Archives par mot-clé : Mathématiques

Magie et mathématique

Certaines croyances magiques restent attachées aux mathématiques. L’exemple le plus simple est celui du nombre treize qui porte chance … ou malchance selon les personnes. On évite ainsi, même chez certains mathématiciens, d’être treize à table. Cette croyance est extra-mathématique. Elle vient du dernier repas du Christ avec ses apôtres et non pas d’une propriété mathématique du nombre treize. Il en est de même de la plupart des nombres considérés comme magiques ou sacrés, comme sept par exemple. Nous n’insisterons pas sur cette question, et pas davantage sur la numérologie ou sur l’arithmancie qui prétendent prévoir l’avenir au travers de quelques additions. Leurs relations aux mathématiques sont les mêmes que celle de l’astrologie à l’astronomie. Même si certains mathématiciens furent numérologues comme certains astronomes furent astrologues jusqu’à l’époque de Kepler (XVIIe siècle), aujourd’hui, il est difficilement imaginable qu’un mathématicien ou un astronome pratique ce type de pseudosciences.

Les nombres parfaits

Plus étonnants que ces nombres auxquels on attribue un pouvoir surnaturel, d’autres sont considérés comme magiques pour des raisons internes aux mathématiques. Parmi les plus étudiés sont les nombres parfaits dont parle déjà Euclide au IIIe siècle avant notre ère dans ses Éléments. Par définition, les nombres parfaits sont les nombres égaux à la somme de leurs diviseurs autres qu’eux-mêmes. Par exemple, 6 est parfait puisque ses diviseurs stricts sont 1, 2 et 3 dont la somme est égale à 6. La traduction littérale du terme grec utilisé par Euclide pour désigner les nombres parfaits est nombre à qui il ne manque rien ce qui permet de mieux comprendre les définitions de nombre abondant et de nombre déficient : nombre dont la somme des diviseurs est supérieure (respectivement inférieure) au nombre donné. Ainsi 12 est abondant, 3, 4 et 5 sont déficients.

Quand Dieu est contraint à la perfection …

Saint Augustin (354 – 430) d’après un tableau de la Renaissance

Cela pourrait être une simple curiosité et peu importe le nom utilisé mais, dans l’Antiquité, la perfection de ces nombres était bien vue comme telle. Ainsi, dans La cité de Dieu, on peut lire sous la plume d’Augustin d’Hippone (354 – 430) une vision mystique de cette perfection : Ainsi, nous ne devons pas dire que le nombre six est parfait, parce que Dieu a achevé tous ses ouvrages en six jours : loin de là, Dieu a achevé tous ses ouvrages en six jours parce que le nombre six est parfait ; supprimez le monde, ce nombre resterait également parfait ; mais s’il n’était pas parfait, le monde, qui reproduit les mêmes rapports, n’aurait plus la même perfection.

On trouve des idées voisines dans Arithmetica d’un philosophe néo-pythagoricien comme Nicomaque de Gérase (Ier siècle de notre ère), pourtant véritable mathématicien puisqu’il découvrit le quatrième nombre parfait : Il arrive que, de même que le beau et le parfait sont rares et se comptent aisément, tandis que le laid et le mauvais sont prolifiques, les nombres excédents et déficients sont en très grand nombre et en grand désordre ; leur découverte manque de toute logique. Au contraire, les nombres parfaits se comptent facilement et se succèdent dans un ordre convenable ; on n’en trouve qu’un seul parmi les unités, 6, un seul dans les dizaines, 28, un troisième assez loin dans les centaines, 496 ; quant au quatrième, dans le domaine des mille, il est voisin de dix mille, c’est 8128. Ils ont un caractère commun, c’est de se terminer par un 6 ou par un 8, et ils sont tous invariablement pairs.

Des conjectures à la pelle

À l’heure actuelle, le dernier point évoqué par Nicomaque de Gérase reste une conjecture. Personne n’a encore réussi à prouver qu’il n’existait pas de nombres parfaits impairs, même si le fait que personne n’en ait jamais trouvé un seul milite dans ce sens. De même, l’existence d’une infinité de nombres parfaits pairs est une conjecture. Les quatre premiers sont connus depuis l’Antiquité : 6, 28, 496 et 8128 et, à l’heure actuelle, nous n’en connaissons que 49 ! Les plus grands n’ont été découverts que récemment et ont plusieurs dizaines de millions de chiffres. Ils sont tous d’une forme liée à la notion de nombre premier, ce que nous verrons plus loin.

