Ombres, couleurs et lumières dans les arts graphiques

Que la lumière soit, et la lumière  fut.

La Bible, Genèse 1

Ce n’est pas un hasard si l’auteur du premier chapitre de la Genèse a placé la création de la lumière en tête, car elle est la condition de toute vie mais aussi de toute perception, des formes comme des couleurs. Elle est à la source des ombres et son étude établit des ponts entre mathématiques et art.

Sous des lumières différentes, le même paysage donne des impressions différentes, comme le montrent ces deux photographies de la rade de Toulon sous les nuages. La différence essentielle est que, dans la seconde photographie, un rayon de lumière vient illuminer les bâtiments en premier plan et créer des ombres. Les couleurs en sont également modifiées. Certains bâtiments passent du rose au jaune ou même au noir !

Vue de la rade de Toulon sous les nuages, avec ou sans rayon de soleil. © Hervé Lehning

Sans lumière, pas de couleurs

La couleur n’existe pas en elle-même, elle correspond à notre perception des ondes lumineuses qui, mathématiquement parlant, sont analogues aux ondes acoustiques. L’ensemble des longueurs d’onde de la lumière visible constitue le spectre de la lumière. Il s’étend du violet, dont la longueur d’onde est de 400 nanomètres, au rouge, dont la longueur d’onde est de 700 nanomètres. Au-delà de ces longueurs d’onde, la lumière devient invisible et on entre dans le domaine de l’ultraviolet, dont les rayons sont responsables du bronzage de la peau et dans l’infrarouge ou rayonnement calorique. On retrouve ces diverses couleurs dans les arcs-en-ciel.

Les différentes couleurs du spectre chromatique, du violet au rouge et de bas en haut, se retrouvent dans cet arc-en-ciel apparaissant au-dessus des chutes du Zambèze © Hervé Lehning

La même théorie mathématique, inventée par Joseph Fourier (1768 – 1830), permet de décomposer les ondes sonores et les ondes lumineuses en sommes d’ondes élémentaires, dites harmoniques en acoustique et ondes monochromatiques en optique. Dans ce dernier cas, celles qui correspondent au spectre visible sont appelées couleurs pures.

Les couleurs telles que nous les voyons dépendent de trois types de récepteurs compris dans nos yeux. Dans chaque onde, chacun capte la part à laquelle il est sensible, notre cerveau réalise la synthèse. Le système RVB, utilisé en photographie, imite ce principe naturel : on ajoute du rouge, du vert et du bleu pour obtenir toutes les couleurs. On retrouve le principe de la décomposition précédente, en la limitant à trois couleurs pures. Le système CMJN, utilisé en imprimerie, est fondé sur un principe soustractif mais aboutit à un résultat identique.

Sans lumière, pas d’ombres

De même, la lumière crée l’ombre. Le photographe, le dessinateur comme le peintre jouent avec cette propriété. L’ombre accentue les formes des objets ou en crée d’étranges.

La lumière, venant de l’autre côté de l’opéra de Sydney, crée une ombre qui souligne les formes. © Hervé Lehning

Les dessins d’architecture comportent des ombres portées d’un objet sur un autre, ce qui peut donner des courbes étonnantes. On peut les photographier ou les prévoir d’avance ce qui autrefois prêtait à des constructions de géométrie descriptive intéressantes. Elles sont aujourd’hui réalisées automatiquement à travers des logiciels de géométrie.

Ombres portées sur les toits de la Charité à Marseille. © Hervé Lehning

Il arrive de plus que les ombres prennent des formes étranges ne semblant plus rien à voir avec l’original, comme sur la photographie suivante qui constitue une anamorphose d’un taureau chargeant un toréador.

Ombres portées sur le sol d’un taureau chargeant un toréador dans les arènes d’Arles. © Hervé Lehning

Le clair-obscur

La lumière permet enfin de mettre l’accent sur un personnage et de le modeler, comme sur la photographie suivante où il met en valeur le mouvement des bras du personnage. Certains studios sont réputés pour ce type de photographies qui sculptent les personnages.

