L’énigme du tunnel de Samos

Dans l’île grecque de Samos, on peut visiter un tunnel qui, selon Hérodote, fut creusé au VIe siècle avant notre ère, simultanément par ses deux extrémités … et l’erreur au point de rencontre ne fut que de 60 centimètres, comme le tracé du tunnel l’atteste toujours. On ne sait pas comment son architecte, Eupalinos, en fit les plans, mais on sait qu’ils ne doivent rien au hasard. La plupart des historiens qui se sont penchés sur la question en on déduit qu’Eupalinos avait anticipé les instruments et les mathématiques inventés plusieurs siècles après sa mort. Est-ce vraisemblable ? Pourquoi les aurait-on oubliés ensuite ? De plus, pourquoi faire des hypothèses inutiles ? Il est plus raisonnable d’essayer d’imaginer des méthodes compatibles avec les mathématiques et les instruments connus de l’époque.

Un aqueduc extérieur imaginaire …

De la source captée jusqu’à l’entrée du tunnel, l’eau suit des conduites extérieures, quoique enterrées. On peut imaginer que, dans un premier temps, l’aqueduc allait ainsi jusqu’à la sortie du tunnel en suivant grossièrement les lignes de niveaux du terrain. La topographie le permet comme le montre la carte du lieu.

Les lignes de niveaux aux alentours du tunnel de Samos (entrée en A, sortie en B) montrent qu’il est possible de contourner la montagne par l’ouest (voir l’orientation sur le dessin) en restant à niveau (ligne ACB). Le trajet fait alors environ 2200 mètres (le double du trajet direct AB).

…qui aide à trouver la sortie

Cette hypothèse est difficile à soutenir car aucun vestige d’un tel ouvrage ne nous est parvenu. De plus, le tunnel est quasiment horizontal, seul le canal qui le longe a une déclivité de six mètres sur un peu plus d’un kilomètre. Cette hypothèse d’un aqueduc extérieur donne cependant une première approche du problème, naturelle pour un constructeur d’aqueduc. Pour déterminer l’entrée et la sortie, il s’agit de se déplacer à l’horizontale au flanc de la montagne, pour rejoindre un point duquel l’aqueduc peut continuer. Des preuves archéologiques montrent que les Samiens disposaient d’instruments pour déterminer l’horizontale. Le principe en est simple. Il s’agissait de longues gouttières en terre cuite dans lesquelles on versait de l’eau. L’horizontale était obtenue quand l’eau ne s’écoulait pas. De même, ils utilisaient des fils à plomb, ce qui permettait de déterminer la verticale. On peut imaginer suivre l’horizontale ainsi en plantant des pieux dont les sommets restent au même niveau. Si le niveau mesure 2 mètres de long, et que l’incertitude est inférieure à 1 millimètre pour chaque pieu, nous obtenons une incertitude totale de 1,10 mètres. L’erreur effective à la jonction des deux branches du tunnel étant de 60 centimètres, l’utilisation de cette méthode est vraisemblable. Cependant, elle exige de planter 1100 pieux. On peut la simplifier de ce point de vue en utilisant des visées oculaires permettant d’espacer les pieux.

Pour cela, on plante deux pieux à 10 mètres l’un de l’autre, dont les sommets sont à l’horizontale et on les aligne avec un pieu à cent mètres environ, tenu par un assistant. Ceci permet de passer à un total d’une cinquantaine de pieux (deux tous les 100 mètres environ).

Visée pour maintenir l’horizontale. Les pieux A et B sont alignés grâce à un niveau à eau. Si l’erreur entre les deux est limitée à 2 millimètres, celle entre A et C sera limitée à 2 centimètres. La capacité de l’œil humain rend insensible l’erreur due à l’acuité visuelle.

L’œil humain a une capacité de résolution de 0,5 minute environ (1 / 120 degré). Avec un viseur, sur cent mètres, nous pouvons espérer une incertitude inférieure à 2 centimètres. Sur une distance de 2 200 mètres, cela donne une incertitude totale de 44 centimètres, ce qui est compatible avec l’erreur effective de 60 centimètres.

