L’homme de Vitruve, un dessin exécuté par Léonard de Vinci (1452 – 1519) d’après le texte de Vitruve sur les proportions, un architecte romain du premier siècle avant Jésus-Christ, est mondialement connu mais qui connait la femme de Vitruve ? Albrecht Dürer (1471 – 1528) en a dessiné une.
Une femme de Vitruve en acier
L’idée est toujours vivante : Valérie Cheno (née en 1968) une sculptrice contemporaine en a créé une en acier.
L’homme de Vitruve, et donc la femme de Vitruve également, étant lié à une question mathématique, nous avons découvert que Valérie Cheno avait une formation scientifique ce qui lui sert également à équilibrer ses œuvres et sans doute explique aussi son monde imaginaire fait de lutins de couleur bleue .
Les lutins autour de la piscine
Lors de l’exposition aux Sources à Antibes, l’essentiel de ses œuvres ont été disposées le long d’un parcours autour de la piscine. Nous vous laissons en découvrir une partie ici.
On verra davantage de sculptures, et également des bijoux de Valérie Cheno sur son site : www.cheno.fr
La voûte semble être née plate. Pour permettre une ouverture dans un mur, traditionnellement, on posait au-dessus une pierre assez longue en guise de linteau, comme dans le cas de cette porte dans les ruines de Délos en Grèce.
S’ils ne disposaient pas de pierres assez longues, dès l’Antiquité, les architectes ont trouvé un moyen d’y pallier en utilisant plusieurs pierres plus petites disposées de façon à ce que le poids de l’ensemble bloque le linteau. La pierre centrale, en coin dans le dispositif, est appelée la clef de voute. Il est probable que cette méthode ait été trouvée par essais et erreurs même si elle s’explique très bien par la pesanteur, en calculant le bilan des forces exercées, ce que les ingénieurs savaient faire à l’époque d’Archimède (IIIe siècle avant notre ère). Il est important que les appuis sur les côtés soient suffisamment lourds pour ne pas être déplacés par la poussée latérale exercée par le linteau.
Pour des ouvertures plus importantes, les architectes ajoutaient simplement des colonnes ou des caryatides, qui sont des colonnes sculptées en forme de femmes (la variante masculine se nommant Atlante), ce qui donne des édifices comme l’Érechthéion sur l’Acropole d’Athènes. Ces colonnes étaient alors surmontées de linteaux comme une porte.
La même idée fonctionne avec des voûtes en arc de cercle comme en construisaient les Romains, mais qu’on trouve déjà chez les Égyptiens et les Grecs, même si c’est dans des constructions utilitaires comme des entrepôts ou des canalisations. Ici encore, le poids de la voûte s’exerce sur les piliers latéraux dont la masse assure la stabilité de l’ensemble.
Ces voûtes peuvent être prolongées pour former le plafond d’une salle, elles servent aussi à construire des ponts comme les deux ponts d’Albi, le vieux datant de 1040 et le neuf de 1867.
Les dômes
Mis à part les toits plats ou en pentes et les voûtes, les Grecs eurent l’idée de toits hémisphériques, autrement dit de dômes. Le principe de la stabilité de ces structures repose sur des murs solides, calculés pour soutenir le dôme, comme pour les voûtes. Les dômes de l’Antiquité comme celui de Sainte Sophie à Constantinople (aujourd’hui Istanbul) ont des assises massives, qui permettent la stabilité du tout même si le dôme de Sainte Sophie s’écroula en 1346, suite à un séisme survenu deux ans plus tôt.
