Les grands nombres … et les petits

Dans la vie courante, nous avons rarement besoin d’aller au-delà des mille milliards qui, forcément, font penser aux mille milliards de mille sabords du capitaine Haddock, le célèbre compagnon de Tintin.

Nicolas Chuquet (1445 – 1500) inventa pourtant un système pouvant aller bien au-delà. Dans son livre Triparty en la science des nombres, il forgea de nouveaux noms de nombres sur des préfixes correspondants à deux, trois,…, neuf : billion, trillion, quatrillion, quintillion, sextillion, septillion, octillion, nonillion. Le premier (un billion) est un million de millions, chacun est ensuite égal à un million de fois le précédent. Ce système est appliqué en Europe sauf dans les pays de langue anglaise car, malheureusement, les États-Unis ont adopté un système différent où chaque quantité est égale à mille fois la précédente. Ainsi, un billion américain vaut mille millions français donc à un milliard et ainsi de suite. D’autre part, on utilise aussi des préfixes comme déca, hecto, kilo, méga, etc. (voir le tableau système de noms des grands nombres). Ainsi, un kilogramme vaut 1000 grammes, etc. Les premiers ont un sens qui vient du grec où déka signifie dix, ékaton, d’où viennent les hécatombes, cent, kilo, mille, mégas, d’où vient mégalomane, grand, gigas, d’où vient gigantesque, géant, téras d’où vient la tératologie, monstre. Les autres donnent, toujours en grec, la puissance de 1000 utilisée. Ainsi péta vient de penté, qui signifie 5 et qui a donné pentagone, mais pas Pétaouchnock qui, bien qu’imaginaire est censée être une ville très éloignée, quelque part au fin fond de la Sibérie. Exa vient de hexa, qui signifie 6 et qui a donné hexagone. Les derniers sont là pour 7 (zetta) et 8 (yotta) mais sont artificiels.

Nom françaisNom américainPréfixeSymboleValeur
dixdécada10
centhectoh100
millekilok1000
millionmégaM1 000 000
milliardbilliongigaG1 000 000 000
billiontrilliontéraT1 000 000 000 000
billiardquadrillonpétaP1 000 000 000 000 000
trillionquintillionexaE1 000 000 000 000 000 000
trilliardsextillionzettaZ1 000 000 000 000 000 000 000
quadrillonseptillionyottaY1 000 000 000 000 000 000 000 000

Le système de noms des grands nombres va au-delà mais les nombres deviennent alors sans véritable utilisation concrète. On peut alors simplifier les mille milliards de mille sabords du capitaine Haddock en un seul péta sabord… mais ce serait moins musical et pourrait être mal interprété.

Les financiers utilisent parfois des expressions telles que kiloeuros (k€) ou millions d’euros (M€), qu’ils seraient plus logique de nommer mégaeuros vu le symbole M utilisé, mais cela n’apparaît pas normalement dans les comptes bancaires des particuliers. Sauf en période d’hyper inflation, comme en Allemagne en 1923 où on imprima des billets de 500 millions de marks, ou au Zimbabwe en 2009 où on alla jusqu’à 100 000 milliards, soit 100 trillions au sens anglo-saxon (voir la photographie un billet sans valeur), les particuliers n’ont pas besoin d’envisager des sommes supérieures au milliard français, donc au billion américain… et les États, guère plus.

Un billet sans valeur

En informatique, l’usage du système binaire fait que les préfixes ont un sens légèrement différent. Kilo signifie alors 1024 car ce nombre est égal à 2 à la puissance 10, méga vaut 1024 kilo, giga, 1024 méga, téra, 1024 giga et péta, 1024 téra, etc.

Les petits nombres

Pris à l’envers, ce système permet également de visiter l’infiniment petit (voir le tableau système de noms des petits nombres). Ici encore, les préfixes ont un sens. Les premiers viennent du grec où micro signifie petit et nano, nain. On passe ensuite à l’italien où piccolo, qui signifie petit, a donné pico. Les autres sont artificiels.

 

Nom françaisNom américainPréfixeSymboleValeur
dixièmedécid0,1
centièmecentic0,01
millièmemillim0,001
millionièmemicrom0,000 001
milliardièmebillionièmenanon0,000 000 001
billionièmetrillionièmepicop0,000 000 000 001
billiardièmequadrillonièmefemtof0,000 000 000 000 001
trillionièmequintillionièmeattoa0,000 000 000 000 000 001
trilliardièmesextillionièmezeptoz0,000 000 000 000 000 000 001
quadrillonièmeseptillionièmeyoctoy0,000 000 000 000 000 000 000 001

Système de noms des petits nombres. Le système va au-delà mais les nombres deviennent alors sans véritable utilisation concrète.