Les temps ont changé et plus personne ne comprend l’expression « nombre parfait » dans le sens d’une perfection externe aux mathématiques.

Del Aor, les mathématiques dans l’âme

Del Aor a abandonné les mathématiques pour se consacrer exclusivement à la peinture, avec juste raison car son talent est éclatant et on en reparlera … 

Ce commentaire de Jean-Luc Chalumeau est élogieux mais étonnant, et donne envie au mathématicien de s’exprimer. Comment regarder une toile de Lara Del Aor sans voir qu’elle n’a jamais abandonné les mathématiques ?

Des figures mathématiques simples

En effet, Lara Del Aor peint des figures mathématiques simples (cercles, triangles, carrés, rectangles) où la lumière se décompose de façon subtile. Un grand nombre de ses toiles, comme celle devant laquelle elle pose dans l’image mise en avant, sont composées d’une multiplicité de petits points d’interrogation dorés. Comme dans une illusion d’optique, l’œil s’y trouve piégé entre plusieurs interprétations, ce qui crée une vibration où le temps joue son rôle.

Sur ces deux toiles, l’influence des mathématiques est manifeste.

La part des mathématiques

Devant la contradiction entre certains commentaires et nos impressions personnelles, nous lui avons posé la question : quelle est la part des mathématiques dans sa peinture ? Voici sa réponse :

Del Aor : Peintre depuis mon enfance, ce sont pourtant des études de mathématiques qui ont été la base de ma nourriture intellectuelle. Et j’y ai pris un grand plaisir. Je ne crois pas pour autant que la Mathématique ait influencé mon chemin de peintre, mais plutôt qu’il y a eu retrouvailles entre ce langage universel et les profondeurs de mon esprit. Une évidence, une complicité.

HL : Si les mathématiques n’ont pas influencé votre chemin de peintre, pourquoi toutes ces formes géométriques ?

Del Aor : Les mathématiques m’ont permis de reconnaître cette ossature cachée de l’univers et d’identifier que cette dimension me parle parfaitement. De la même façon, les milliers d’heures passées à l’atelier à façonner mon outil pictural, m’ont conduite à épurer la matière et la gestuelle jusqu’à atteindre et retrouver un langage venu de mes profondeurs. Partie de traces libres et violemment agitées, le temps à travers le travail a produit comme une densification des signes. Il a fait tendre ces mouvements vers des formes de plus en plus concentrées et simples, géométrico-organiques : cercle, carré, triangle …

HL : Les mathématiques seraient donc le langage des profondeurs ?

Del Aor : Oui, elles révèlent symétries et libertés, correspondances subtiles entre espace et plan, jeu du chiffre, du point, de la ligne, de l’infini, capture de l’immatérialité de l’espace, tension entre le vide et le plein pour atteindre la limite du mystère, l’indicible ? Je n’ai fait que rejoindre la Mathématique qui est là quand toute fioriture et bavardage sont retirés. Et je la fais danser, jouer, vibrer, s’éclairer d’or et de couleurs, pour mieux nous la révéler. Sur d’immenses toiles, les formes sont dessinées par une multitude de points d’interrogation en « agitation brownienne ». Et ce mouvement crée un champ vibratoire qui sort du plan pour nous faire apparaître des volumes palpitants, en relief ou en creux, sans limites, insaisissables à nos mains mais bien présents à nos yeux. Nous voyageons en dimension 4. Un disque sur fond orange m’attire particulièrement car il nous amène proche de l’instant « T zéro », dans une sorte de Big Bang primordial. Est-ce la ronde du jeu de la vie ? Une porte ouverte sur le Mystère ?

La part de l’Asie et de la lumière

Un autre secret de Lara Del Aor est son amour pour l’Asie auquel nous devons certaines transparences.

Cette toile intitulée Jardin d’Eden montre la double influence des mathématiques et de l’Asie.
Entre 0 et 1.

Pour voir plus d’œuvres de Lara Del Aor, voici le site de l’artiste : https://www.delaor.com/fr_fr/

Les mathématiques du certificat d’études

Au courant du XVIIe siècle, les mathématiques de feu le certificat d’études étaient en place. Les ouvrages d’apprentissage du nouveau calcul foisonnaient d’exercices. Sous des dehors liés à la vie de tous les jours, leur but était d’entraîner à l’utilisation des algorithmes des opérations (addition, soustraction, multiplication et division) ainsi qu’au raisonnement mathématique.