La cathédrale Santa Maria del Fiore de Florence posa un problème plus épineux. En 1418, la cathédrale était achevée mis à part un trou béant de 45 mètres de diamètre au-dessus d’un tambour octogonal de 53 mètres de haut. D’après les plans de l’architecte initial, décédé depuis longtemps, un dôme devait reposer sur ce tambour. L’ennui est que personne ne savait ni comment le faire tenir sur une structure aussi légère, ni comment le construire sans échafaudage en bois, comme on le faisait à l’époque mais impossible ici du fait de la trop grande portée. La question fut mise au concours et Filippo Brunelleschi (1377 – 1446) le remporta avec une double structure légère, une à l’extérieur, l’autre à l’intérieur. Finalement, le tout fut monté progressivement par anneaux horizontaux et sans échafaudage, un peu comme on le fait dans certains pays d’Afrique pour des cases en forme d’ogive. Ce type de construction semble venir de l’antique Nubie, car on en trouve en haute Égypte.
Le mathématicien John Nash (né en 1928) est mort le 23 Mai 2015 en compagnie de son épouse Alicia (née en 1933) dans un accident de taxi dans le New Jersey. Ils revenaient d’Oslo où John avait reçu le prix Abel, considéré comme le prix Nobel des mathématiques, le 19 Mai en compagnie de Louis Nirenberg (né en 1925) pour leurs contributions fondamentales et absolument remarquables à la théorie des équations aux dérivées partielles non linéaires, et à ses applications à l’analyse géométrique.
Théorie des jeux
John Nash est plus connu pour son apport à la théorie des jeux pour lequel il a obtenu le prix Nobel d’économie en 1994. Pour simplifier, la théorie des jeux est l’étude des comportements rationnels des individus en situation de conflit d’où ses applications en économie, stratégie et politique. Les équilibres de Nash sont les issues du jeu où aucun joueur ne regrettera son choix a posteriori. Prenons l’exemple de la course aux armements du temps de la guerre froide. Les États-Unis comme la Russie gagnent à ne pas dépenser leur argent inutilement mais ils perdent d’arrêter la course si l’autre la poursuit. Le jeu a ainsi deux équilibres de Nash : les deux pays courent ou les deux s’arrêtent.
Une femme d’exception
John Nash est également connu pour le film qui lui a été consacré dont le titre français est Un homme d’exception, qui décrit son combat contre la schizophrénie dans lequel son épouse Alicia fut véritablement une femme d’exception.
Boby Lapointe (1922 – 1972) est connu comme chanteur humoriste, le seul chanteur français jamais sous-titré en France. Pourquoi ? Pas à cause de son élocution aléatoire mais parce que l’apprécier demandait une sacrée gymnastique intellectuelle ! Voici le début d’une de ses chansons les plus faciles pour en montrer le style.
Le poisson Fa
Il était une fois Un poisson fa. Il aurait pu être poisson-scie, Ou raie, Ou sole, Ou tout simplement poisseau d’eau,
Ou même un poisson un peu là, Non, non, il était poisson fa : Un poisson fa, Voilà.
et cela continue avec toutes les notes…
Une formation mathématique
Pas étonnant diront certains car la formation de Boby Lapointe était fortement marquée par les mathématiques. Il aurait pu faire partie de l’Oulipo, comme adepte des littératures à contraintes ! Après un bac MathElem en 1940, il suivit les cours d’une classe de MathSpé et aurait intégré SupAero s’il n’avait pas été requis par le STO (service du travail obligatoire) en Autriche, dont il s’est évadé pour vivre dans la clandestinité. Boby Lapointe était donc un matheux et on le voit dans une de ses inventions.
L’hexadécimal
Revenons aux mathématiques avant de revenir à Boby Lapointe ! Vous avez sans doute remarqué que les clefs Wifi sont formées de chiffres décimaux entrecoupés de quelques lettres, entre A et F, comme par exemple : 9A8356D713058F4569C54039A0.
