Archives de catégorie : Actualités

L’avenir des sondes martiennes

La Nasa a renouvelé son intérêt pour une exploration assidue de la planète Mars au moyen de sondes automatiques. Avec deux robots automobiles encore en activité – Curiosity qui s’est posé dans le cratère Gale en 2012 et Perseverance qui s’est posé dans le cratère Jezero en 2021 – l’agence américaine n’avait pas de projets fermes sur le long terme. Il y avait bien le projet Mars Sample Return (MSR), un « serpent de mer » longtemps promis, qui ferait atterrir une plateforme près de Perseverance et un petit mobile pour aller en chercher les tubes à échantillons, et les stocker à bord d’une petite fusée qui les auraient catapultés en orbite martienne. Là, ils auraient été récupérés par un autre vaisseau automatique reprenant la route de la Terre pour les délivrer dans le désert américain. Toutefois, l’ardoise d’une dizaine de milliards de dollars est devenue inacceptable, et la Nasa cherche une solution moins coûteuse, au risque d’abandonner le projet.

La Nasa propose une stratégie de sondes peu coûteuses, par exemple plus robustes pour diminuer les coûts d’atterrissage en douceur (NASA/JPL-Caltech)


Une nouvelle vision à long terme de l’exploration robotique de Mars est en train de le devancer, sinon de s’y substituer : le retour à de petites sondes peu coûteuses – entre 100 et 300 millions de dollars – conduisant des missions simples et ciblées. Les trois axes de recherche seraient la vie sur Mars, la géologie ou l’étude climatique et atmosphérique de la planète rouge, et la préparation des futures missions pilotées, mettant l’accent par exemple sur l’exploitation des ressources au sol, gazeuses, liquides et solides.

En résumé, les chercheurs voudront cerner des questions précises avec des instruments simples, l’idée maîtresse étant désormais de profiter, grâce au moindre coût de ces petites sondes, de toutes les fenêtres de tir, c’est-à-dire tous les deux ans. La Nasa n’attend plus que les propositions, ouvertes également à leurs partenaires internationaux.

Une impact observé en direct

On a parlé récemment de l’impact d’un petit astéroïde d’une dizaine de mètres de diamètre sur Mars. Révélé en ce mois d’octobre 2022, l’impact a eu lieu en fait le 24 décembre 2021 dans Amazonis Planitia. Les vibrations de l’impact ont été relevés par la sonde au sol InSight, grâce au sismomètre français chargé de détecter les séismes martiens.
Ce n’est pas étonnant en soi : un objet de dix mètres de diamètre frappe la Terre, avec la puissance de 5 bombes d’Hiroshima environ, tous les dix ans environ. À cause de l’épaisseur de l’atmosphère terrestre qui les freine et les désintègre, peu d’objets de cette taille percutent le sol sur Terre et laissent un cratère, mais sur Mars c’est encore le cas.
Ce qui est particulièrement intéressant, c’est qu’un tel impact ait eu lieu lors des trois ans de fonctionnement de la sonde InSight et de son sismomètre, et qu’il ait émis des ondes dites « de surface » qui parcourent la croûte de Mars à faible profondeur et renseignent donc sur celle-ci : en l’occurrence qu’entre le site de l’impact dans la plaine d’Amazonis, environ 2000 km à l’est, et la sonde InSight dans Elysium, la croûte est plus dense qu’elle ne l’est aux environs immédiats de la sonde. Comme quoi la croûte martienne n’est pas identique partout, ce qui n’étonnera aucun géologue. Les planètes ne sont pas monotones.

L’impact dans Amazonis (en haut) permet d’étudier la croûte martienne entre le site de l’impact et le sismomètre de la sonde inSight (en bas)


Quant aux images, ce qui est intéressant, c’est que les quelques dizaines de mètres de profondeur excavées par l’impact, dans une région proche de l’équateur, des blocs de glace ont été rejetés en surface. Pour les vols pilotés à l’avenir, c’est encourageant : il y a de l’eau à faible profondeur même à ces faibles latitudes, pour alimenter les futures bases martiennes.

Le volcan martien des Canaries

L’éruption et la constitution d’un nouveau cône volcanique se sont déroulées sur l’île de La Palma (la plus à l’ouest dans l’archipel des Canaries), du 19 septembre au 13 décembre 2021. Étonnamment, le débit de lave et de cendres a été assez considérable en ce court laps de temps. Ma photo ci-dessous fut prise le 8 mars 2022.

Le cône le plus récent de La Palma (éruption septembre-décembre 2021 sur le Cumbre Vieja)


La nature basaltique et la fluidité de ces laves représentent bien ce que l’on observerait sur les flancs d’un volcan martien. Mais ce qui m’a le plus interpellé, ce sont les cascades de lave (aujourd’hui figées) qui ont dévalé la falaise de la côte (falaise très escarpée, taillée par érosion et glissements de terrain dans des laves plus anciennes). 