La direction de la sortie

La deuxième extrémité trouvée, comment déterminer la direction dans laquelle le tunnel doit être percé ? Une idée simple tient à la topographie du terrain. Il s’en faut de peu que l’on ne puisse voir les deux extrémités du tunnel du haut de l’Acropole. Dans ce cas, il aurait suffi d’y disposer trois pieux alignés et, par approximations successives de les aligner à des pieux plantés aux extrémités du tunnel à construire. L’opération est semblable à la précédente, sans mise à niveau.

Si le sommet S est visible des extrémités A et B, il suffit d’aligner cinq pieux, trois en S, un en A et un en B pour déterminer la direction AB. Cette opération peut être faite par essais successifs.

En fait, la topographie du terrain ne permet pas cette solution. On peut malgré tout l’appliquer, soit en surélevant le sommet au moyen d’une tour de dix mètres environ, soit en plantant des pieux intermédiaires. Une station supplémentaire, éventuellement légèrement surélevée, suffit pour réaliser un alignement visible de proche en proche.

En disposant des relais (comme I) entre les extrémités A et B et le sommet, il est possible de réaliser un alignement de pieux entre A et B. On vérifie cet alignement comme précédemment, de proche en proche.

Ceci fait, les deux pieux à chaque extrémité donnent la direction à suivre. Il est facile de la conserver ensuite. Cependant, pour être sûr de se rencontrer, le mieux est d’obliquer légèrement un peu avant le milieu des travaux car, dans un plan, deux droites non parallèles se rencontrent toujours. L’une des branches du tunnel effectivement construit par Eupalinos présente des portions en zigzag montrant qu’il n’était pas certain de ses mesures et voulait éviter de manquer le deuxième tronçon qui, lui, reste rectiligne.

Le problème de la longueur du tunnel est accessoire. Même s’il est utile de la connaître pour savoir quand obliquer pour être sûr de la rencontre, il suffit d’en avoir une approximation grossière. Une fois le tunnel construit, on peut la calculer de façon plus précise et en déduire la pente à donner au canal. Finalement, sa profondeur varie de 3 à 9 mètres pour assurer un flux constant.

Les mathématiciens sont-ils tous platoniciens ?

Comme Platon, les mathématiciens sont des créateurs de mondes, tels celui du mythe de la caverne. Doit-on pour autant considérer les mathématiciens comme platoniciens ?

Qu’elle fut ou non gravée à l’entrée de son académie, la phrase Que nul n’entre ici s’il n’est géomètre est conforme à la pensée de Platon : il est bon que le philosophe apprenne la géométrie. Au livre VII de La république, il mentionne d’ailleurs son étude comme un pré requis à celle de la philosophie, et une matière indispensable dans le cursus du futur citoyen. Les mathématiques forgent la pensée de Platon, comme on le voit dans Le Ménon. Inversement, tout mathématicien est-il platonicien ?

Un créateur de mythes

Avant d’essayer de répondre à cette question, examinons le mode de pensée de Platon. Sa méthode fondamentale est la création de mythes. Le procédé est classique dans l’Antiquité où l’usage de métaphores permettait d’introduire des concepts abstraits à travers des expériences quotidiennes. Le mythe le plus célèbre inventé par Platon est celui de la caverne, où il introduit le concept de « monde des idées ». En voici un résumé rapide. Des hommes, enfermés dans une caverne, ne voient l’extérieur qu’à travers des ombres. Ils n’ont pas accès à la réalité mais seulement à son image. Ce mythe est une métaphore où la caverne est notre monde, et l’extérieur, le monde des idées. Une transposition est nécessaire pour comprendre le message de Platon, même si celle-ci est claire.

Le monde des idées

Ce monde des idées, existe-t-il ? Platon l’a postulé, ce qui l’a mené à adopter la thèse de l’immortalité de l’âme. Elle lui permet d’affirmer qu’elle vient de ce monde et, pour cette raison, en garde une vague mémoire. La philosophie grecque a parfois ce côté jusqu’au boutiste, que l’on retrouve facilement chez les mathématiciens. Pas question pour eux que 2 + 2 fasse 3,99. C’est 4 sans discussion possible. Cette démarche, correcte quand elle reste dans son cadre, peut aboutir parfois à des extravagances inutiles, comme l’idée d’une âme immortelle, même dans le passé. Platon en avait besoin pour expliquer notre accès instinctif à son monde des idées. Pour lui, on n’apprend pas, on se souvient. Cette remarque explique la pédagogie de Socrate dans Le Ménon, quand il fait démontrer le théorème de Pythagore à un esclave. Celui-ci est censé retrouver des connaissances lointaines, du temps où son âme n’était pas prisonnière de son corps. Socrate aide son interlocuteur à « accoucher » de ce qui existe déjà en lui. Dans ce sens, l’invention est impossible, seul « trouver » l’est. Ce vocabulaire correspond à celui utilisé en général en mathématiques. L’expression « il invente des théorèmes » est souvent péjorative, car elle sous entend qu’ils sont faux.