Il s’agit en fait d’un nombre écrit en base seize, en hexadécimal autrement dit. Dans cette base, les chiffres sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Les cinq derniers représentent les nombres décimaux de 10 à 15. Ce système permet d’écrire les nombres binaires de façon raccourcie. Par exemple, pour écrire le nombre binaire 1 100 101 en hexadécimal, il suffit de grouper les bits par quatre : 110 0101 et de traduire ces groupes : 110 vaut 6 et 0101, 5. Ce nombre s’écrit donc 65 en base seize. De même, un milliard, qui s’écrit 11 1011 1001 1010 1100 1010 0000 0000 en binaire, s’écrit 3B 9AC A00 en hexadécimal, ce que l’on obtient en traduisant chaque groupe de quatre bits.
Le système bibi-binaire
Boby Lapointe inventa une notation pour les chiffres hexadécimaux où chaque chiffre se voit attribuer un symbole et une prononciation.
Ainsi 2019, qui s’écrit 7E3 en hexadécimal puisque 2019 vaut 7 x 16² + 14 x 16 + 3, se dit “bidehi” en bibi-binaire et s’écrit :
Del Aor a abandonné les mathématiques pour se consacrer exclusivement à la peinture, avec juste raison car son talent est éclatant et on en reparlera …
Ce commentaire de Jean-Luc Chalumeau est élogieux mais étonnant, et donne envie au mathématicien de s’exprimer. Comment regarder une toile de Lara Del Aor sans voir qu’elle n’a jamais abandonné les mathématiques ?
Des figures mathématiques simples
En effet, Lara Del Aor peint des figures mathématiques simples (cercles, triangles, carrés, rectangles) où la lumière se décompose de façon subtile. Un grand nombre de ses toiles, comme celle devant laquelle elle pose dans l’image mise en avant, sont composées d’une multiplicité de petits points d’interrogation dorés. Comme dans une illusion d’optique, l’œil s’y trouve piégé entre plusieurs interprétations, ce qui crée une vibration où le temps joue son rôle.
La part des mathématiques
Devant la contradiction entre certains commentaires et nos impressions personnelles, nous lui avons posé la question : quelle est la part des mathématiques dans sa peinture ? Voici sa réponse :
Del Aor : Peintre depuis mon enfance, ce sont pourtant des études de mathématiques qui ont été labase de ma nourriture intellectuelle. Et j’y ai pris un grand plaisir. Je ne crois pas pour autant que la Mathématique ait influencé mon chemin de peintre, mais plutôt qu’il y a eu retrouvailles entre ce langage universel et les profondeurs de mon esprit. Une évidence, une complicité.
HL : Si les mathématiques n’ont pas influencé votre chemin de peintre, pourquoi toutes ces formes géométriques ?
Del Aor : Les mathématiques m’ont permis de reconnaître cette ossature cachée de l’univers et d’identifier que cette dimension me parle parfaitement. De la même façon, les milliers d’heures passées à l’atelier à façonner mon outil pictural, m’ont conduite à épurer la matière et la gestuelle jusqu’à atteindre et retrouver un langage venu de mes profondeurs. Partie de traces libres et violemment agitées, le temps à travers le travail a produit comme une densification des signes. Il a fait tendre ces mouvements vers des formes de plus en plus concentrées et simples, géométrico-organiques : cercle, carré, triangle …
HL : Les mathématiques seraient donc le langage des profondeurs ?
Del Aor : Oui, elles révèlent symétries et libertés, correspondances subtiles entre espace et plan, jeu du chiffre, du point, de la ligne, de l’infini, capture de l’immatérialité de l’espace, tension entre le vide et le plein pour atteindre la limite du mystère, l’indicible ? Je n’ai fait que rejoindre la Mathématique qui est là quand toute fioriture et bavardage sont retirés. Et je la fais danser, jouer, vibrer, s’éclairer d’or et de couleurs, pour mieux nous la révéler. Sur d’immenses toiles, les formes sont dessinées par une multitude de points d’interrogation en « agitation brownienne ». Et ce mouvement crée un champ vibratoire qui sort du plan pour nous faire apparaître des volumes palpitants, en relief ou en creux, sans limites, insaisissables à nos mains mais bien présents à nos yeux. Nous voyageons en dimension 4. Un disque sur fond orange m’attire particulièrement car il nous amène proche de l’instant « T zéro », dans une sorte de Big Bang primordial. Est-ce la ronde du jeu de la vie ? Une porte ouverte sur le Mystère ?
