Archives pour la catégorie Sciences

Saint Urlo, saint patron des cryptologues ?

Traditionnellement, chaque groupe, professionnel ou autre, a son saint patron. Ce saint a en général un lien avec le groupe en question.

Gabriel, saint patron des transmetteurs

L’annonce faite à Marie par Gabriel.

Par exemple, le saint patron des transmetteurs de l’armée est très logiquement l’archange Gabriel, celui qui annonce les bonnes nouvelles comme celle faite à Marie dans les Évangiles. La fête des transmetteurs est donc le 29 septembre, le jour de la saint Gabriel. Le saint patron du renseignement militaire est un autre archange, Raphaël, fêté le même jour comme tous les archanges. La relation de ce saint avec le renseignement est mystérieuse. Saint Simon nous aurait semblé plus approprié, lui qui fut qualifié d’espion sagace et fantasque de Versailles et des coulisses du pouvoir au temps de Louis XIV par l’académicien Yves Coirault (1919 – 2001). Même si nous penchons nettement en faveur du choix de saint Simon, comme saint patron des espions, nous respectons la tradition qui lui préfère Raphaël.

L’évidence de Saint Urlo

En ce qui concerne les cryptologues, d’après leur proximité avec les transmissions et le renseignement, ils peuvent se réclamer de Gabriel, de Raphaël et de saint Simon, mais ils préfèrent souvent reconnaître le patronage de saint Urlo. Pourquoi ? Toux ceux qui se sont déjà attaqués au décryptement de vieux grimoires écrits avec des alphabets chiffrés le savent. La lettre la plus fréquente en français est la lettre  e, ensuite viennent dans un ordre approximatif s, a, i, n, t, u, r, l, o.  Affirmer qu’Urlo est le saint patron des cryptologues est une bonne façon de se souvenir des lettres les plus fréquentes en français, pour appliquer l’analyse fréquentielle.

Un saint breton qui a sa chapelle

Chapelle de Saint Urlo à Lanvénégen (Morbihan)

Notre présentation d’Urlo peut faire penser qu’il s’agit d’un saint imaginaire. Pourtant un voyage dans le Morbihan, à Lanvévégen plus précisément, vous le fera découvrir. En effet, il s’agit d’un saint breton. L’orthographe de son nom varie de Gurloës à Ourlou en passant par Urlo. Au XIe siècle, Urlo fut le premier abbé de l’abbaye Sainte-Croix de Quimperlé. Il ne fut canonisé que difficilement car personne n’avait été témoin d’un seul miracle qu’il aurait réalisé. Pour nous, cela n’est qu’une preuve supplémentaire de son lien avec la cryptologie car les exploits des décrypteurs sont effectivement tenus secrets longtemps. La fête de saint Urlo est le 25 mars.

Et Marie Stuart perdit la tête à cause d’un mauvais chiffre …

Ayant été élevée à la cour de France à l’époque d’Henri II, Marie Stuart,qui fut reine d’Écosse et de France, utilisait un chiffre du type de ceux d’Henri II comme le suivant, qu’il avait avec Philibert Babou, ambassadeur à Rome.

Ce chiffre utilisé par Henri II est un chiffre par substitution offrant plusieurs équivalents pour chaque lettre, muni d’un nomenclateur pour les mots courants.

Les chiffres de Marie Stuart

Marie Stuart utilisait plusieurs chiffres, selon ses correspondants. L’examen de celui utilisé dans le complot de 1586, qui se trouve aux archives du Royaume-Uni, montre qu’il est bien du type précédent.

Le chiffre utilisé par Marie Stuart en 1586. On voit clairement qu’il est de même nature que celui de Henri II.

Autrement dit, le chiffre de Marie Stuart était du niveau de ceux des rois de son époque. Elle perdit pourtant la tête de l’avoir utilisé. Un chiffre faible est toujours pire que l’absence de chiffre. Son sort se noua alors qu’elle était prisonnière au château de Chartley au nord de l’Angleterre. Son seul contact avec le monde extérieur était sa correspondance, chiffrée par son secrétaire, Gilbert Curle. Elle la faisait sortir clandestinement, cachée dans des tonneaux de bière.

