Les mathématiques des épidémies

Le passé a connu des épidémies terribles comme les pestes du Moyen-Âge. Avant qu’on comprenne leur mode de transmission, les hommes étaient incapables de s’en prémunir. Quand on le comprit, on put opérer des mises en quarantaine. Enfin, la solution vint avec les vaccinations, qui permettent de réduire le nombre de gens susceptibles de contacter une maladie. Cela suffit pour éviter une épidémie, comme l’explique le modèle SIR. En l’absence de vaccin, on revient aux quarantaines mais avec un peu plus de souplesse.

Le modèle SIR

William Kermack (1898 – 1970) et Anderson Mac Kendrick (1876 – 1943).

William Kermack et Anderson Mac Kendrick ont modélisé les épidémies en 1927. Leur modèle compartimente la population en trois classes : S, la classe des individus susceptibles d’attraper la maladie, I, celle de ceux qui en sont infectés (et contagieux) et R, ceux qui en sont revenus ou morts. Dans les deux cas, ces derniers sont immunisés et ne contamineront plus personne. Le modèle SIR considère l’évolution de ces trois classes dans le temps en fonction de deux taux mesurables expérimentalement. Le premier (a) est le taux de contagion de la maladie pour un infecté, c’est-à-dire la probabilité pour qu’un individu susceptible attrape la maladie après contact avec un individu infecté. Le second taux (b) mesure le passage de l’état I à l’état R. Après un laps de temps Δt, on compte a I S Δt infectés supplémentaires et R augmente de b I Δt. La variation du nombre d’infectés est donc égale à a S – b multiplié par I Δt. La condition pour que la maladie se propage (et donc donne lieu à une épidémie) est que le nombre de malades infectés augmente, c’est-à-dire que a S – b > 0. Le quotient b / a a donc valeur de seuil. Si le nombre de sujets susceptibles est inférieur à ce seuil, la maladie ne s’étend pas. Sinon, elle donne lieu à une épidémie (ou à une épizootie).

Un effet de seuil

D’une façon qui peut paraître paradoxale, l’apparition d’une épidémie ne dépend donc pas du nombre de personnes infectées, mais du nombre de personnes susceptibles d’attraper la maladie !

La vaccination permet de passer en dessous du seuil qui permet une épidémie.

Cette remarque justifie à elle seule les politiques de vaccination, même avec un vaccin peu efficace. Pour éviter une épidémie, c’est le nombre d’individus susceptibles d’attraper la maladie qu’il faut diminuer ! Ce nombre dépend de chaque maladie. Pour la rougeole, pour éviter l’épidémie, une couverture vaccinale de 95 % est nécessaire, ce qui n’est plus assuré en France du fait de campagnes obscurantistes antivaccins. La France a donc la honte d’exporter la rougeole dans des pays comme la Suisse ou le Costa Rica.

Calcul du seuil

Le calcul du seuil est très délicat. Pour cela l’usage est d’introduire un autre coefficient, appelé le taux de reproduction de base et noté R0 (R zéro) qui est le nombre de cas secondaires produits par un individu infectieux moyen au cours de sa période d’infectiosité, dans une population entièrement constituée de personnes susceptibles d’attraper la maladie. D’après la définition même, il y a épidémie si et seulement si R0 > 1. Un beau résultat … qui ne signifie rien si on ne sait pas évaluer ce R! Ainsi, au début de l’épidémie de Covid-19, il était de 3,3 selon l’institut Pasteur et descendu à 0,5 après le confinement. Ces simples résultats montrent que la méthode ne vaut que pour un territoire uniforme et qu’une autre logique doit s’appliquer quand les cas sont rares. C’est d’ailleurs bien le cas puisqu’on essaye de confiner les foyers de contaminations isolés. En revanche, les modèles utilisés supposent une population homogène, ce qui n’est absolument pas le cas. Les personnes affaiblies par le grand âge ou des comorbidités risquent plus de contracter une forme grave de la maladie tandis que les jeunes sont souvent plus insouciants et, de ce fait, risquent davantage d’être contaminés mais avec des formes bénignes ou même asymptomatiques. Le modèle SIR est-il applicable dans le cas du Covid ? Sans doute non car il suppose un taux de contamination indépendant des conditions climatiques et homogène dans la population ce qui semble faux. Sans doute faudrait-il considérer la saisonnalité et des groupes d’âge, ou de la quantité de virus à laquelle on a été exposé, qui implique la charge virale. D’autre part, les données collectées pour calculer le R0 sont sujettes à caution. En particulier, les chiffres en provenance de Chine au début de l’épidémie laissaient prévoir une létalité très faible. Tout au plus, de 0,04 % ce qui n’est guère inquiétant. Elle fut en fait bien plus importante et très variable selon les pays, d’autant plus que les méthodes de collectes des décès différentes selon les pays biaisent les résultats. Pour conclure, les modèles sont importants d’un point de vue théorique mais peuvent être peu fiables en pratique. S’y fier aveuglément peut être dangereux, il importe de garder son bon sens et ne pas tuer une population atteinte sous prétexte de la sauver. La survie dépend aussi de l’économie ! De même, comment évaluer les traitements quand 98 % des personnes infectées guérissent sans le moindre traitement ? Le problème se pose également pour l’évaluation d’un vaccin.

Les mesures de confinement

En l’absence de vaccin, il reste qu’on peut essayer de diminuer le taux a ce qui augmente le seuil b / a. Pour cela, on peut éviter une quarantaine stricte et se contenter de réduire les interactions sociales. Dans le cas du Covid19, il semble que limiter les interactions sociales à 5 par jour suffit.

Le théorème du moustique

Le modèle SIR justifie également le théorème du moustique découvert par Ronald Ross (1857 – 1932) en 1911, et selon lequel il n’est pas besoin d’éliminer tous les moustiques pour éradiquer le paludisme, il suffit d’en faire passer la population sous un certain seuil. Cette découverte a précédé sa justification théorique au moyen du modèle SIR. Auparavant, le lien entre les marécages et le paludisme était connu, comme le montrent les tentatives de drainage des marais Pontins près de Rome de l’Antiquité jusqu’au XIXe siècle. De même, le paludisme a disparu de France, où il était autrefois endémique dans les régions humides comme la Sologne, le marais Poitevin et même autour de Port-Royal des Champs, au cours du XIXe siècle grâce au drainage et non à la consommation de Quinquina, un apéritif à base de Quinine, un préventif du paludisme, comme cela a été parfois affirmé !

Voir aussi : https://blogs.futura-sciences.com/lehning/2020/03/19/le-jeu-de-la-vie-et-celui-des-epidemies/

 

Une réflexion sur « Les mathématiques des épidémies »

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *