des plantes. Dans chaque cas, il est nécessaire de distinguer l’unité.
Une fois cette étape accomplie, nous pouvons dénombrer, ce qui correspond à une suite d’opérations : 2 = 1 + 1, 3 = 1 + 1 + 1, etc. L’idée qu’une seule unité serait un nombre est rejetée car « 1 » est singulier et les nombres, pluriels. L’assemblage commence à deux. La question peut sembler factice, mais elle est plus embarrassante qu’il n’y paraît. Quand faut-il utiliser un pluriel ? Du fait de ce type de questions, il fallut plusieurs millénaires pour voir dans le « un » rien d’autre qu’un nombre ordinaire. Le problème s’est alors reporté sur le zéro.
“Zéro” est-il un nombre ?
Pendant longtemps, zéro a été exclu de l’univers des nombres car il ne représente ni un dénombrement, ni une mesure. Nous devons son apparition en tant que nombre au mathématicien indien Brahmagupta (VIIe siècle après Jésus-Christ). Pour lui, il ne s’agit pas seulement de la notation d’une absence d’unité, de dizaine ou de centaine, etc. comme dans la numération de position mais aussi d’un vrai nombre, sur lequel on peut calculer. Il le définit d’ailleurs comme le résultat de la soustraction d’un nombre par lui-même. Il donne les bons résultats l’impliquant dans les opérations licites (addition, soustraction et multiplication) mais se trompe en estimant que 0 divisé par 0 est égal à lui-même. On peut le comprendre, la question n’est pas simple.
Règle d’extension à zéro
La règle d’extension des résultats à zéro n’est pas d’origine philosophique, mais calculatoire. Par exemple, que vaut un nombre à la puissance zéro ? Pour répondre à cette question, se demander ce que signifie de porter un nombre à la puissance zéro est inutile, voire nuisible. A priori, 2 à la puissance 4 (par exemple) est égal à 2 multiplié 4 fois par lui-même, soit 24 = 2 . 2 . 2 . 2. De même, en remplaçant 4 par n’importe quel nombre entier supérieur à 1, donc 21 = 2. Mais que peut bien vouloir dire un nombre multiplié 0 fois par lui-même ? Se poser la question ainsi, c’est se condamner à ne pas pouvoir y répondre. En fait, il faut trouver un principe d’extension. La propriété essentielle est la formule 24+1 = 24 . 2, valable en remplaçant 4 par n’importe quel nombre. En le remplaçant par 0, nous obtenons 20+1 = 20 . 21, ce qui donne 2 = 20 . 2. En simplifiant par 2, nous obtenons 20 = 1. Ce résultat est encore vrai si nous remplaçons 2 par tout nombre non nul. Ainsi, un nombre non nul porté à la puissance 0 est égal à 1.
Cette égalité correspond à une idée subtile : celle de la généralité des calculs. On définit la puissance 0 pour que les règles de calcul connues sur les puissances restent vraies dans ce cas particulier. Il reste l’ambiguïté de 0 à la puissance 0. Suivant les cas, on peut retenir la valeur 1 par souci de généralité ou considérer cette quantité comme non définie.
Pour la même raison, il est possible d’étendre la définition de la factorielle. A priori, 4 ! (lire factorielle 4) est le produit des entiers naturels de 1 à 4, de même 5 ! La factorielle de 0 n’a donc aucun sens. Cependant, comme précédemment, 5 ! = 5 . 4 ! et ceci en remplaçant 4 par n’importe quel nombre. Si nous voulons définir 0 !, il est donc nécessaire que 1 ! = 1 . 0 ! ce qui fournit 0 ! = 1. Pour les mêmes raisons, le produit et la somme d’une liste de zéro nombre entier sont égaux à 1 et 0.
Les nombres négatifs
Les mêmes phénomènes de méfiance se sont produits pour les nombres négatifs même si, de nos jours, ils ont pris un sens concret avec les températures, qui peuvent être négatives, et les étages en sous-sol des immeubles. À l’époque de Brahmagupta, cette notion était très abstraite. Les nombres négatifs n’ont d’ailleurs été admis en Occident que bien plus tard. Descartes les évitait encore ! Dans ses Pensées, Pascal, pourtant grand mathématicien, écrit d’ailleurs cette phrase surprenante : « Trop de vérité nous étonne ; j’en sais qui ne peuvent comprendre que, qui de zéro ôte 4, reste zéro ». Sans le vouloir, Pascal pointe ici l’une des difficultés à considérer zéro comme nombre véritable : l’idée du zéro absolu, celui en dessous duquel on ne peut descendre. Il n’aurait sans doute pas admis nos températures négatives, et aurait donc préféré les degrés Fahrenheit aux Celsius. Fahrenheit fixa l’origine des températures (0° Fahrenheit) à la plus basse qu’il ait observée. C’était durant l’hiver 1709 dans la ville de Dantzig, où il habitait. Pour 100° Fahrenheit, il choisit la température corporelle d’un cheval sain ! Dans son système, l’eau gèle à 32° (Celsius) et elle bout à 212° environ.