Un exemple de Simon Stevin

Aune de tailleur.

En particulier, La pratique de l’arithmétique de Simon Stevin (1548 – 1620) contient une foule d’exercices du type :

14 aunes de drap coûtent 5 livres, 2 sous et 8 deniers, combien coûteront 25 aunes ?

Pour résoudre cet exercice, inutile de savoir ce que représente une aune, il suffit de savoir qu’une livre vaut 20 sous et un sou, 12 deniers. Le plus simple pour le résoudre est de transformer la somme donnée en deniers. Une livre vaut 20 x 12 = 240 deniers donc 5 livres, 1200. Les 14 aunes valent donc 1232 deniers. On obtient le prix d’une aune en divisant par 14, ce qui donne 88 deniers. Le prix de 25 aunes est donc égal à 25 x 88 = 2200 deniers, qu’il reste à traduire dans le système initial. En divisant 2200 par 240, on obtient 9 livres et il reste 40 deniers, ce qui fait 3 sous et 4 deniers. Finalement, les 25 aunes coûtent 9 livres, 3 sous et 4 deniers.

Intérêt du système décimal

Heureusement, l’arithmétique est devenue plus simple avec le système décimal ! Pour le montrer, voici un exemple moderne :

Nicolas achète 350 grammes de pommes pour 1 €. Derrière lui, Pimprenelle en achète 1 kilo 435. Combien va-t-elle payer ?

Voici le raisonnement canonique pour résoudre ce type de problème. Ici le terme « canon » n’a rien à voir avec l’artillerie, il signifie « règle » comme toujours en mathématiques. Si 350 grammes coûtent 1 €, 1 gramme coûte 1 / 350 € et 1435, 1435 / 350 soit 4 € 10. Nous avons appliqué ici, sans l’écrire, une règle de trois que certains nomment produit en croix. Peu importe l’appellation, l’esprit vaut mieux que la lettre. Dans les deux cas, le raisonnement sous-jacent est abstrait puisqu’il consiste à inventer une fiction : la vente d’un gramme de pommes ! Il montre que, même dans les applications les plus élémentaires, il n’existe pas de mathématiques sans abstraction, ou sans réflexion. Leur apprentissage exige application, cogitation et quantité d’exercices, comme l’escalade, le tennis ou le football.

La voie royale

Cela n’est pas nouveau comme le montre l’anecdote suivante, qu’elle soit vraie ou non. Selon la légende, Euclide enseigna les mathématiques au roi d’Égypte. Rapidement, celui-ci demanda un accès au savoir simplifié, par égard à sa majesté. Euclide répondit : Désolé sire, en mathématiques, il n’y a pas de voie royale. Il n’en existe toujours pas, que cela soit pour les rois ou les enfants-rois. Vouloir en inventer sous prétexte de faciliter l’apprentissage des mathématiques est voué à l’échec. L’idée ne fait qu’en interdire l’accès.

Les mathématiciens sont-ils tous platoniciens ?

Comme Platon, les mathématiciens sont des créateurs de mondes, tels celui du mythe de la caverne. Doit-on pour autant considérer les mathématiciens comme platoniciens ?

Qu’elle fut ou non gravée à l’entrée de son académie, la phrase Que nul n’entre ici s’il n’est géomètre est conforme à la pensée de Platon : il est bon que le philosophe apprenne la géométrie. Au livre VII de La république, il mentionne d’ailleurs son étude comme un pré requis à celle de la philosophie, et une matière indispensable dans le cursus du futur citoyen. Les mathématiques forgent la pensée de Platon, comme on le voit dans Le Ménon. Inversement, tout mathématicien est-il platonicien ?

Un créateur de mythes

Avant d’essayer de répondre à cette question, examinons le mode de pensée de Platon. Sa méthode fondamentale est la création de mythes. Le procédé est classique dans l’Antiquité où l’usage de métaphores permettait d’introduire des concepts abstraits à travers des expériences quotidiennes. Le mythe le plus célèbre inventé par Platon est celui de la caverne, où il introduit le concept de « monde des idées ». En voici un résumé rapide. Des hommes, enfermés dans une caverne, ne voient l’extérieur qu’à travers des ombres. Ils n’ont pas accès à la réalité mais seulement à son image. Ce mythe est une métaphore où la caverne est notre monde, et l’extérieur, le monde des idées. Une transposition est nécessaire pour comprendre le message de Platon, même si celle-ci est claire.