Le mouvement des bras de la femme sur cette photographie est mis en valeur par le jeu de lumière et d’ombre. © Hervé Lehning

Avant que cette technique ne soit exploitée en photographie, elle a été particulièrement utilisée par des peintres comme Georges de la Tour (1593 – 1652)  à l’époque classique. Dans le nouveau-né, l’accent est mis sur celui-ci grâce au rayon de lumière envoyé par la bougie cachée par la main de la femme à gauche.

Le nouveau-né par Georges de la Tour

De même, la lumière est au centre de la révolution impressionniste. D’une manière presque mathématique quand on pense à l’analyse de Fourier, les impressionnistes n’utilisent que des couleurs primaires et c’est leur reconstitution dans l’œil, ou plutôt le cerveau, du spectateur qui crée l’impression générale. L’aboutissement de ce courant se trouve sans doute dans les œuvres de Vincent Van Gogh (1853 – 1890).

Terrasse de café le soir par Vincent Van Gogh.

La lumière et ses reflets

C’est de même la lumière qui crée les reflets sur l’eau comme dans cette photographie prise un jour d’orage où les jeux de lumière sont visibles. On y voit également son influence sur les couleurs. La scène originale pouvait ainsi être vue de plusieurs manières.

Le grand canal du parc de Sceaux avant l’orage. © Hervé Lehning

Nous retrouvons ces effets dans nombres d’œuvres figuratives mais aussi dans les fameux noir-lumière de Pierre Soulages (né en 1919).

Tableau de Pierre Soulages.

Conclusion

Comme nous l’avons vu, seule la lumière donne un sens aux œuvres plastiques, que ce soit en photographie, en dessin ou en peinture. Les mathématiques ne sont bien entendu pas nécessaires pour les concevoir mais elles les structurent que ce soit dans l’analyse spectrale de la lumière ou dans ses jeux. Les logiciels de dessin utilisent d’ailleurs un grand nombre de techniques mathématiques, même si elles restent invisibles à l’utilisateur.

Peut-on mesurer l’intelligence ?

Les nombres fascinent tellement qu’ils arrivent à pénétrer des domaines purement qualitatifs, comme l’évaluation de l’intelligence. Les tests de Quotient Intellectuel ont été créés, dans le cadre de l’instruction obligatoire, pour détecter les enfants susceptibles de rencontrer des difficultés scolaires. En 1904, le ministère de l’Instruction publique chargea Alfred Binet (1857 – 1911) d’imaginer un outil pour ce faire. Son échelle psychométrique visait à un diagnostic rapide d’arriération en comparant les performances de l’enfant à celles de sa classe d’âge. À l’époque, ce n’était pas un test destiné à la sélection, mais au contraire à aider les enfants en difficulté. Binet lui-même notait d’ailleurs l’influence de la culture familiale sur les résultats des tests et, quand on lui demandait ce qu’était l’intelligence, il répondait : l’intelligence est ce que mesure mes tests.

Le quotient intellectuel des enfants

La notion de quotient intellectuel découle des études de Binet, mais a été fixée par Wilhelm Stern (1871 – 1938) comme le rapport entre l’âge mental d’un enfant et son âge physique… d’où le terme de « quotient ». Un QI de 100 correspond donc à un enfant normal… et le QI d’un même enfant varie avec l’âge. Il est mesuré par des tests qui dépendent également de l’âge. Ces tests portent souvent sur des reconnaissances de structures, ce qui est relativement naturel si on veut mesurer l’aptitude à suivre les cours de l’école élémentaire, pas forcément si on s’intéresse à celle de survivre dans une nature hostile… ce qui pourtant demande aussi de l’intelligence.