Espionnage de la correspondance de Marie

La principale faille dans ce scénario était la personne chargée de cette tâche, Gilbert Gifford, un agent double de Francis Walsingham (1530 – 1590), secrétaire d’Élisabeth Ie. Il lui transmit toutes les lettres de Marie, ce qui permit au cryptanalyste de Walsingham, Thomas Phelippes de les décrypter, en utilisant vraisemblablement la méthode du mot probable (c’est-à-dire rechercher la présence de mots qu’on estime probable dans une correspondance, en fonction du destinataire, par exemple “reine”, “cousine”, etc.). L’abondance des messages lui facilita sans doute la tâche.

Le complot et la manipulation de Walsingham

En 1586, son ancien page, Anthony Babington, qui faisait partie d’un complot contre la reine d’Angleterre, lui écrivit une longue lettre chiffrée où il lui décrivait les détails du complot et demandait son accord. La réponse de Marie scella son destin. Quand Thomas Phelippes l’eut décryptée, il ajouta une potence à la copie qu’il en fit ! Pour que Walsingham obtienne les noms de tous les complices, il ajouta un postscriptum à la lettre demandant les noms de tous les comploteurs. En plus d’être excellent cryptanalyste, Phelippes était un faussaire hors pair ! Ainsi, Babington livra lui-même ses complices. Tous furent exécutés avant le procès de Marie.

La cryptographie et le mouvement : d’un conflit à l’autre

Dès la Grande Guerre, les communications reposaient sur la radio et étaient donc quasi instantanées mais la cryptographie utilisée les ralentissait car elle reposait sur un travail manuel long et pénible. Elle correspondait à une guerre immobile, pas à une guerre de mouvement. Tous les chiffres de cette guerre était fondés sur un mélange de substitutions alphabétiques et de transpositions. De ce temps, le décryptement français était excellent si bien que les messages allemands furent décryptés quasiment tout au long de la guerre.

Le chiffre ADFGX

En 1918, le haut commandement allemand ayant compris que ses chiffres n’étaient guère secrets, décida d’en changer avant le jour de la grande offensive du printemps 1918, rendue possible par sa victoire sur la Russie, et nécessaire par l’arrivée des Américains. Pour une fois, la question fut prise au sérieux et une conférence sur le thème fut organisée à Berlin. Le prix fut remporté par un colonel au nom prédestiné, Fritz Nebel, même si le brouillard qu’il généra ne fut guère épais pour les décrypteurs français, dont l’excellent Georges Painvin. Pour éviter les confusions à la réception, le système de Nebel n’utilisait que cinq lettres, toutes très éloignées en code morse : A, D, F, G et X.

  • A · · D · · · F — — · G · · X

Les messages ne comportant  que ces cinq lettres explique le nom donné à ce chiffre par l’armée française. Ces cinq symboles firent penser à l’utilisation d’un carré de Polybe de côte 5, un carré où on dispose les 25 lettres de l’alphabet (en confondant le I et le J) et où les substitue ensuite par leurs coordonnées. Ce carré constitue la clef d’une substitution alphabétique, clef qui peut être retenue par une phrase.

Carré de Polybe utilisé par le système ADFGX. Ici, il a été construit à partir de la phrase « Geheimschrift der Funker »

Considérons par exemple le message « Attaquez demain à quatre heures ». Pour le chiffrer, nous chiffrons chaque lettre suivant le carré ci-dessus. Ainsi, A est codé FX (ligne et colonne de A dans le carré). Nous obtenons la suite :

FX DX DX FX GX FD AD XX FA AD AX FX AG FF FX GX FD FX DX DF AD AF AD FD DF AD DA

Surchiffrement par transposition

Ce message est alors surchiffré au moyen d’une transposition. Celle-ci est déterminée par un mot clef. Si celui-ci est « nébuleux », nous formons un tableau dont la première ligne est la clef (voir le tableau ci-dessous). La deuxième ligne donne l’ordre des lettres de la clef dans l’ordre alphabétique. Ensuite, nous copions les lettres du message précédent ligne par ligne. Nous complétons la dernière ligne par des nulles choisies arbitrairement parmi les lettres ADFGX.

Seconde étape du chiffrement après substitution mais avant permutation. Celle-ci est toutefois indiquée en seconde ligne.