Le monde des idées

Ce monde des idées, existe-t-il ? Platon l’a postulé, ce qui l’a mené à adopter la thèse de l’immortalité de l’âme. Elle lui permet d’affirmer qu’elle vient de ce monde et, pour cette raison, en garde une vague mémoire. La philosophie grecque a parfois ce côté jusqu’au boutiste, que l’on retrouve facilement chez les mathématiciens. Pas question pour eux que 2 + 2 fasse 3,99. C’est 4 sans discussion possible. Cette démarche, correcte quand elle reste dans son cadre, peut aboutir parfois à des extravagances inutiles, comme l’idée d’une âme immortelle, même dans le passé. Platon en avait besoin pour expliquer notre accès instinctif à son monde des idées. Pour lui, on n’apprend pas, on se souvient. Cette remarque explique la pédagogie de Socrate dans Le Ménon, quand il fait démontrer le théorème de Pythagore à un esclave. Celui-ci est censé retrouver des connaissances lointaines, du temps où son âme n’était pas prisonnière de son corps. Socrate aide son interlocuteur à « accoucher » de ce qui existe déjà en lui. Dans ce sens, l’invention est impossible, seul « trouver » l’est. Ce vocabulaire correspond à celui utilisé en général en mathématiques. L’expression « il invente des théorèmes » est souvent péjorative, car elle sous entend qu’ils sont faux.

Le monde des idées mathématiques

De même, les mathématiciens inventent des mondes, semblables au monde des idées de Platon. Aucun point du monde réel n’est jamais le point idéal que nous imaginons. Il a forcément une certaine épaisseur. Il en est de même de la droite et du cercle. Nous en avons des idées que nous visualisons et même matérialisons, mais c’est sur les idées que nous raisonnons. Pour rendre ses résultats plus solides, depuis l’Antiquité, le monde de la géométrie est régi par un certain nombre d’axiomes, c’est-à-dire de résultats considérés comme vrais sans démonstration. Cette méthode a été généralisée et approfondie par David Hilbert au début du XXe siècle. De nos jours, chaque théorie (arithmétique, géométrie, etc.) a ses axiomes, qui la structurent.

L’ombre des idées

Ces théories ont un rapport complexe avec la réalité. Officiellement, pour les mathématiciens, les axiomes résultent du libre arbitre des créateurs de ces théories. Est-il raisonnable de le prétendre, ou est-ce un moyen de se libérer de la réalité ? Restons dans le domaine de la géométrie pour donner un exemple. On y démontre une propriété de la parabole, liée à son foyer (appelée propriété focale pour cela), que nous résumons par un dessin.

Propriété focale de la parabole : Si une droite D parallèle à l’axe d’une parabole coupe celle-ci en un point M, la droite symétrique de D par rapport à la tangente en M à la parabole passe par son foyer.

Cette propriété a des conséquences visibles dans notre univers quotidien : paraboles sur les toits des immeubles, fours solaires petits et grands, phares des voitures ou des bords de mer. La propriété des paraboles existant dans le monde de la géométrie s’applique dans notre monde.

Parabole en montagne. L’utilisation d’un miroir en forme de parabole permet de focaliser les rayons du soleil en un point et donc de faire bouillir de l’eau. © Hervé Lehning

Peu de mathématiciens doutent réellement de cette efficacité, même si certains scientifiques l’estiment « déraisonnable ».

Vérité des axiomes

La raison de cette « estimation » est l’opinion exprimée par les mathématiciens contemporains eux-mêmes. Si vous les questionnez sur ce que sont les axiomes, il est probable qu’ils répondront comme nous l’avons exposé plus haut. Ce sont des règles que l’on se donne de manière arbitraire, et sur lesquelles on développe une théorie cohérente, en suivant les règles de la logique. De ce point de vue, cette théorie n’est pas plus « réelle » ou « vraie » que les axiomes qui la fondent. Cependant, les résultats acquis sont extrêmement solides. Si on admet la « vérité » des axiomes, celle des théorèmes suit.

