Quelle est la différence entre 98 € et 100 € ? Mathématiquement parlant, la réponse est 2 €. Au niveau psychologique ou émotionnel, la différence est bien plus importante. Pour ne pas en être victime, la méthode est simple : arrondissez ! Si on vous dit 98 €, traduisez en 100 € et vous ne serez pas piégé.
Vision psychologique des prix
Dans l’esprit de l’acheteur, 98 € signifie 90 € plus quelques euros. Il raisonne en logique additive. Sauf pour les produits de prestige, qui doivent être chers, il vaut mieux afficher ses prix dans la dizaine inférieure. Plusieurs expériences ont été menées aux États-Unis. En particulier, l’envoi de deux catalogues identiques, l’un affichant des prix ronds comme 10 $ et l’autre des prix minorés de 1 cent, comme 9,99 $, a montré que le second catalogue apportait plus de ventes.
Le meilleur prix psychologique
De façon plus étonnante sans doute, le meilleur prix pour maximiser le profit sur un produit n’est ni le plus petit, ni le plus grand possible.
Ce prix, qui peut être déterminé au moyen d’un sondage, est appelé le « prix psychologique ». En dessous de ce prix, le produit semble de qualité insuffisante à l’acheteur potentiel. Au-dessus, il paraît trop cher.
En revanche, si vous voulez écrire un livre de conseils pour réussir, mieux vaut en proposer 31 que 29 car ce nombre sera perçu comme bien plus grand.
La façon de dire les nombres en français a des variantes locales. Ainsi comment doit-on lire, ou écrire en toutes lettres, le nombre 283 ? La logique du français voudrait : deux cent huitante-trois… pourtant cela ne s’écrit ainsi que dans certaines régions de l’Est de la France et dans quelques cantons suisses. Les Belges préfèrent : deux cent octante-trois et la majorité des Français, comme des Canadiens : deux cent quatre-vingt-trois. Ces quatre-vingts viendraient d’une ancienne façon de compter en usage autrefois en France et dont nous aurions hérité des Celtes. En effet, on la retrouve en Bretagne comme au pays de Galles et en Irlande. Le principe est partout le même, il s’agit d’un usage partiel de la base vingt. Il nous en reste le quatre-vingts de nos comptes mais aussi un hôpital parisien : celui des Quinze-Vingts, fondé par saint Louis (1214 – 1270) pour accueillir 15 fois 20, c’est-à-dire 300, vétérans aveugles. Il est toujours spécialisé en ophtalmologie.
Des traces chez Molière …
Cette façon de compter se retrouvait autrefois plus souvent qu’aujourd’hui, ainsi, dans L’avare de Molière, à la scène 5 de l’acte II, Frosine dit à Harpagon :
Par ma foi ! Je disais cent ans ; mais vous passerez les six vingts.
Six vingts signifiait 120. Pour 100 cependant, Frosine ne dit pas cinq vingts.
… Et chez Victor Hugo
Dans Notre-Dame de Paris, Victor Hugo (1802 – 1885) nous fait découvrir une autre trace de ce système quand il relate l’assaut de Notre-Dame par les truands (au livre X, chapitre 4) :
Clopin Trouillefou, arrivé devant le haut portail de Notre-Dame, avait en effet rangé sa troupe en bataille. Quoiqu’il ne s’attendît à aucune résistance, il voulait, en général prudent, conserver un ordre qui lui permît de faire front au besoin contre une attaque subite du guet ou des onze vingts.
Au Moyen-Âge, les onze vingts étaient un corps de police de 11 fois 20, c’est-à-dire 220, membres.
Que dit la grammaire (d’époque) ?
Cet usage de compter par vingtaines était alors plus général que le montre ces quelques vestiges, comme Charles-Pierre Girault-Duvivier (1765 – 1832) le note dans sa grammaire des grammaires :
Six vingts vieillit ; on dit plus ordinairement cent-vingt ; on disait encore dans le siècle passé sept vingts ans, huit vingts ans : depuis six ou sept vingts ans que l’église calvinienne a commencé (Bossuet) – Des femmes enceintes au nombre de huit vingts et plus – l’Académie ne condamnait pas autrefois cette manière de s’exprimer, et en permettait l’usage jusqu’à dix-neuf vingts en excluant seulement deux vingts, trois vingts, cinq vingts et dix vingts.