Le monde des idées mathématiques

De même, les mathématiciens inventent des mondes, semblables au monde des idées de Platon. Aucun point du monde réel n’est jamais le point idéal que nous imaginons. Il a forcément une certaine épaisseur. Il en est de même de la droite et du cercle. Nous en avons des idées que nous visualisons et même matérialisons, mais c’est sur les idées que nous raisonnons. Pour rendre ses résultats plus solides, depuis l’Antiquité, le monde de la géométrie est régi par un certain nombre d’axiomes, c’est-à-dire de résultats considérés comme vrais sans démonstration. Cette méthode a été généralisée et approfondie par David Hilbert au début du XXe siècle. De nos jours, chaque théorie (arithmétique, géométrie, etc.) a ses axiomes, qui la structurent.

L’ombre des idées

Ces théories ont un rapport complexe avec la réalité. Officiellement, pour les mathématiciens, les axiomes résultent du libre arbitre des créateurs de ces théories. Est-il raisonnable de le prétendre, ou est-ce un moyen de se libérer de la réalité ? Restons dans le domaine de la géométrie pour donner un exemple. On y démontre une propriété de la parabole, liée à son foyer (appelée propriété focale pour cela), que nous résumons par un dessin.

Propriété focale de la parabole : Si une droite D parallèle à l’axe d’une parabole coupe celle-ci en un point M, la droite symétrique de D par rapport à la tangente en M à la parabole passe par son foyer.

Cette propriété a des conséquences visibles dans notre univers quotidien : paraboles sur les toits des immeubles, fours solaires petits et grands, phares des voitures ou des bords de mer. La propriété des paraboles existant dans le monde de la géométrie s’applique dans notre monde.

Parabole en montagne. L’utilisation d’un miroir en forme de parabole permet de focaliser les rayons du soleil en un point et donc de faire bouillir de l’eau. © Hervé Lehning

Peu de mathématiciens doutent réellement de cette efficacité, même si certains scientifiques l’estiment « déraisonnable ».

Vérité des axiomes

La raison de cette « estimation » est l’opinion exprimée par les mathématiciens contemporains eux-mêmes. Si vous les questionnez sur ce que sont les axiomes, il est probable qu’ils répondront comme nous l’avons exposé plus haut. Ce sont des règles que l’on se donne de manière arbitraire, et sur lesquelles on développe une théorie cohérente, en suivant les règles de la logique. De ce point de vue, cette théorie n’est pas plus « réelle » ou « vraie » que les axiomes qui la fondent. Cependant, les résultats acquis sont extrêmement solides. Si on admet la « vérité » des axiomes, celle des théorèmes suit.

Les théories mathématiques : des modèles

Si cette vérité est conditionnelle, pourquoi les résultats des mathématiques sont-ils utiles dans le monde réel ? La réponse est simple. Les axiomes ne sont pas choisis arbitrairement ! Plutôt que de le prétendre, il serait préférable de dire que, s’ils l’étaient, on pourrait encore parler de mathématiques. Mais ils ne le sont pas ! Le fait est que l’on ne s’intéresse pas à ces mathématiques du bon plaisir. Ils sont choisis pour que les théories mathématiques qui en découlent soient de bons modèles de la réalité. Pour cela, ils s’en inspirent. Comme Platon, les mathématiciens inventent des mondes idéaux, dont la réalité est un reflet. En ce sens, ils sont platoniciens mais des platoniciens rarement dupes de leurs modèles. Ils ont conscience que leur monde des idées est une abstraction dont ils sont l’origine. Ce n’est pas un monde préexistant de toute éternité, comme le monde des idées de Platon.