Nous écrivons alors les colonnes dans l’ordre donné par la seconde ligne du tableau et groupons les lettres par cinq pour obtenir le message chiffré :

DFAFF AAXXA GDDFX DXXXD ADAAF DADFG FAFAD XDDFX FDFXF GDFGX XXXFD X

Attaques allemandes et décryptement de ADFGX

Le système ADFGX fut utilisé à partir du 5 mars 1918. Les messages allemands devinrent alors indécryptables pour les Français. Même s’il était évident que les Allemands allaient attaquer, l’état-major ne savait pas où, et l’offensive du 21 mars fut une surprise. Elle fut suivie par plusieurs offensives qui, progressivement, asséchaient les réserves françaises. Alors qu’au départ, elles étaient échelonnées à l’arrière dans tous les endroits probables d’attaques allemandes, il fallait maintenant choisir où les disposer. Heureusement, le 5 avril, Georges Painvin réussit à décrypter le système. La présence de cinq symboles faisait penser à un carré de Polybe, donc à une substitution suivie d’une transposition mais Georges Painvin avait besoin de la longueur de la seconde clef pour commencer le décryptement. Or, les Allemands étaient devenus méfiants, changeaient leurs clefs tous les jours et limitaient l’usage du nouveau système au niveau stratégique. Les tranchées communiquaient autrement. La chance arriva le 4 avril, quand Painvin reçut deux messages ayant de fortes similarités, qui lui permirent d’accéder à cette longueur (le lecteur intéressé trouvera les détails du décryptement dans mon livre l’univers des codes secrets de l’Antiquité à Internet).

Une “amélioration” catastrophique

Malgré cela, les Allemands réussirent plusieurs attaques par surprise. Paris n’était plus loin et les réserves françaises s’épuisaient. Le 1er juin, les Allemands changèrent à nouveau de code, ajoutant un V aux cinq autres lettres. Georges Painvin comprit immédiatement que le système n’avait pas réellement changé, que le carré de Polybe avait seulement maintenant un côté de six. En tout cela faisait 36 symboles. L’hypothèse naturelle était qu’ils chiffraient ainsi les 26 lettres de l’alphabet plus les dix chiffres. Cette apparente complication fit la perte des Allemands. En effet, ils commençaient leurs messages par leur adresse comme « 15e division d’infanterie » ou « 25e division d’infanterie ». En toutes lettres, cela donnait des messages commençant par « quinze » ou « vingt-cinq », qui différaient énormément. Avec le nouveau système, entre « 15 » et « 25 », seule la première lettre différait.

Deux messages ayant les particularités que nous venons d’étudier furent interceptés le 1er juin. Georges Painvin les décrypta dès le 2. Tous les messages du 1er furent alors décryptés et le lieu de la future offensive allemande se dévoila. Les réserves françaises furent placées exactement où il fallait et ce fut la victoire de Méry, qui changea le cours de la guerre en ce printemps 1918. Les Allemands ne purent plus prendre les Français par surprise, cela essentiellement grâce à un décrypteur de génie, Georges Painvin.

Seconde Guerre mondiale

La cryptographie de la Première Guerre mondiale était inadaptée à une guerre de mouvement, qui exige la rapidité des communications. C’est ainsi que, dès la fin de la Grande Guerre, des machines cryptographiques dont la célèbre Enigma virent le jour. La lutte contre cette machine fera l’objet d’autres articles sur ce blog.

Les suites qui se racontent et le jeu de Robinson

Les suites qui se racontent sont entrées un jour dans ma vie pour ne plus en sortir à travers une énigme mathématique que me posa un ami :

Si une suite commence par 0, 10, 1110, 3110, 132110, 13123110, quel est le nombre suivant ?

Ma réponse fût 23124110 (dans 0, je compte un 0 ce que j’écris 10 ; dans 10, je compte un 1, un 0 ce que j’écris 1110 ; dans 1110, je compte trois 1, un 0 ce qui donne 3110, etc.). En quelque sorte, chaque terme “raconte” le précédent.

L’énigme se transforme en suite … et en conjecture

J’aurais pu m’arrêter là mais, allez savoir pourquoi, je continuais : 1413223110, 1423224110, 2413323110, 1433223110, 1433223110. La suite est donc constante à partir de ce terme. Le résultat me sembla surprenant, c’est pourquoi j’essayais d’autres valeurs initiales. J’avais beau examiner un grand nombre de valeurs, je trouvais toujours une suite périodique, la période étant 1, 2 ou 3. Très vite convaincu de ce résultat, je tentais de prouver ce qui était devenu une conjecture. Après plusieurs mois de recherche, je trouvais 109 points fixes, 31 cycles de période deux et 10 cycles de période trois (voir plus loin leur liste exhaustive). 