Une fois admis ce compte particulier en vingtaine pour la quatrième, il est logique de continuer jusqu’au seuil de la cinquième, c’est-à-dire jusqu’à 99. Nonante est ainsi devenu quatre-vingts dix, écrit depuis quatre-vingt-dix. En revanche, en Belgique, 90 est resté nonante sauf pour parler du roman de Victor Hugo : Quatre-vingt Treize. Une étrangeté reste et concerne le pluriel mis à vingt. On écrit quatre-vingts mais quatre-vingt-un et non quatre-vingts et un comme le voudrait l’imitation des cas de vingt à soixante, de plus vingt perd son pluriel et se trouve au singulier alors que le nombre a augmenté ! Ce problème de choix ou non du pluriel est bien singulier !
Pythagore pensait que tout était nombre, nombre entier plus précisément ou rapport de nombres entiers. De nos jours, on dit nombres rationnels, du latin ratio qui, dans ce contexte signifie rapport.
La duplication du carré
Dans le Ménon de Platon, le problème de Socrate est celui de la duplication du carré, c’est-à-dire de trouver un carré d’aire double d’un carré donné.
La solution pour dupliquer un carré est d’en construire un dont le côté est la diagonale du premier. Selon le théorème de Pythagore, d 2 = 2 a 2 où a est le côté du carré et d sa diagonale. Si tout est nombre, a et d sont deux nombres entiers naturels (en choisissant bien l’unité).
Un raisonnement par l’absurde
Ici commence un raisonnement mathématique subtil, l’un des plus anciens de ce type. Bien que nous ne connaissions aucun de ces deux nombres, nous imaginons la factorisation de d 2 = 2 a 2 et y comptons les occurrences du facteur 2 en utilisant chacune des formes à droite et à gauche du signe égal. Ce nombre est pair dans d 2 puisque chaque apparition dans d est doublée par l’effet de la multiplication par lui-même. Le même phénomène se produit dans a 2. En multipliant cette quantité par 2, on en ajoute un. Le nombre de 2 dans 2 a 2 est donc impair. L’égalité d 2 = 2 a 2 conduit à une absurdité : le nombre de 2 est à la fois pair (dans d 2) et impair (dans 2 a 2). L’hypothèse de l’existence d’une commune mesure entre les côtés des deux carrés aboutit à une absurdité, elle est donc fausse.
L’écroulement du dogme de Pythagore
L’idée de Pythagore s’écroule, il existe des longueurs incommensurables. Son dogme « tout est nombre » ne retrouvera vie que dans les temps modernes, quand d’autres « objets » seront admis dans le champ des nombres, en particulier, le rapport de la diagonale au côté du carré, racine de 2 que nous disons irrationnel, non pas parce que ce nombre ne serait pas raisonnable mais parce qu’il ne s’agit pas d’un rapport d’entiers.
Les Grecs anciens refusaient de considérer l’unité comme un nombre, comme on peut le lire dans La Métaphysique d’Aristote :
Il est, d’ailleurs, de toute évidence que c’est l’unité qui exprime la mesure ; […] le nombre est une pluralité mesurée […] Aussi, n’a-t-on pas moins raison de dire que l’unité n’est pas un nombre.
Un ne fait pas nombre
Ce refus de considérer « un » comme un nombre vient de l’assimilation du concept de nombre à ceux de pluralité ou de multiplicité. Cette confusion se retrouve en français ou « nombreux » ne peut signifier « un ».
Une reconnaissance tardive
En 1585, Simon Stevin écrit dans les premières pages de La pratique d’arithmétique :
Comme l’unité est nombre par lequel la quantité d’une chose expliquée se dit un.
Alors que cela nous semble aujourd’hui naturel, Simon Stevin se sent obligé de défendre cette position dans un long raisonnement de plusieurs pages, preuve que cette notion n’est pas admise comme naturelle à son époque. Pourquoi ? Tout simplement parce qu’elle s’oppose à la tradition philosophique du Moyen-Âge pour qui il n’est point de vérité en dehors d’Aristote, d’où le discours étonnant :
Il est notoire que l’on dit vulgairement que l’unité n’est pas nombre, mais seulement son principe […] ce que nous nions. Nous pouvons argumenter de la sorte : La partie est de même matière qu’est son entier, unité est partie de multitude d’unités, donc l’unité est de même matière qu’est la multitude d’unités. Mais la matière de multitude d’unités est nombre donc la matière d’unité est nombre.
Le « un » est donc devenu nombre à l’époque de Simon Stevin même si certains, comme Diophante, un célèbre mathématicien grec du IIIe siècle après Jésus-Christ, l’utilisaient déjà comme tel… mais après avoir donné les définitions usuelles à l’époque, comme en sorte d’hommage à la tradition.
Comment comprendre le monde moderne sans culture mathématique ? Accéder à celle-ci n’exige cependant pas d’apprendre à résoudre la moindre équation.