Les Grecs anciens refusaient de considérer l’unité comme un nombre, comme on peut le lire dans La Métaphysique d’Aristote :
Il est, d’ailleurs, de toute évidence que c’est l’unité qui exprime la mesure ; […] le nombre est une pluralité mesurée […] Aussi, n’a-t-on pas moins raison de dire que l’unité n’est pas un nombre.
Un ne fait pas nombre
Ce refus de considérer « un » comme un nombre vient de l’assimilation du concept de nombre à ceux de pluralité ou de multiplicité. Cette confusion se retrouve en français ou « nombreux » ne peut signifier « un ».
Une reconnaissance tardive
En 1585, Simon Stevin écrit dans les premières pages de La pratique d’arithmétique :
Comme l’unité est nombre par lequel la quantité d’une chose expliquée se dit un.
Alors que cela nous semble aujourd’hui naturel, Simon Stevin se sent obligé de défendre cette position dans un long raisonnement de plusieurs pages, preuve que cette notion n’est pas admise comme naturelle à son époque. Pourquoi ? Tout simplement parce qu’elle s’oppose à la tradition philosophique du Moyen-Âge pour qui il n’est point de vérité en dehors d’Aristote, d’où le discours étonnant :
Il est notoire que l’on dit vulgairement que l’unité n’est pas nombre, mais seulement son principe […] ce que nous nions. Nous pouvons argumenter de la sorte : La partie est de même matière qu’est son entier, unité est partie de multitude d’unités, donc l’unité est de même matière qu’est la multitude d’unités. Mais la matière de multitude d’unités est nombre donc la matière d’unité est nombre.
Le « un » est donc devenu nombre à l’époque de Simon Stevin même si certains, comme Diophante, un célèbre mathématicien grec du IIIe siècle après Jésus-Christ, l’utilisaient déjà comme tel… mais après avoir donné les définitions usuelles à l’époque, comme en sorte d’hommage à la tradition.