Puis la conjecture en théorème

Pour trouver tous les cycles des suites qui se racontent, on peut utiliser un ordinateur à condition de réduire d’abord le nombre de cas à essayer. Il est également possible de faire un raisonnement analytique classique. Pour ceux que le sujet intéresse, j’ai raconté cette quête de la preuve dans :

Hervé Lehning, « Computer-aided or analytic proof? », College Mathematics Journal, vol. 21, no 3,‎ 1990, p. 228-239

Hervé Lehning, « Quelle est la meilleure preuve ? », Quadrature, n° 11, 1992 (Ce dernier article est illustré Par Charb.)

Page de l’article avec l’illustration de Charb

Le jeu de Robinson

Quand j’ai proposé mon article, on me fit remarquer que je résolvais sans le savoir une conjecture de Douglas Hofstadter (parue dans Ma Thémagie) liée à un jeu inventé dans les années soixante-dix par Raphaël Robinson (1911 – 1995), un mathématicien américain. Le but est de remplir les blancs de la phrase suivante afin qu’elle devienne vraie :

Dans cette phrase, il y a __ 0, __ 1, __ 2, __ 3, __ 4, __ 5, __ 6, __ 7, __ 8, et __ 9

On remarque immédiatement que tout point fixe utilisant les dix chiffres d’une suite qui se raconte est solution, et réciproquement. En utilisant la liste des 109 points fixes, on trouve deux solutions :

Dans cette phrase, il y a 1 0, 11 1, 2 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, et 1 9.

Dans cette phrase, il y a 1 0, 7 1, 3 2, 2 3, 1 4, 1 5, 1 6, 2 7, 1 8, et 1 9.

Les autres points fixes fournissent des solutions à un jeu de Robinson légèrement modifié où certains chiffres peuvent être supprimés. Par exemple :

Dans cette phrase, il y a 3 1, 2 2, 3 3, 1 4 et 1 5.

Suppléments : cycles des suites qui se racontent

Pour en simplifier la lecture, je noterai <n> le fait que n chiffres, choisis arbitrairement parmi les chiffres possibles, soient précédés d’un 1.

Liste des points fixes

1 9 / 1 8 / 1 7 / 1 6 / 1 5 / 1 4 / 1 3 / 2 2 / 11 1 / 1 0 et

1 9 / 1 8 / 2 7 / 1 6 / 1 5 / 2 3 / 3 2 / 7 1 / 1 0 ce qui fait 2 points fixes,

11 1 / <8> ce qui fait 9 points fixes, 2 6 / 2 3 / 3 2 / 6 1 / <5> ce qui fait 6 points fixes, 2 5 / 2 3 / 3 2 / 5 1 / <4> ce qui fait 15 points fixes, 2 4 / 2 3 / 3 2 / 4 1 / <3> ce qui fait 20 points fixes, 3 3 / 2 2 / 3 1 / <2> ce qui fait 21 points fixes, 2 3 / 3 2 / 2 1 / <1> ce qui fait 7 points fixes, 3 3 / 3 1 / <2> ce qui fait 28 points fixes, 2 2 ce qui fait 1 point fixe, d’où un total de 109 points fixes.

Liste des cycles de période deux

2 8 / 1 7 /  1 4 / 4 2 / 7 1 / <5>       1 8 / 2 7 / 2 4 / 2 2 / 8 1 / <5> ce qui fait 1 cycle, 

2 7 / 1 6 / 1 4 / 4 2 / 6 1 / <4>                   1 7 / 2 6 / 2 4 / 2 2 / 7 1 / <4> ce qui fait 5 cycles,

2 6 / 1 5 / 1 4 / 4 2 / 5 1 / <3>                   1 6 / 2 5 / 2 4 / 2 2 / 6 1 / <3> ce qui fait 10 cycles,

2 4 / 1 3 / 4 2 / 3 1 / <2>                 2 4 / 2 3 / 2 2 / 4 1 / <2> ce qui fait 15 cycles,

d’où un total de 31 cycles de période 2.

Liste des cycles de période trois

2 5 / 1 4 / 1 3 / 4 2 / 4 1 / <2>     1 5 / 3 4 / 1 3 / 2 2 / 5 1 / <2>      2 5 / 1 4 / 2 3 / 2 2 / 5 1/ <2>

ce qui fait 10 cycles de période 3.