Les théories mathématiques : des modèles

Si cette vérité est conditionnelle, pourquoi les résultats des mathématiques sont-ils utiles dans le monde réel ? La réponse est simple. Les axiomes ne sont pas choisis arbitrairement ! Plutôt que de le prétendre, il serait préférable de dire que, s’ils l’étaient, on pourrait encore parler de mathématiques. Mais ils ne le sont pas ! Le fait est que l’on ne s’intéresse pas à ces mathématiques du bon plaisir. Ils sont choisis pour que les théories mathématiques qui en découlent soient de bons modèles de la réalité. Pour cela, ils s’en inspirent. Comme Platon, les mathématiciens inventent des mondes idéaux, dont la réalité est un reflet. En ce sens, ils sont platoniciens mais des platoniciens rarement dupes de leurs modèles. Ils ont conscience que leur monde des idées est une abstraction dont ils sont l’origine. Ce n’est pas un monde préexistant de toute éternité, comme le monde des idées de Platon.

Une sangaku célèbre, de Hidetoshi Fukagawa

Les sangakus japonaises sont de petits chefs d’œuvres aussi bien au niveau du raisonnement mathématique que de l’esthétique. Jean Constant, par exemple, s’en est fait une spécialité (voir l’image mise en avant). La sangaku suivante a été découverte par Hidetoshi Fukagawa.

Les deux triangles (rouge et vert) inscrits dans le carré jaune sont équilatéraux, quel est le rapport entre les rayons des cercles bleus ?

Rayon d’un cercle inscrit

Les deux cercles sont inscrits dans deux triangles. Un théorème permet d’en calculer les rayons en fonction de leurs aires et de leurs périmètres. Plus précisément, le rayon du cercle inscrit dans un triangle est égal à deux fois la surface du triangle divisé par son périmètre, ce résultat est mis en évidence par un dessin : l’aire du triangle se décompose en  trois triangles de même hauteur, le rayon du cercle inscrit. L’aire de chacun de ces triangles est donc égale au rayon du cercle inscrit multiplié par la longueur du côté opposé divisée par deux. En faisant la somme, le périmètre du triangle s’introduit naturellement .

Plan d’attaque du problème

Pour calculer les rayons des deux cercles, il s’agit donc de calculer un certain nombre de longueurs de segments de la figure. L’idée pour les calculer vient si nous en oublions une partie. En utilisant les angles de 60° et de 45° en évidence, nous trouvons que les triangles rouges ont les mêmes angles et sont donc semblables.

Grâce aux rapports de similitude et au théorème de Pythagore, les mesures de longueurs apparaissent progressivement, une d’entre elles (AC) ayant été choisie comme unité. Le dessin est utile pour suivre le raisonnement. Nous en déduisons progressivement les diverses longueurs importantes. Elles sont notées sur le dessin ci-dessous.

On en déduit les valeurs des deux rayons :

Un calcul algébrique

Un calcul algébrique permet de montrer que R = 2 r. Pour cette dernière étape, aucune visualisation n’est nécessaire et nous pouvons l’exécuter avec un logiciel de calcul formel. Ce dernier calcul nous entraîne vers les extensions algébriques, nous nous arrêterons à leur porte.

L’éventail de la geisha

Dans certaines sangakus, les auteurs ont clairement privilégié l’esthétique.

Par exemple, dans celui en forme d’éventail ouvert aux deux tiers ci-dessus, il s’agit de trouver le rapport entre les rayons des cercles verts et rouges. Ici encore, l’essentiel est d’introduire les bons points, qui ne sont pas directement visibles. On trouve :

 

Les philosophes font-ils la cuisine ?

Un célèbre philosophe contemporain aurait affirmé : “les mathématiques ne servent à rien dans la vie quotidienne”. Pourtant, je me souviens parfaitement de ma mère me demandant : “quatre tiers de 200 grammes, ça fait combien Hervé ?”.

Des maths à la cuisine

Pourquoi cette question ? Pas pour tester ma capacités en calcul mental. Tout simplement parce que nous étions 8 à table et que ma mère utilisait une recette de cuisine donnée pour 6. Les ingrédients devaient donc être multipliés par 8/6, soit 4/3.  Vue la précision des balances, une réponse précise était 270 grammes, répondre 266,666… aurait été ridicule.

Des notions subtiles

Autrement dit, nous avons affaire ici, dans la vie quotidienne, à deux notions mathématiques subtiles : la multiplication par une fraction et la notion d’approximation. Pour répondre à la question avec toute la rigueur mathématique qu’elle exige, nous dirons donc : “certains philosophes ne font pas la cuisine”.

