Archives par mot-clé : fleur

Des plantes et des maths

Les plantes ont un rapport étonnant avec les mathématiques, hasard ou nécessité ? Je vous laisse juger.

Suite de Fibonacci

Léonard de Pise, dit Fibonacci, a créé sa suite comme un simple exercice d’arithmétique :

Un homme met un couple de lapins dans un lieu isolé de tous les côtés par un mur. Combien de couples obtient-on en un an si chaque couple engendre tous les mois un nouveau couple à compter du troisième mois de son existence ? 

Le calcul est simple, la suite donne : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc. Chaque nombre est la somme des deux qui le précèdent.Cette règle a fasciné au-delà de l’exercice. De plus, on la retrouve souvent dans la nature. En voici quelques exemples.

1, 2, 3, fleurs dans le désert du Namib (Namibie).                     © Hervé Lehning

Cette suite se retrouve plus souvent dans le décompte des pétales des fleurs. La seule façon de les compter est malheureusement de les effeuiller …

Saurez-vous trouver le nombre de Fibonacci derrière ces pétales de griffes de sorcière (littoral du sud de la France) ? © Hervé Lehning

La géométrie, des rosaces à la sphère

Après l’arithmétique, nous trouvons la géométrie avec des rotations surprenantes et des développements en sphère.

Rotation naturelle dans une plante succulente. La règle de formation des feuilles implique que celles-ci se déduisent l’une de l’autre par rotation. Littoral du sud de la France.     © Hervé Lehning
Cette plante sauvage des Alpes se développe naturellement en sphère. Parc des Écrins                © Hervé Lehning

Intersection d’un cercle et d’une droite dans la toundra

Cercle et droite sur une plante de la toundra. Groenland      © Hervé Lehning

Cette plante de la toundra groenlandaise présente deux formes géométriques simples : un cercle et une droite. Le cercle est naturel. Il correspond au développement de la plante dans toutes les directions à partir d’une graine, mais pourquoi a-t-elle dépéri d’un seul côté d’une droite ?