Archives pour l'étiquette Descartes

La spirale logarithmique, une courbe zoologique ?

La même courbe se retrouve-t-elle dans les galaxies, certains mollusques et les toiles d’araignées ? Enquête sur la spirale logarithmique.

La spirale d’Archimède

Imaginez ! Une droite tourne à vitesse angulaire constante autour d’un point O. Si, partant de O, un point M parcourt cette droite à vitesse constante, on obtient une spirale d’Archimède. On démontre facilement que les spires y sont régulièrement espacées.

Spirale d’Archimède. Elle est engendrée par un point mobile M partant d’un point O, à vitesse constante sur une droite tournant à vitesse angulaire constante autour de O.

La spirale logarithmique

Si, toujours partant de O, le point M parcourt la droite à une vitesse proportionnelle à la longueur OM, il dessine une autre courbe, appelée spirale logarithmique depuis Pierre Varignon (1654 – 1722) mais étudiée auparavant par René Descartes (1596 – 1650) avant d’être choisie par Jacques Bernoulli (1654 – 1705) pour orner sa tombe. Malheureusement, le sculpteur ignorait cette courbe et grava une spirale d’Archimède.

 

Spirale logarithmique. Elle est engendrée par un point mobile M partant d’un point O, à vitesse proportionnelle à OM sur une droite tournant à vitesse angulaire constante autour de O.

Au lieu d’être régulièrement espacées, les spires suivent une progression géométrique de raison constante. Autre propriété de la spirale : elle coupe le rayon OM suivant un angle constant.

Inscription sur la tombe de Jacques Bernoulli, avec la spirale en bas.
Sur cet agrandissement, on voit que le sculpteur a gravé une spirale d’Archimède et non une spirale logarithmique. L’inscription latine “eadem mutata resurgo” signifie “déplacée, je réapparais à l’identique”.

Le développement du nautile

Le nautile est un mollusque marin dont la coquille est en forme de spirale. L’espace entre les spires étant triplé à chaque enroulement, elle évoque une spirale logarithmique. Pour examiner si cette forme est fortuite ou non, il est nécessaire d’en comprendre la provenance.

Coupe d’un nautile faisant apparaître une forme de spirale logarithmique.

La coquille du nautile est divisée en chambres closes, l’animal n’occupant que la dernière. Les autres sont remplies d’un mélange de liquide et de gaz, toutes communiquent entre elles au moyen d’un siphon.

Nautile vivant. L’animal n’occupe que la dernière chambre. Il se déplace d’avant en arrière en expulsant de l’eau du côté de sa bouche.

Ces chambres correspondent à l’évolution progressive du mollusque. Quand il grossit, ne pouvant agrandir la chambre où il se trouve, il en crée une autre dans son prolongement, un peu plus grosse mais semblable.

Pour montrer que cette idée mène effectivement à une spirale logarithmique, prenons comme modèle de la coquille une suite de triangles rectangles d’angle au sommet constant égal à 30°. Le rapport entre un triangle et son suivant est de 115 % (l’inverse du cosinus de 30° soit 2  divisé par racine de 3 pour être précis), ce qui correspond bien à une spirale logarithmique. L’idée correspond à un accroissement progressif de la taille de l’animal. Il n’est pas besoin d’imaginer de plans compliqués inscrits dans les gènes du nautile pour cela, juste une façon de croître.

Suite de triangles rectangles formant une (approximation de) spirale logarithmique.

La spirale logarithmique se retrouve pour les mêmes raisons dans d’autres animaux, comme la planorbe, un escargot marin très utilisé dans les aquariums car il se nourrit d’algues et de plantes à la limite du pourrissement.

Une coquille de planorbe en forme de spirale logarithmique.

Les toiles d’araignées

La toile d’araignée est avant tout un piège destiné à attraper des insectes. Certaines espèces tissent des toiles où il est bien difficile de reconnaître la moindre régularité.

Il n’est pas facile de reconnaître la moindre courbe mathématique dans cette toile d’araignée. En revanche, sans le soleil en contre jour, il est difficile de la détecter.

Les espèces les plus communes en France, les épeires, fabriquent cependant des toiles en forme de spirales. Après avoir bâti un cadre entre quelques branches, l’araignée tisse un réseau régulier de segments rectilignes partant tous d’un même point. Un fois ce travail fini, elle forme une spirale en les reliant. Le célèbre entomologiste Jean-Henri Fabre (1823 – 1915) a voulu y reconnaître une spirale logarithmique, tout en remarquant que l’action de la pesanteur transformait chaque segment en chaînette, la forme que prend naturellement un fil pesant comme les câbles électriques ou les chaînes que l’on porte autour du cou.

Cette toile d’épeire laisse plus penser à une spirale d’Archimède qu’à une spirale logarithmique. On y remarque également les segments transformés en chaînette sous l’effet de la pesanteur.

Le chiliogone de Descartes

Dans ses Méditations métaphysiques, René Descartes utilise l’exemple des chiliogones, c’est-à-dire des polygones à 1000 côtés, pour montrer qu’il existe des choses faciles à concevoir sans pour autant qu’il soit possible de les représenter. Essayons de le faire dans le cas du chiliogone régulier convexe !

Les polygones réguliers convexes

Si nous nous limitons aux polygones réguliers convexes, les premiers sont le triangle équilatéral, le carré, le pentagone régulier convexe et l’hexagone régulier convexe.

Les polygones convexes réguliers de 3, 4, 5 et 6 côtés.

Le chiliogone régulier convexe

À partir de là, il est facile d’imaginer le chiliogone régulier convexe : en pratique, il est indiscernable du cercle.

Le chiliogone régulier convexe est indiscernable du cercle

Si on supprime la condition de régularité et si les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée convexe. Si la condition de convexité est supprimée et les longueurs des côtés restent de même ordre de grandeur, on obtient une courbe fermée … qui peut ressembler à un infâme gribouillis.

Un polygone à 20 côtés peut déjà être très embrouillé, à 1000 côtés il peut devenir un infâme gribouillis