Ces choix étranges de Fahrenheit s’expliquent par la réticence de l’époque devant les nombres négatifs. On préférait d’ailleurs parler de quantités plutôt que de nombres. Il s’agissait d’artifices de calcul pour résoudre des équations, dont on écartait ensuite les solutions négatives. Tout en étant une origine, zéro véhicule une idée d’absolu, en dessous duquel on ne peut aller, comme on le voit chez Pascal. Cette idée a perduré jusqu’au XIXe siècle, Lazare Carnot disait encore : « Pour obtenir réellement une quantité négative isolée, il faudrait retrancher une quantité effective de zéro, ôter quelque chose de rien : opération impossible. Comment donc concevoir une quantité négative isolée ? »
L’erreur de sens
La question ne doit pas être examinée d’un point de vue philosophique en se demandant, par exemple, ce que signifie de multiplier les dettes entre elles, ou de plaisanter sur les possibilités de faire un bénéfice en les multipliant comme le fait Stendhal dans La vie de Henry Brulard, son roman autobiographique : « Supposons que les quantités négatives sont des dettes d’un homme, comment en multipliant 10 000 francs de dette par 500 francs, cet homme aurait-il ou parviendra-t-il à avoir une fortune de 5 000 000, cinq millions ? »
L’usage des termes mathématiques hors contexte peut donner des résultats amusants, mais la question n’est pas là. L’important est que les règles de calcul habituelles sur les nombres soient respectées. Ces idées ont débouché sur la notion de corps de nombres au XIXe siècle.
La réalité des réels
L’expérience du calcul suggère que l’écriture décimale permet d’atteindre les mesures avec toute précision désirée, quelle qu’elle soit. Celle-ci n’a pas de limite et on peut, par exemple, parler du milliardième chiffre après la virgule du nombre pi. Jusqu’à la fin du XXe siècle, ce genre d’affirmation avait un côté gratuit car personne ne pouvait le connaître. Aujourd’hui, nous savons qu’il s’agit du chiffre 2. Bien sûr, il existera toujours une limite indépassable, tout simplement parce que notre temps est fini, et notre énergie comptée. Aussi infime que soit le coût de l’impression d’un chiffre sur du papier, un écran d’ordinateur ou un emplacement mémoire d’un DVD, on se ruinerait à vouloir en écrire trop. Cependant, il est facile d’imaginer que tout nombre possède un nième chiffre après la virgule, et cela pour tout entier n, aussi grand soit-il.
De façon générale, nous appelons développement décimal une suite de chiffres telle que 65, 692 873 451 etc. à l’infini avec la condition suivante : les chiffres ne sont pas tous égaux à 9 à partir d’un certain rang. Le résultat est ce que l’on appelle un nombre réel. Ces nombres permettent de représenter la notion intuitive de mesure (longueur, aire, volume, temps, etc.). Pourquoi ? Pour l’expliquer, imaginez vouloir mesurer un segment OA. Comment faites-vous ? Sans doute prenez-vous une règle graduée.
Vous faites correspondre le point O et la graduation 0 de la règle puis placez celle-ci le long du segment OA. Le point A se situe alors entre deux graduations, disons entre 2 et 3. La longueur vaut donc 2, augmenté de quelque chose. Comment l’évaluer plus précisément ? Tout simplement en utilisant les graduations directement inférieures (les dixièmes). La longueur se situe entre deux de ces graduations, disons entre 6 et 7. On peut imaginer continuer ainsi à l’infini même si, en réalité, nous ne pouvons dépasser une certaine précision. La longueur OA est donc représentée par un développement décimal, éventuellement illimité. De plus, une suite infinie de 9, comme 2, 999 … par exemple, est impossible car correspond au nombre directement supérieur (ici 3). La notion de nombre réel est donc un bon modèle mathématique pour étudier celle de longueur et, de façon plus générale, de toute mesure de même nature.
Les nombres aujourd’hui
Le mot « réel » ne doit pas leurrer. Ces nombres n’existent pas plus dans la réalité que les autres. Ce sont des abstractions utiles pour modéliser le monde réel. Leur efficacité se mesure à l’aune des résultats qu’ils permettent d’obtenir. Autrement dit, le contrôle philosophique sur les nombres ne se fait pas a priori pour satisfaire à quelques conceptions plus ou moins dogmatiques. Ce contrôle se fait aposteriori sur les résultats qu’ils permettent d’obtenir. Cette idée peut troubler certains car elles impliquent que la vérité se mesure à son efficacité. Il en est de même des axiomes des mathématiciens. Il n’existe pas d’axiomes « vrais », il existe des axiomes utiles.