La part de l’Asie et de la lumière
Un autre secret de Lara Del Aor est son amour pour l’Asie auquel nous devons certaines transparences.
Pour voir plus d’œuvres de Lara Del Aor, voici le site de l’artiste : https://www.delaor.com/fr_fr/
Les registres d’un grand luthier parisien du XIX° siècle, Gand & Bernardel, se trouvant de nos jours au musée de la musique, montrent d’étonnantes parties chiffrées.
La ligne de registre ci-dessus concerne la vente d’un violon au prix de 8000 F. Dans la première partie figure le prix de 10000 F, sans doute le prix demandé par le luthier avant négociation. Entre parenthèses après ce prix figure quatre lettres : (exzx) puis ensuite ohxz. Le nombre de lettres incite à penser que l’un des deux représente le prix d’achat du luthier et l’autre le prix de réserve en dessous duquel il ne faut pas descendre. Ces indications ont alors un rôle évident : permettre la négociation du prix sans erreur de la prt du vendeur et sans donner le prix de réserve à l’acheteur. Il est alors logique de penser que le prix de réserve est entre parenthèses et que l’autre est le prix d’achat.
La loi de Benford
Le musée de la musique a demandé l’aide d’un cryptologue, en la personne de Pierrick Gaudry, pour casser le code utilisé. Pour ce faire, il a examiné les lettres se trouvant en tête des codes en pensant que, comme toutes données comptables, elle suivait la loi de Benford . Cette loi donne les fréquences d’apparition des chiffres en tête d’un nombre :
Chiffre
1
2
3
4
5
6
7
8
9
Fréquence en %
30
18
12
10
8
7
6
5
4
(voir une discussion de cette loi dans Toutes les mathématiques du monde, page386)
En utilisant les fréquences d’apparition des lettres dans les codes, on trouve que h représente 1 et a représente 2. Des tâtonnements donnent le reste et la clef est lumineuse pour un marchand de violons puisqu’il s’agit du mot harmonieux :
h
a
r
m
o
n
i
e
u
x
1
2
3
4
5
6
7
8
9
0
Dans les différents registres, on trouve également le code z. Des additions montrent qu’il vaut 0, comme x. Le fait de coder 0 de deux façons différentes s’expliquent car le 0 se trouve souvent dans les prix.
Ainsi, dans le cas de la ligne de registre citée plus haut, ohxz signifie 5100 F, ce qui correspond bien à un prix d’achat vraisemblable puisque le prix de vente final a été de 8000 F. Le prix de réserve exzx était de 8000 F aussi ce qui prouve que l’acheteur a bien négocié.
Pour monter sur un sommet à 3712 mètres d’altitude, comme la Grande Ruine dans le massif de Ecrins (image mise en avant @Hervé Lehning), en partant d’un refuge situé à 3169 mètres d’altitude (le refuge Adèle Planchard), il est nécessaire de passer par toutes les altitudes intermédiaires.
Le Théorème des Valeurs Intermédiaires (ou TVI)
Ce résultat de bon sens correspond à un théorème de mathématiques concernant les fonctions continues sur un intervalle réel à valeurs réelles. La plupart des fonctions qu’on rencontre en mathématiques sont continues sauf, éventuellement, en quelques points exceptionnels, appelés pour cela points de discontinuité. Physiquement, dans la pratique, ces points correspondent souvent à des sauts.
Le théorème des valeurs intermédiaires peut s’illustrer ainsi :
Ce théorème est donc un théorème existentiel: il affirme l’existence d’un nombre sans permettre pour autant de le calculer.