 

Les vestiges de la base vingt

La façon de dire les nombres en français a des variantes locales. Ainsi comment doit-on lire, ou écrire en toutes lettres, le nombre 283 ? La logique du français voudrait : deux cent huitante-trois… pourtant cela ne s’écrit ainsi que dans certaines régions de l’Est de la France et dans quelques cantons suisses. Les Belges préfèrent : deux cent octante-trois et la majorité des Français, comme des Canadiens : deux cent quatre-vingt-trois.

Un ancien usage ?

Ces quatre-vingts viendraient d’une ancienne façon de compter en usage autrefois en France et dont nous aurions hérité des Celtes. En effet, on la retrouve en Bretagne comme au pays de Galles et en Irlande. Le principe est partout le même, il s’agit d’un usage partiel de la base vingt. Il nous en reste le quatre-vingts de nos comptes mais aussi un hôpital parisien : celui des Quinze-Vingts, fondé par saint Louis (1214 – 1270) pour accueillir 15 fois 20, c’est-à-dire 300, vétérans aveugles. Il est toujours spécialisé en ophtalmologie. Cette façon de compter se retrouvait autrefois plus souvent qu’aujourd’hui, ainsi, dans L’avare de Molière, à la scène 5 de l’acte II, Frosine dit à Harpagon :

Par ma foi ! Je disais cent ans ; mais vous passerez les six vingts.

Six vingts signifiait 120. Pour 100 cependant, Frosine ne dit pas cinq vingts. Dans Notre-Dame de Paris, Victor Hugo (1802 – 1885) nous fait découvrir une autre trace de ce système quand il relate l’assaut de Notre-Dame par les truands (au livre X, chapitre 4) :

Clopin Trouillefou, arrivé devant le haut portail de Notre-Dame, avait en effet rangé sa troupe en bataille. Quoiqu’il ne s’attendît à aucune résistance, il voulait, en général prudent, conserver un ordre qui lui permît de faire front au besoin contre une attaque subite du guet ou des onze vingts.

Au Moyen-Âge, les onze vingts étaient un corps de police de 11 fois 20, c’est-à-dire 220, membres. Cet usage de compter par vingtaines était alors plus général que le montre ces quelques vestiges, comme Charles-Pierre Girault-Duvivier (1765 – 1832) le note dans sa grammaire des grammaires :

Six vingts vieillit ; on dit plus ordinairement cent-vingt ; on disait encore dans le siècle passé sept vingts ans, huit vingts ans : depuis six ou sept vingts ans que l’église calvinienne a commencé (Bossuet) – Des femmes enceintes au nombre de huit vingts et plus – l’Académie ne condamnait pas autrefois cette manière de s’exprimer, et en permettait l’usage jusqu’à dix-neuf vingts en excluant seulement deux vingts, trois vingts, cinq vingts et dix vingts.

Une fois admis ce compte particulier en vingtaine pour la quatrième, il est logique de continuer jusqu’au seuil de la cinquième, c’est-à-dire jusqu’à 99. Nonante est ainsi devenu quatre-vingts dix, écrit depuis quatre-vingt-dix. En revanche, en Belgique, 90 est resté nonante sauf pour parler du roman de Victor Hugo : Quatre-vingt Treize. Une étrangeté reste et concerne le pluriel mis à vingt. On écrit quatre-vingts mais quatre-vingt-un et non quatre-vingts et un comme le voudrait l’imitation des cas de vingt à soixante, de plus vingt perd son pluriel et se trouve au singulier alors que le nombre a augmenté !

Septante ou soixante-dix ?

 

Quatre-vingts s’explique par la concurrence entre deux systèmes de numération, l’un fondé sur la dizaine et l’autre sur la vingtaine. Soixante-dix n’a pas la même raison de remplacer le logique « septante » comme il est utilisé en Belgique, en Suisse et dans l’Est de la France. Plus de vestige d’une base vingt ici. D’où vient cette exception culturelle ?