La théorie des probabilités permet de démontrer que les jeux de casino comme la roulette sont conçus pour ruiner les joueurs, même si ce jeu a des failles … que nous ne dévoilerons pas ici. La loi des grands nombres assure un bénéfice confortable aux organismes de jeu. Le hasard intervient pour les joueurs, pas pour eux ! Les compagnies d’assurance agissent de même. Si elles assurent cent mille voitures, elles savent d’avance combien auront d’accidents et quel en sera le coût. La prime d’assurance est calculée en fonction de ce risque qui n’en est plus un dès que l’on applique la loi des grands nombres ! Si 5% des automobilistes ont un accident chaque année, vous ne pouvez prévoir si vous en aurez un. En revanche, votre compagnie d’assurance sait que, sur ses cent mille assurés, cinq mille environ auront un accident.
La loi des petits nombres
Contrairement aux organismes de jeu et aux assureurs, les particuliers n’utilisent pas la loi des grands nombres. Si un événement malheureux mais peu probable se produit deux fois de suite à une année d’intervalle, ils se diront que « jamais deux sans trois » et prévoiront un troisième pour l’année suivante. À l’inverse, plusieurs années sans accident leur feront croire que plus rien ne peut leur arriver. Autrement dit, ils utilisent une loi des petits nombres et non la loi des grands nombres. Bien entendu, il ne s’agit pas de mathématique mais de psychologie ! Pour un mathématicien, cette loi des petits nombres peut passer pour un canular. C’est pourtant de manière tout à fait scientifique et en utilisant correctement la loi des grands nombres que Daniel Kahneman (né en 1934) l’a mise en évidence. Plus précisément, il a étudié expérimentalement le comportement des individus devant l’assurance ! Il apparaît que plusieurs années sans accident poussent l’américain moyen à résilier ses contrats d’assurance !
Certains chiffres entendus sur les médias sont surprenants, surtout quand ils sont donnés sans explication.
Dénombrer les migrants
Aujourd’hui, vous apprenez que, selon le ministère de l’intérieur, il y aurait entre 200000 et 400000 clandestins présents sur le territoire français. D’où viennent ces chiffres ? Le propre des clandestins … est de l’être, et donc d’échapper à tout recensement.
La démographie permet cependant d’évaluer leur nombre. Pour commencer, nous connaissons les taux de mortalité par âge et par origine. Nous pouvons estimer que les taux sont environ les mêmes pour les clandestins. Du nombre de décédés sans papiers, nous pouvons donc déduire une approximation du nombre de vivants sans papiers. La même opération est possible grâce aux naissances. Les recensements permettent aussi de se douter de la présence de clandestins, quand les nombres recensés ne correspondent pas aux nombres prévus.
Dénombrer les séropositifs
De même, vous apprenez que 150000 personnes sont porteuses du virus du sida (c’est-à-dire séropositives) en France, dont 40000 l’ignorent. Comment peut-on faire une telle estimation ? S’ils l’ignorent, comment le savons-nous ? Ici encore, l’idée est de faire des recoupements. Sans rentrer dans toute la subtilité des détails, voyons le principe du calcul. Imaginons que nous connaissions le nombre de cas de sida diagnostiqués une certaine année, 500 par exemple. Parmi ceux-ci, 370 correspondent à des personnes dont la séropositivité était connue. Ainsi 130 étaient des séropositifs inconnus les années précédentes. Il est donc légitime d’estimer que pour 370 séropositifs connus, il en existe 130 inconnus. Nous multiplions le nombre de séropositifs connus (110000 par exemple) par le rapport 130 / 370 pour en déduire le nombre de séropositifs inconnus, ce qui donne un peu moins de 40 000. Bien sûr, le modèle est un peu plus raffiné que cela car certains milieux sont plus conscients du danger de cette maladie que d’autres et pratiquent les tests plus volontiers. Les taux entre connus et inconnus diffèrent alors selon le milieu. Dans tous les cas, à défaut d’un vaccin, l’idéal pour enrayer l’épidémie et mieux soigner les malades serait un test annuel pour tous. Ce serait malgré tout coûteux et difficile à mettre en place.
Dans ses Méditations métaphysiques, René Descartes utilise l’exemple des chiliogones, c’est-à-dire des polygones à 1000 côtés, pour montrer qu’il existe des choses faciles à concevoir sans pour autant qu’il soit possible de les représenter. Essayons de le faire dans le cas du chiliogone régulier convexe !
Les polygones réguliers convexes
Si nous nous limitons aux polygones réguliers convexes, les premiers sont le triangle équilatéral, le carré, le pentagone régulier convexe et l’hexagone régulier convexe.
Le chiliogone régulier convexe
À partir de là, il est facile d’imaginer le chiliogone régulier convexe : en pratique, il est indiscernable du cercle.
Si on supprime la condition de régularité et si les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée convexe. Si la condition de convexité est supprimée et les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée … qui peut ressembler à un infâme gribouillis.
Comment comprendre le monde moderne sans culture mathématique ? Accéder à celle-ci n’exige cependant pas d’apprendre à résoudre la moindre équation.