Exemple de test de QI actuel. Il s’agit de choisir la figure du dernier carré, qui complète les précédentes. Ce type de test privilégie les compétences logiques et mathématiques.

Vu le but, ces tests sont légitimes et doivent permettre de venir en aide à des élèves en difficulté en évaluant où se situe leur problème : émotivité exacerbée ou arriération mentale ? Le QI peut discriminer entre ces deux hypothèses.

Extension aux adultes

Jusqu’en 1939, le QI est resté cantonné à la mesure de l’âge mental des enfants. David Wechsler (1896 – 1981) eut l’idée d’un test s’appliquant aux adultes. La définition donnée ci-dessus n’ayant aucun sens dans ce cadre, il eut recours à un subterfuge.

Courbe en cloche de la répartition du QI dans la population. La moyenne est égale à 100 et l’écart-type à 15, ce qui signifie que 34 % des cas sont situés entre 100 et 115 (et symétriquement entre 85 et 100), et que 14 % des cas sont situés entre 70 et 85 (symétriquement entre 115 et 130).

La répartition du QI des enfants suivant une courbe en cloche de moyenne 100 et d’écart-type 15, il supposa qu’il en était de même pour les adultes et étalonna ses tests pour qu’il en soit effectivement ainsi ! Les tests utilisés actuellement descendent de ces tests de Wechsler.

Changement d’utilisation

À la différence de ceux imaginés par Binet, les tests de QI actuels sont plutôt destinés à détecter des personnes à haut potentiel intellectuel, ou que l’on croît tels. Ces tests ont plus d’un effet pervers. S’ils peuvent aider à corriger l’orientation scolaire de certains enfants, supposés inadaptés du fait de leur précocité ou de leur émotivité exagérée, ils peuvent aussi fabriquer des aigris si la réussite ultérieure ne correspond pas à l’intelligence supposée.

L’intelligence est-elle unidimensionnelle ?

Quelle que soit la sophistication de ces tests, on peut douter que l’intelligence puisse être classée selon une seule dimension. Pour commencer, qu’est-ce que l’intelligence ? Bien entendu, on peut répondre comme Binet : l’intelligence est ce que mesurent les tests de QI. Une telle réponse a l’avantage d’être simple et opératoire… et le défaut de ne servir à rien. La question n’est pas aisée car, sans même savoir de quoi il s’agit, il faut être intelligent aussi bien pour définir l’intelligence, que pour en comprendre l’éventuelle définition. De même, il faut ne pas l’être pour croire qu’elle peut se résumer à un nombre fourni par un test. Une définition doit apporter une certaine compréhension du phénomène, et répondre à la question : à quoi sert-il d’être intelligent ? Dans ce sens utilitaire, la définition la plus courante est : l’intelligence est la faculté de s’adapter. Même si des qualités communes sont nécessaires pour cela, il est clair que cela dépend des circonstances. Prenons l’exemple de situations conflictuelles. Une qualité essentielle est de reconnaître qui est votre adversaire, et qui est votre allié potentiel. Cette forme d’intelligence relationnelle est utile dans le commerce, dans l’enseignement comme en politique. Une fois votre adversaire potentiel détecté, il est bon de savoir prévoir l’action qu’il va mener. Nous retrouvons ici la forme d’intelligence privilégiée en mathématiques et dans les tests de QI. Ces deux formes d’intelligence ne sont pas les seules, même si elles sont peut-être les principales. Notre but n’est pas ici d’en faire la liste, le lecteur intéressé pourra consulter les formes d’intelligence de Howard Gardner. En admettant que nous soyons capables de noter exactement chaque être humain sur ces deux formes d’intelligence, pour obtenir une note globale, il est ensuite nécessaire d’attribuer un pourcentage à chacune, ce qui est loin d’être évident. Les tests de QI ont sans aucun doute une utilité mais il est vain d’en faire une mesure de l’intelligence, surtout si on s’entraîne à les passer !