Les abeilles avaient raison et les logarithmes, tort !

Les abeilles seraient-elles mathématiciennes ? Sans doute non mais elles sont étonnantes. Le gâteau de cire qu’elles construisent pour y déposer leur miel est formé par deux couches d’alvéoles opposées par leur fond. Dès l’antiquité, on avait remarqué que les alvéoles ressemblaient à des prismes droits à base hexagonale régulière. Ce n’est qu’au XVIIIe siècle que l’on remarqua que le fond était l’assemblage de trois losanges identiques appartenant chacun à deux alvéoles opposées.

Les alvéoles des abeilles sont des prismes de base hexagonale terminés par trois losanges inclinés, un peu comme un crayon taillé.

Une mesure, une hypothèse …

En 1712, Giacomo Filippo Maraldi (1665 – 1729), un astronome de l’observatoire de Paris, mesura l’angle des losanges et trouva : 109 degrés et 28 minutes. En 1739, René-Antoine Réaumur ( 1683 – 1757) soupçonna les abeilles de construire le fond de façon à utiliser le minimum de cire possible.

Et un calcul

Samuel König

Sans lui donner l’origine de son problème, il demanda de le résoudre à Samuel König (1712 – 1757), le mathématicien allemand connu pour avoir enseigné les mathématiques à la marquise Émilie du Châtelet (1706 – 1749), traductrice de Newton en français. König traita le problème par le calcul différentiel et, en utilisant une table de logarithmes, il en déduisit la valeur de 109 degrés et 26 minutes. L’erreur des abeilles était négligeable. On s’émerveilla de cette précision.

Un naufrage

À l’époque, les marins utilisaient la même table que König pour leurs calculs. Malheureusement, il fallut un naufrage quelques années plus tard pour que l’on y découvre quelques erreurs. En 1743, Colin Mac Laurin (1698 – 1746) corrigea la valeur trouvée par König : il s’agissait bien de 109 degrés et 28 minutes. La table de logarithmes avait tort et les abeilles, raison !

 

Mouans-Sartoux et l’art concret.

À Mouans-Sartoux, un étrange bâtiment cubique vert pomme, fondu dans le vert des arbres attire le regard du voyageur. Il est dédié à l’art concret …

L’espace de l’art concret à Mouans-Sartoux

Art concert et abstraction.

Rien n’est plus concret, plus réel qu’une ligne, qu’une couleur, qu’une surface. Cette phrase très platonicienne de Theo van Doesburg (alias de Christian Emil Marie Küpper, 1883 – 1931), fondateur du groupe « art concret » détrompera ceux qui interpréteraient le terme « concret » en contraire d’« abstrait ».

Pourquoi un espace de l’art concret à Mouans-Sartoux, petite commune entre Grasse et Cannes où la nature semble davantage appeler l’art figuratif ? La réponse tient en la rencontre d’un maire ouvert à l’art contemporain, et professeur de mathématiques, André Aschiéri, et d’un collectionneur et artiste, Gottfried Honegger. Ce dernier, avec sa compagne Sybil Albers, a fait donation de leur collection personnelle, en 2000 à l’État français, à laquelle se sont ajoutés des compléments importants telles que les Donations Aurèlie Nemours et Catherine & Gilbert Brownstone. Actuellement le fonds compte presque 600 œuvres. Elles sont exposées à l’Espace de l’Art Concret dans un cadre adapté.

La place des mathématiques et de l’optique

Dès la première salle, les mathématiques sont omniprésentes. Le tableau de Max Bill intitulé deux zones, claire et sombre évoquera avant tout l’irrationalité de racine de deux à l’amateur de mathématiques. En effet, il met en scène sa démonstration par Socrate dans Le Ménon de Platon.

Zwei Zonen – Dunkel und Hell (1970), Max Bill (1908 – 1994).

On trouve également des rythmes classiques, comme des toiles fondées sur des rapports entre les surfaces de diverses couleurs ou des alignements.

Far off, study for homage to the square (1958), Josef Albers (1888 – 1976).

Mais le but principal de Josef Albers dans son hommage au carré est de piéger l’œil du spectateur entre les couleurs des différents carrés si bien que le carré central, le plus pâle, semble flotter au centre de la composition. Un grand nombre de toiles sont ainsi fondées sur une sorte d’illusion d’optique qui piège l’œil entre plusieurs interprétations.