 

 

De Tannenberg au “miracle” de la Vistule

Quel rapport entre la bataille de Tannenberg (26-29 août 1914) et la bataille de Varsovie (13-25 août 1920) ? Dans les deux cas, les armées russes furent défaites par des armées très inférieures en nombre du fait de l’interception de leurs communications radios.

La bataille de Tannenberg

En août 1914, l’entrée en guerre de la Russie se fit dans une telle précipitation qu’aucun matériel cryptographique n’avait été livré si bien que les communications russes se faisaient en clair par radio. Autrement dit, les Allemands étaient invités aux réunions d’état-major des Russes. Le général en chef allemand sut utiliser cet avantage pour diviser les armées russes et anéantir l’une d’entre elles.

Le “miracle” de la Vistule

Si le renseignement allemand avait été particulièrement aidé par l’absence de chiffrement des messages russes en 1914, c’est par le décryptement que, en 1920, les Polonais s’invitèrent aux réunions d’état-major russe avec un résultat identique. La victoire qui s’ensuivit fut attribué par le clergé polonais à une intervention divine d’où le nom qui lui fut attribué de miracle de la Vistule.

L’excellence polonaise en matière de cryptologie

Le miracle de la Vistule est donc avant tout un miracle du décryptement.

L’excellence du bureau du chiffre polonais se poursuivit jusqu’au début de la Seconde Guerre mondiale puisque le premier décryptement d’Enigma fut un succès conjoint de l’espionnage français et du génie de trois mathématiciens polonais : Marian Rejewski (1905 – 1980), Jerzy Rozycki (1909 – 1942) et Henryck Zygalski (1908 – 1978). L’espionnage a fourni les tables de chiffrement de l’armée allemande de 1931 à 1938. Les mathématiques ont permis, grâce à ce renseignement, de reconstituer les câblages de la version militaire de l’Enigma et de fabriquer des répliques d’Enigma dès 1933. Les messages furent alors déchiffrés régulièrement. Les mathématiciens polonais cherchèrent à pouvoir se passer des tables de chiffrement, ce qu’ils réussirent à faire, en particulier en créant une machine, la bomba. Elle permettait de trouver la clef du jour en quelques minutes. Après la défaite de la Pologne puis celle de la France, les résultats polonais furent livrés aux Britanniques. Le mathématicien Alan Turing (1912 – 1954) et son équipe de Bletchley Park reprirent avec succès le décryptement en l’améliorant et en l’adaptant aux complexifications successives d’Enigma. La guerre fut probablement écourtée de deux ans grâce au décryptement.

 

 

L’application surprenante d’un vieux problème d’Apollonius

L’Antiquité grecque s’est passionnée du problème d’Apollonius (trois siècles avant notre ère) sans doute sans y voir la moindre application. Songez ! Étant donné trois cercles du plan, il s’agit de trouver les cercles qui leur sont tangents. Il fallut attendre François Viète (1540 – 1603) pour qu’il trouve une solution complète. Au maximum, huit cercles sont solutions.

Le cercle rouge est tangent aux trois cercles bleus

Repérage acoustique de l’artillerie

Une idée pour repérer les pièces d’artillerie est d’utiliser le son produit lors de la mise à feu. Les instruments essentiels pour ces repérages sont des microphones, dispositifs inventés à la fin du XIXe siècle. S’ils sont adaptés aux basses fréquences et ignorent les autres, les sons de l’artillerie lourde sont distingués des autres bruits du champ de bataille. Il faut en utiliser au moins trois, reliés à un appareil d’enregistrement effectuant un tracé sur un même rouleau enregistreur afin de comparer les instants de réception du son.

Le son de la même mise à feu est enregistré à des instants différents selon la position des micros.

Dans le cas de l’enregistrement ci-dessus, l’onde sonore venant du canon ennemi (en T) se déplace selon un cercle de centre T. Elle atteint d’abord le point A où est placé le premier microphone puis le point B où est placé le second après un temps t mesurable sur l’enregistrement et enfin le point C après un temps t’ (toujours après le point A). En tenant compte de la vitesse du son, la distance de T à A est égale à un nombre R, qu’il s’agit de déterminer, celle de T à B à R + rr correspond à la distance parcourue par le son pendant le temps t et enfin la distance de T à C égale à R + r’ où r’ correspond à la distance parcourue par le son pendant le temps t’.

