Archives par mot-clé : moyenne

Quelle est la taille de la Française moyenne ?

Vous lisez dans la presse que la Française moyenne mesure 1 mètre 63. Si vous rencontrez une Française, quelle est la probabilité qu’elle ait cette taille ?

Moyenne et répartition

En l’absence d’informations supplémentaires, impossible de répondre à cette question. Pour cela, il faut connaître la répartition de la taille des Françaises. De plus, la question est mal formulée : la Française moyenne est un mythe … il est préférable de parler de la taille moyenne des Françaises. En fait, elles se répartissent en 25 % de petites (1 mètre 54 en moyenne), 50 % de moyennes (1 mètre 63 en moyenne) et 25 % de grandes (1 mètre 72 en moyenne). La répartition exacte suit une courbe en forme de cloche comme c’est le cas généralement quand on étudie une population homogène sous un certain critère.

Courbe de répartition de la taille des Françaises. Peu ont la taille moyenne !

Cette courbe ne suffit pas non plus pour répondre à la question, même si elle donne l’idée que la probabilité qu’une femme donnée mesure 1 mètre 63 se situe entre 10 et 20 %. Les données statistiques sont donc à analyser avec prudence.

L’art de moyenner

Quand on veut calculer la taille moyenne des Français, le principe est simple. On mesure la taille de chaque français de plus de 18 ans (les mesurer depuis la naissance fausserait la moyenne), on fait le total de ces tailles et on divise par le nombre total de Français adultes. On trouve un nombre comme 176 cm qui est donc la taille moyenne des Français adultes. On peut recommencer avec les Françaises, on trouve 163 cm.

Pour calculer la moyenne de la taille des girafes, on ne retient que la taille des adultes. @ Hervé Lehning

La moyenne arithmétique

En mathématiques, on parle de moyenne arithmétique. Par exemple, la moyenne arithmétique des dix nombres du tableau ci-dessous est égale à leur somme 618 divisée par 10 soit 61,8.

82

7198647739866922

10

La vitesse moyenne

Prenons l’exemple du calcul d’une vitesse moyenne sous la forme d’une petite énigme :

Deux villes A et B sont distantes de 100 km, un automobiliste effectue le trajet de A à B en une heure et le retour en deux heures. Quelle est sa vitesse moyenne ?

Comme le premier trajet s’effectue à 100 km/h de moyenne et le retour à 50 km/h, on peut être tenté de faire la moyenne arithmétique des deux nombres et répondre 75 km/h. En fait, ce résultat est faux. Un raisonnement plus correct consiste à dire que l’automobiliste a parcouru 200 km en trois heures et donc que sa vitesse moyenne a été de 200 / 3 = 67 km/h (en arrondissant). La différence est notable.

La moyenne harmonique

Cette nouvelle moyenne, adéquate pour calculer les vitesses, est appelée la moyenne harmonique. Si on considère une suite finie de n nombres a, b, etc. les moyennes arithmétique et harmonique A et B sont données par les formules :

A = (a + b + …) / n   et   1 / H = (1/a + 1/b + …) / n

Il existe toute sorte d’autres moyennes correspondantes chacune à la nature des quantités à moyenner. On ne moyenne pas de même des longueurs, des poids, des vitesses, des températures, etc.