Utilité
L’utilité pratique essentielle de ce théorème est de montrer l’existence de racines d’équations : si une fonction continue change de signe entre deux points a et b, elle s’annule entre ces deux points.
On en déduit, par exemple, qu’une fonction continue sur un segment [a, b] à valeurs dans lui-même admet au moins un point fixe, c’est-à-dire un point x tel que f (x) = x. Pour le démontrer, il suffit de remarquer que la fonction g définie par g (x) = f (x) – x change de signe entre a et b.
Ce n’est pas un hasard si l’auteur du premier chapitre de la Genèse a placé la création de la lumière en tête, car elle est la condition de toute vie mais aussi de toute perception, des formes comme des couleurs. Elle est à la source des ombres et son étude établit des ponts entre mathématiques et art.
Sous des lumières différentes, le même paysage donne des impressions différentes, comme le montrent ces deux photographies de la rade de Toulon sous les nuages. La différence essentielle est que, dans la seconde photographie, un rayon de lumière vient illuminer les bâtiments en premier plan et créer des ombres. Les couleurs en sont également modifiées. Certains bâtiments passent du rose au jaune ou même au noir !
Sans lumière, pas de couleurs
La couleur n’existe pas en elle-même, elle correspond à notre perception des ondes lumineuses qui, mathématiquement parlant, sont analogues aux ondes acoustiques. L’ensemble des longueurs d’onde de la lumière visible constitue le spectre de la lumière. Il s’étend du violet, dont la longueur d’onde est de 400 nanomètres, au rouge, dont la longueur d’onde est de 700 nanomètres. Au-delà de ces longueurs d’onde, la lumière devient invisible et on entre dans le domaine de l’ultraviolet, dont les rayons sont responsables du bronzage de la peau et dans l’infrarouge ou rayonnement calorique. On retrouve ces diverses couleurs dans les arcs-en-ciel.
La même théorie mathématique, inventée par Joseph Fourier (1768 – 1830), permet de décomposer les ondes sonores et les ondes lumineuses en sommes d’ondes élémentaires, dites harmoniques en acoustique et ondes monochromatiques en optique. Dans ce dernier cas, celles qui correspondent au spectre visible sont appelées couleurs pures.
Les couleurs telles que nous les voyons dépendent de trois types de récepteurs compris dans nos yeux. Dans chaque onde, chacun capte la part à laquelle il est sensible, notre cerveau réalise la synthèse. Le système RVB, utilisé en photographie, imite ce principe naturel : on ajoute du rouge, du vert et du bleu pour obtenir toutes les couleurs. On retrouve le principe de la décomposition précédente, en la limitant à trois couleurs pures. Le système CMJN, utilisé en imprimerie, est fondé sur un principe soustractif mais aboutit à un résultat identique.
Sans lumière, pas d’ombres
De même, la lumière crée l’ombre. Le photographe, le dessinateur comme le peintre jouent avec cette propriété. L’ombre accentue les formes des objets ou en crée d’étranges.
Les dessins d’architecture comportent des ombres portées d’un objet sur un autre, ce qui peut donner des courbes étonnantes. On peut les photographier ou les prévoir d’avance ce qui autrefois prêtait à des constructions de géométrie descriptive intéressantes. Elles sont aujourd’hui réalisées automatiquement à travers des logiciels de géométrie.
Il arrive de plus que les ombres prennent des formes étranges ne semblant plus rien à voir avec l’original, comme sur la photographie suivante qui constitue une anamorphose d’un taureau chargeant un toréador.
Le clair-obscur
La lumière permet enfin de mettre l’accent sur un personnage et de le modeler, comme sur la photographie suivante où il met en valeur le mouvement des bras du personnage. Certains studios sont réputés pour ce type de photographies qui sculptent les personnages.