Si T est connu, le cercle de centre T et de rayon R passe par A et est tangent au cercle de centre B et de rayon r ainsi qu’au cercle de centre de centre C et de rayon r’, ce qui se résume en une figure bien connue des mathématiciens de l’époque, au problème d’Apollonius, l’un des cercles étant de rayon nul :

Le cercle de centre T passe par A et est tangent aux cercles de centres B et C.

Résolution du problème

De nos jours, ce problème est résolu par la géométrie analytique et un logiciel détermine directement les coordonnées de la position de la batterie ennemie (système de localisation de l’artillerie par acoustique, SL2A). Ce système peut être couplé de nos jour avec un radar de contrebatterie (RCB), qui a cependant le défaut d’être lui-même repérable puisqu’un radar émet des ondes, contrairement au système acoustique.

En février 1915, Ferdinand Daussy, ingénieur des mines, soldat à Verdun, réalise, à partir d’un moteur de phonographe et d’un diapason entretenu électriquement, un appareil de repérage au son inscrivant sur un papier d’enregistrement le cent millième de seconde. À partir de trois postes d’observation, il parvint à situer les pièces allemandes pourtant invisibles. Les artilleurs français déclenchèrent un tir sur cet emplacement, arrêtant ainsi le feu ennemi. À cette époque, les microphones étaient reliés au système de contrôle par des fils, ce qui le rendait vulnérable. À Verdun, une attaque allemande mit fin au système de Ferdinand Daussy.

On peut également réduire ce problème à une question d’intersection de deux hyperboles mais, au temps de la Grande Guerre, le calcul se faisait graphiquement sur une carte avec un jeu de disques de divers rayons par tâtonnement sachant que la portée maximale des canons était connue.

La méthode a amélioré le repérage des batteries ennemies mais elle n’est pas toujours précise car la vitesse du son dépend de facteurs météorologiques comme la température et la vitesse du vent. De plus, l’artillerie était souvent utilisée en grand nombre simultanément ce qui rendait délicat le repérage individuel de chaque batterie.

Laissons la conclusion sur l’importance de ces recherches à Paul Painlevé, mathématicien et ministre de la guerre en 1917, dans une allocution après la victoire : les mathématiques les plus abstraites ou les plus subtiles ont participé à la solution des problèmes de repérage et au calcul des tables de tir toutes nouvelles qui ont accru de 25 pour 100 l’efficacité de l’artillerie.

Une victoire remportée par la seule arme du chiffre

Le décryptement d’un seul message peut décider du sort d’une bataille ou d’une négociation. Ce fut le cas en 1626 quand les troupes du prince de Condé assiégeant Réalmont interceptèrent un messager sortant de la ville, porteur d’un message incompréhensible. Condé fit venir un jeune professeur de mathématiques de la région, Antoine Rossignol des Roches, qui en trouva le sens. Le message annonçait que la ville était à cours de munition. Condé fit porter le message décrypté à la ville, qui se rendit. La bataille fut gagnée grâce à la seule arme du Chiffre !

Chiffrement par alphabet chiffré

Ce message avait vraisemblablement été chiffré au moyen d’un alphabet chiffré, où chaque lettre est remplacée par un symbole, très en vogue à l’époque.

Un alphabet chiffré de 1626 (Archives de Strasbourg). Chaque lettre doit être remplacée par le symbole inscrit au dessus.

Le décryptement repose à la fois sur les mathématiques et sur la linguistique. Les mathématiques par la méthode des fréquences qui permet au moins de trouver le symbole représentant la lettre “e”. La linguistique par la méthode du mot probable qui permet de deviner des lots du message selon le contexte. Par exemple, dans un message sortant d’une ville assiégée, on peut s’attendre à des mots comme “vivres” ou “munitions”.

Chiffrement par dictionnaire chiffré

La faiblesse des alphabets chiffrés, même améliorés en chiffrant de plusieurs façons différentes les lettres fréquentes et en ajoutant des nulles, c’est-à-dire des symboles ne signifiant rien, amena Rossignol à créer des dictionnaires chiffrés c’est-à-dire des dictionnaires bilingues dont l’une des langues est le français et la seconde, des nombres. Ainsi, on chiffre non seulement des lettres (et ce de plusieurs manières), comme auparavant, mais aussi des syllabes et des mots. La méthode des fréquences n’a alors plus aucun sens et celle du mot probable devient difficile à utiliser. Leur inconvénient principal est leur sensibilité à l’espionnage ou aux hasards de la guerre.