Des lignes au hasard

François Morellet utilise une technique étonnante pour créer certaines de ses œuvres : le hasard. Quand on observe ses toiles, on se demande cependant s’il n’a pas fait intervenir le hasard plusieurs fois pour choisir ensuite le plus esthétique, ce qui est presque la négation du hasard. Quelle est la probabilité pour que, parmi dix droites, quatre soient approximativement concourantes et forment un faisceau évoquant un projecteur ?

Dix lignes au hasard (1985), François Morellet (1926 – 2016).

Bien sûr, notre argument n’a pas grande valeur puisque tout événement s’étant produit était de probabilité nulle avant de se produire. On peut s’interroger mais, peu importe, seul le résultat compte et il dégage une harmonie certaine, encore liée à l’incertitude du regard entre diverses interprétations.

François Morellet a d’ailleurs inventé la théorie de la « participation du spectateur ». Le regard comme la lumière sont au centre de l’art en général et de l’art concret en particulier. Cette importance devient évidente dans ses sculptures comme cette sphère découpée suivant deux séries de plans parallèles, perpendiculaires entre eux. Chaque déplacement du spectateur, chaque variation de la lumière font apparaître un treillage différent. La photographie ci-dessous est sans doute celle qui inspirera le plus le mathématicien.

Sphère trames (1970), acier inoxydable, François Morellet.

Ellipse d’acier

David et Royden Rabinowitch, des frères jumeaux, travaillent ensemble mais signent parfois leurs œuvres indépendamment. Cela explique que vous puissiez trouver des sculptures très comparables signées de l’un ou de l’autre. L’espace de l’art concret possède l’une des sculptures signées par David. Elle inspirera le mathématicien, même s’il risque de la trouver énigmatique.

Conical plane in four masses and two scales (1979), David Rabinowitch (né en 1943).

 

Les droites tracées sur l’ellipse ci-dessus évoquent l’hexagramme mystique de Pascal. Cependant, cette interprétation est fausse : la conique ne contient que trois droites et non six. D’autre part, les points percés sur la surface sont alors bien mystérieux, comme distribués au hasard. Si les quatre masses se trouvent, où sont les deux échelles ? Le titre apparemment très précis invite le spectateur à compter, et le perd entre plusieurs interprétations.

L’art de moyenner

Quand on veut calculer la taille moyenne des Français, le principe est simple. On mesure la taille de chaque français de plus de 18 ans (les mesurer depuis la naissance fausserait la moyenne), on fait le total de ces tailles et on divise par le nombre total de Français adultes. On trouve un nombre comme 176 cm qui est donc la taille moyenne des Français adultes. On peut recommencer avec les Françaises, on trouve 163 cm.

Pour calculer la moyenne de la taille des girafes, on ne retient que la taille des adultes. @ Hervé Lehning

La moyenne arithmétique

En mathématiques, on parle de moyenne arithmétique. Par exemple, la moyenne arithmétique des dix nombres du tableau ci-dessous est égale à leur somme 618 divisée par 10 soit 61,8.

82

7198647739866922

10

La vitesse moyenne

Prenons l’exemple du calcul d’une vitesse moyenne sous la forme d’une petite énigme :

Deux villes A et B sont distantes de 100 km, un automobiliste effectue le trajet de A à B en une heure et le retour en deux heures. Quelle est sa vitesse moyenne ?

Comme le premier trajet s’effectue à 100 km/h de moyenne et le retour à 50 km/h, on peut être tenté de faire la moyenne arithmétique des deux nombres et répondre 75 km/h. En fait, ce résultat est faux. Un raisonnement plus correct consiste à dire que l’automobiliste a parcouru 200 km en trois heures et donc que sa vitesse moyenne a été de 200 / 3 = 67 km/h (en arrondissant). La différence est notable.

La moyenne harmonique

Cette nouvelle moyenne, adéquate pour calculer les vitesses, est appelée la moyenne harmonique. Si on considère une suite finie de n nombres a, b, etc. les moyennes arithmétique et harmonique A et B sont données par les formules :

A = (a + b + …) / n   et   1 / H = (1/a + 1/b + …) / n

Il existe toute sorte d’autres moyennes correspondantes chacune à la nature des quantités à moyenner. On ne moyenne pas de même des longueurs, des poids, des vitesses, des températures, etc.