Avant que cette technique ne soit exploitée en photographie, elle a été particulièrement utilisée par des peintres comme Georges de la Tour (1593 – 1652) à l’époque classique. Dans le nouveau-né, l’accent est mis sur celui-ci grâce au rayon de lumière envoyé par la bougie cachée par la main de la femme à gauche.
De même, la lumière est au centre de la révolution impressionniste. D’une manière presque mathématique quand on pense à l’analyse de Fourier, les impressionnistes n’utilisent que des couleurs primaires et c’est leur reconstitution dans l’œil, ou plutôt le cerveau, du spectateur qui crée l’impression générale. L’aboutissement de ce courant se trouve sans doute dans les œuvres de Vincent Van Gogh (1853 – 1890).
La lumière et ses reflets
C’est de même la lumière qui crée les reflets sur l’eau comme dans cette photographie prise un jour d’orage où les jeux de lumière sont visibles. On y voit également son influence sur les couleurs. La scène originale pouvait ainsi être vue de plusieurs manières.
Nous retrouvons ces effets dans nombres d’œuvres figuratives mais aussi dans les fameux noir-lumière de Pierre Soulages (né en 1919).
Conclusion
Comme nous l’avons vu, seule la lumière donne un sens aux œuvres plastiques, que ce soit en photographie, en dessin ou en peinture. Les mathématiques ne sont bien entendu pas nécessaires pour les concevoir mais elles les structurent que ce soit dans l’analyse spectrale de la lumière ou dans ses jeux. Les logiciels de dessin utilisent d’ailleurs un grand nombre de techniques mathématiques, même si elles restent invisibles à l’utilisateur.
Toujours à la recherche d’œuvres d’art inspirées par les mathématiques, et la science en général, j’ai découvert dans une petite galerie d’art parisienne (galerie Sonia Monti, Paris VIII), quelques œuvres de François Sforza, dont l’originalité est d’allier les maths et la matière.
La formule d’Euler
Leonhard Euler (1707 – 1783) est l’auteur d’une formule déclarée “plus belle formule des mathématiques” en plusieurs occasions :
Pourquoi si belle ? La raison souvent invoquée est la réunion de cinq constantes fondamentales : les éléments neutres de l’addition (0) et de la multiplication (1), la mystérieuse racine carrée de -1 (i) et les deux nombres transcendants les plus rencontrées (e et pi). François Sforza suggère de plus une démonstration élémentaire de la formule sur son tableau.
Dans un autre post, j’ai célébré cette même formule dans une autre matière : le verre.
La quadrature du cercle consiste à construire un carré de même aire qu’un cercle donné. Si le cercle a pour rayon R, il s’agit donc de construire un carré de côté R multiplié par la racine carrée du nombre Pi. On peut donc réaliser la quadrature du cercle avec une règle graduée à la précision que l’on veut.
Des règles qui changent tout
Quand le problème est apparu dans l’Antiquité, il n’était pas question d’approximations, la règle était que la construction devait être exacte. Il en existe plusieurs. L’une d’entre elle demande de faire rouler un cercle sur une droite. La voici sous forme de tableau :
En utilisant uniquement le théorème de Pythagore, on démontre que le carré est de côté racine de Pi, ce qui prouve que le carré et le cercle ont même aire (voir à la fin pour une démonstration).
Cette utilisation d’un procédé mécanique (faire rouler le cercle) ne convenait pas aux anciens, il fallait construire le carré à la règle (non graduée) et au compas. Dans ces conditions, le problème devient impossible, ce qui n’a été prouvé qu’au XIX-ième siècle en démontrant que le nombre Pi est transcendant c’est-à-dire qu’il n’est pas solution d’une équation algébrique à coefficients entiers.
De façon étonnante, un problème purement géométrique et très conditionné par des visions antiques a eu des conséquences importantes en algèbre et en analyse.
Un peu de géométrie
La figure essentielle est la suivante :
En appliquant le théorème de Pythagore dans les trois triangles rectangles HBC, HC et ABC, on obtient :