Un dictionnaire chiffré où les lettres, mots, syllabes sont chiffrés par des nombres. Archives de Srasbourg

 

Une sangaku célèbre, de Hidetoshi Fukagawa

Les sangakus japonaises sont de petits chefs d’œuvres aussi bien au niveau du raisonnement mathématique que de l’esthétique. Jean Constant, par exemple, s’en est fait une spécialité (voir l’image mise en avant). La sangaku suivante a été découverte par Hidetoshi Fukagawa.

Les deux triangles (rouge et vert) inscrits dans le carré jaune sont équilatéraux, quel est le rapport entre les rayons des cercles bleus ?

Rayon d’un cercle inscrit

Les deux cercles sont inscrits dans deux triangles. Un théorème permet d’en calculer les rayons en fonction de leurs aires et de leurs périmètres. Plus précisément, le rayon du cercle inscrit dans un triangle est égal à deux fois la surface du triangle divisé par son périmètre, ce résultat est mis en évidence par un dessin : l’aire du triangle se décompose en  trois triangles de même hauteur, le rayon du cercle inscrit. L’aire de chacun de ces triangles est donc égale au rayon du cercle inscrit multiplié par la longueur du côté opposé divisée par deux. En faisant la somme, le périmètre du triangle s’introduit naturellement .

Plan d’attaque du problème

Pour calculer les rayons des deux cercles, il s’agit donc de calculer un certain nombre de longueurs de segments de la figure. L’idée pour les calculer vient si nous en oublions une partie. En utilisant les angles de 60° et de 45° en évidence, nous trouvons que les triangles rouges ont les mêmes angles et sont donc semblables.

Grâce aux rapports de similitude et au théorème de Pythagore, les mesures de longueurs apparaissent progressivement, une d’entre elles (AC) ayant été choisie comme unité. Le dessin est utile pour suivre le raisonnement. Nous en déduisons progressivement les diverses longueurs importantes. Elles sont notées sur le dessin ci-dessous.

On en déduit les valeurs des deux rayons :

Un calcul algébrique

Un calcul algébrique permet de montrer que R = 2 r. Pour cette dernière étape, aucune visualisation n’est nécessaire et nous pouvons l’exécuter avec un logiciel de calcul formel. Ce dernier calcul nous entraîne vers les extensions algébriques, nous nous arrêterons à leur porte.

L’éventail de la geisha

Dans certaines sangakus, les auteurs ont clairement privilégié l’esthétique.

Par exemple, dans celui en forme d’éventail ouvert aux deux tiers ci-dessus, il s’agit de trouver le rapport entre les rayons des cercles verts et rouges. Ici encore, l’essentiel est d’introduire les bons points, qui ne sont pas directement visibles. On trouve :

 

Le chiffre de la reine Marie-Antoinette

Pour qu’elles ne puissent pas être interceptées, Marie-Antoinette chiffrait ses lettres. La méthode qu’elle utilisait était a priori excellente… mais avec une erreur majeure : elle ne chiffrait qu’une lettre sur deux.

Chiffre de Vigenère

Marie-Antoinette chiffrait ses lettres par substitution poly-alphabétique, selon la méthode décrite par Blaise de Vigenère plus précisément. Cette méthode suppose de disposer d’une table de chiffrement, si possible une par destinataire. Voici comment se présentait ces tables :

Une table de chiffrement utilisée par Marie-Antoinette. @ Archives nationales

On notera que ce tableau ne contient que 22 lettres, les lettres manquantes sont J, K, U et W, ce qui correspond à un usage venant du latin où I et J d’un côté, U et V de l’autre sont confondues. K peut être remplacé par C et W par V.

Clef de chiffrement

L’utilisation de ce tableau pour chiffrer demande une clef secrète qu’on partage avec le destinataire. Par exemple, si la clef est sel, pour chiffrer la première lettre, on utilise la ligne dont la première colonne est ST, D est alors changé en N (et N en D), E en O, etc. Pour chiffrer la seconde, on utilise la ligne dont la première colonne est EF.