Plusieurs explications concernent Louis XIV (1638 – 1715). Selon une première version, le Roi-Soleil ne supportait pas l’idée de quitter la soixantaine pour devenir septuagénaire. Sa mégalomanie lui aurait fait décider que l’on dirait dorénavant soixante-dix et non septante. Dans une autre version, le soleil déclinant aurait perdu tant de batailles dans les années septante, octante et nonante qu’il aurait banni ces mots du vocabulaire… Ces histoires peuvent séduire, mais leur authenticité est douteuse. La seule certitude est que soixante-dix, quatre-vingts et quatre-vingt-dix sont apparus au cours du XVIIe siècle, celui de Louis XIV. Claude Favre de Vaugelas (1585 – 1650) en donne la preuve quand, dans Remarques sur la langue françoise utiles à ceux qui veulent bien parler et escrire, il écrit :

Septante, n’est Français qu’en un certain lieu où il est consacré, qui est quand on dit la traduction des Septantes […]. Hors de là il faut toujours dire soixante-dix, tout de même que l’on dit quatre-vingts et non pas octante ou quatre-vingts dix et non pas nonante.

Vaugelas cite ici la traduction de la Bible hébraïque en grec, dont la lecture du livre XII des Antiquités judaïques de Flavius Josèphe (37 – 100 environ) explique le nom de Septante. Selon cet auteur, Ptolémée II Philadelphe (309 – 246 avant Jésus-Christ), roi d’Égypte, aurait demandé à Éléazar, grand prêtre des Juifs (à Alexandrie), d’envoyer six anciens de chaque tribu traduire les textes hébraïques. Il conclut étrangement par :

Je ne crois pas nécessaire de donner les noms des septante anciens envoyés par Éléazar.

Pourtant, les tribus d’Israël étant au nombre de 12, les traducteurs auraient dû être 72 (6 x 12). Volonté d’arrondir un nombre qui n’est sans doute qu’un mythe ? Erreur de calcul ? Nous ne saurons jamais, mais nous devons sans doute à Flavius Josèphe l’appellation de Septante donnée à la traduction grecque de l’Ancien Testament. Dans tous les cas, l’article de Vaugelas montre qu’avant lui, 70 se disait communément septante.

Pour suivre ses recommandations, l’Académie française recommanda l’usage des expressions soixante-dix, quatre-vingts et quatre-vingts dix. La raison invoquée par Vaugelas n’est motivée que par l’affirmation : « ce n’est pas français », ce qui ressemble fort à un argument d’autorité. Pourquoi ces choix ? La réponse est sans doute à lire dans les nouveaux éléments d’arithmétique de Thomas Fantet de Lagny (1660 – 1734), un mathématicien de l’époque :

La raison de cette irrégularité peut être attribuée vraisemblablement à l’agrément de la prononciation que l’on trouve plus douce dans ce mot, par exemple, soixante-dix que dans septante, à cause des deux consonnes pt, que notre langue évite, et par la même raison, on a mieux aimé dire quatre-vingts qu’octante, comme on disait autrefois à cause des deux consonnes ct, […] quoiqu’il en soit, les arithméticiens ont eu raison de retenir les mots de septante, octante et nonante […] car on est porté à écrire 7, 8 et 9 […] et non 6 et 4.

Bien qu’il ne soit guère convaincant en ce qui concerne le bannissement des sons « pt » ou « ct » puisqu’il ne semble que jamais des mots comme « opter » ou « octave » n’aient été inquiétés, l’argument des académiciens paraît bien se situer au niveau de l’élégance, de la musique et de la douceur des sons. Cependant, pour éviter les confusions, du temps où elles existaient encore, c’est-à-dire jusqu’en 1987, les criées à la Bourse de Paris se faisaient en suivant l’ancien compte. En effet, soixante-dix-neuf porte à noter un 6 pour commencer alors que septante-neuf ne prête à aucune confusion.

 

Le théorème de la médiane

Par les idées qu’elle mobilise, la démonstration du théorème de la médiane est plus intéressante que le résultat lui-même. C’est cependant naturellement que nous commencerons par l’énoncer.

Enoncé

On considère un triangle ABC, I le milieu du côté BC. AI est donc une médiane du triangle. La formule suivante permet de calculer sa longueur :

Démonstration

Une idée simple pour démontrer ce théorème est d’utiliser la notion de vecteur car :

En utilisant la notion de produit scalaire, on obtient :

En faisant la somme et en utilisant la relation :

On obtient :

Comme :

On en déduit le résultat.