Utilisation correcte

Pour chiffrer une phrase comme je vous aime, on peut construire un tableau à 10 lignes et 3 colonnes :

J E V O U S A I M E
S E L S E L S E L S
S T D E F B X Z Q O

 

Le message chiffré est donc stdefbxzqo. Si vous essayez de chiffrer une lettre ainsi, vous verrez la difficulté d’éviter les erreurs. C’est pour cela que, on ne sait quel cryptologue avait conseillé à Marie-Antoinette de ne chiffrer qu’une lettre sur deux ce qui, en fournissant des repères, simplifie grandement le chiffrement mais l’affaiblit tout aussi grandement. Nous allons voir pourquoi.

Utilisation par Marie-Antoinette

Le tableau devient ainsi :

J E V O U S A I M E
S E L S E
J O V M U B A S M T

 

Le message chiffré est maintenant jovmubasmt. On peut examiner des lettres chiffrées ainsi par Marie-Antoinette aux Archives nationales, comme la suivante :

Lettre de Marie-Antoinette au comte de Fersen où on voit qu’elle ne chiffrait qu’une lettre sur deux. @ Archives nationales

Décryptement

Le décryptement sans connaître la clef est ainsi facilité, surtout si on connaît le tableau de chiffrement. C’est ici que des talents de cruciverbiste sont utiles. En effet, on peut deviner un mot si on en connaît une lettre sur deux comme ici J-V-U-A-M, qui est transparent pour tout amateur de mots croisés. Ensuite, on sait que la première lettre de la clef transforme E en O ce qui ne se produit que pour ST, en continuant ainsi, on décrypte le message quel que soit sa longueur.

 

Les messages chiffrés du Figaro en 1890

En 1890, le Figaro contenait une rubrique de correspondances personnelles dont certains messages étaient a priori incompréhensibles. Voici une partie de ceux du premier janvier :

La rubrique correspondances personnelles du Figaro, du premier janvier 1890. @ BNF

Chiffre de César

Parmi des messages écrits en style télégraphique, nous en trouvons deux, manifestement entièrement chiffrés. Dans le premier, bonne année est devenue cpoof booff. Autrement dit, il s’agit d’un simple décalage (ou chiffre de César) et le tout signifie : Bonne année d’un ami bien malheureux.

Substitution alphabétique

Le message suivant (d’indicatif LILI) est bien plus intéressant à décrypter. De prime abord, nous pouvons juste penser que le chiffre 2 représente e, du moins si la méthode de chiffrement utilisée est une substitution alphabétique car il s’agit du symbole majoritaire. Heureusement, en feuilletant le Figaro des jours suivants, nous rencontrons un grand nombre de messages sous le même indicatif LILI. Nous nous arrêtons naturellement le douze janvier sur un message à moitié chiffré, une erreur classique de chiffrement.

La rubrique correspondances personnelles du 12 janvier 1890 dans le Figaro. @BNF

Écrit en style télégraphique, le message commence par votre pensée ne me quitte pas, est tout mon bonheur, voudrais vous voir, la suite qu’on veut cacher est 32. u. 13. n2. La disposition des deux 2 nous fait penser à je t’aime si i et j sont assimilés comme ils le sont en latin. Les chiffres 1, 2 et 3 représentent donc les voyelles a, e et i, les lettres u et n représentent t et m. La méthode de chiffrement semble être de représenter chaque voyelle par son numéro d’ordre et chaque consonne par la lettre qui la suit. Pour vérifier cette hypothèse, nous revenons au message du premier janvier :

1.w. m2. qs2n32s n2t w25y c400. 100. w45e. 2us2. u. qs2t e w. o. q20t r s2w.

En le déchiffrant selon la méthode que nous venons d’exposer, on obtient une phrase en style télégraphique :

a v le premier mes veux bonn ann voud etre t pres d v n pens q rev

ce qui signifie probablement :

À vous le premier, mes vœux de bonne année. Je voudrais être tout près de vous. Ne pense qu’un rêve !

Même si une erreur a pu se glisser dans la dernière phrase, le sens des deux premières prouve que notre hypothèse est correcte. De façon étonnante, la méthode de décryptement fonctionne pour un autre message du douze janvier, celui portant l’indicatif Bleuet :

 Complètement rétabli. Rentre à Paris semaine prochaine, je serai heureux de pouvoir vous voir mercredi 4 h. Mille amitiés.

Intérêt

Au-delà des curieux, ces messages chiffrés pourront intéresser les historiens qui y verront un témoignage des rapports humains à cette époque, surtout de ceux que l’on souhaitait cacher.