Coulées de lave franchissant les falaises de La Palma


On croirait voir les cascades de lave qui dévalent les falaises d’Olympus Mons sur Mars, sur son flanc est (deux photos ci-dessous, en plan large et en perspective gros plan, Mars Express, ESA)

Cascades de lave sur la falaise d’Olympus Mons, Mars.

Outre ces aspects saisissants de l’éruption, ce nouveau volcan a bien sûr ébranlé la vie de ce qui était en fait une région de La Palma assez densément peuplée, car ensoleillée et propice aux bananeraies. Plus de 2000 bâtiments (serres comprises) ont été détruites par la lave et la cendre, et environ 500 personnes ont perdu leur domicile: la région prendra du temps à s’en remettre.

Le front du delta vu par Perseverance

Si le rover Perseverance est au repos jusqu’à la mi-octobre, Mars étant momentanément caché derrière le Soleil et les commandes radio impossibles, il n’en fait pas moins parler de lui. Dans une étude publiée cette semaine dans Science, (https://www.science.org/doi/epdf/10.1126/science.abl4051), une équipe de planétologues dont l’un des auteurs principaux est Nicolas Mangold (Laboratoire de Planétologie de l’Université de Nantes), a révélé et interprété de magnifiques photographies prises par les caméras de la sonde.

L’emplacement de Perseverance (en haut à droite) et la butte Kodiak qu’il a photographiée au téléobjectif (tout à gauche). (NASA)


On savait que Perseverance s’était posé au bord d’un ancien delta sédimentaire qui s’était bâti autrefois (il y a environ 3,7 milliards d’années) dans le lac d’un cratère d’impact d’une quarantaine de kilomètres de diamètre, le cratère Jezero. Le front tronqué de la pile sédimentaire du delta, révélant ses couches vue en coupe, est situé à 2 km de la sonde, avec au premier plan une petite butte témoin, baptisée Kodiak, à seulement 1 km. Or les images au téléobjectif montrent ses couches avec une impressionnante netteté.

Les couches du delta de la butte Kodiak et leur interprétation (en bas), tiré de l’article de N. Mangold et al. (Science)

Elles ont permis à Mangold et ses co-auteurs de mettre en évidence la succession de couches d’argile ou de grès (plus gros grains) déposés par la rivière Neretra Vallis lorsqu’elle a débouché dans le lac du cratère Jezero. On y voit une stratification horizontale de fond de lac, surmontée de strates obliques représentant des dépôts sur la pente sous-lacustre du delta, et tout en haut des couches horizontales montrant les derniers sédiments se posant près de la surface sur le bourrelet du delta, dans quelques mètres d’eau.

Les gros galets en haut du delta, roulés par de violents courants (‘tiré de l’article de N. Mangold et al., Science)

Cerise sur le gâteau, les images montrent par endroits une couche finale, tout en haut de pile, d’une nature tout à fait différente : un conglomérat de gros galets à moitié arrondis, dont certains de plus d’un mètre de taille, roulés par des courants beaucoup plus violents et sans doute épisodiques, qui ont marqué la fin de la séquence hydrologique du cratère Jezero. Ces crues catastrophiques peuvent avoir plusieurs origines, mais montrent bien, comme on le supposait déjà, que la fin de l’ère « pluvieuse » sur Mars, responsable des deltas de grès et d’argiles, a donné suite à un régime tout autre, peut-être associé à des glaciations suivies de violentes débâcles. On a d’autant plus hâte d’aller voir avec Perseverance, de beaucoup plus près, ces fronts de delta qui ont tant à nous apprendre…

Insight en perte d’énergie

La sonde InSight de la NASA, qui s’est posée sur Mars le 26 novembre 2018 dans les plaines volcaniques d’Elysium, voit son alimentation électrique dangereusement décliner. Sa mission principale – axée sur une collecte de données sismiques et la mesure du flux de chaleur émanant de la croûte martienne – devait durer deux ans (une année martienne) et cet objectif a bien été atteint, mais les ingénieurs espéraient, comme dans toute mission martienne, une rallonge de données, possiblement jusqu’en 2022.
Les panneaux solaires sont en train d’en décider autrement, car la poussière tombée de l’atmosphère est telle que l’énergie électrique stockée par ses batteries a chuté de 5000 watts-heure en début de mission à 700 watts-heure aujourd’hui.
Faute en est au manque de vent qui ne balaye pas la poussière qui se dépose sur les panneaux. Déjà, les ingénieurs débranchent périodiquement le magnétomètre et la station météo pour économiser du courant, et le même sort pourrait être réservé au sismomètre français, le principal instrument. L’autre instrument principal, la sonde thermique qui devait s’enfoncer plusieurs mètres dans le sol, est déjà hors d’usage, abandonnée depuis le mois de janvier sans avoir jamais donné de résultats: apparemment, cette “taupe” qui devait creuser son trou par percussions répétées, ne trouve aucun “grip” dans le sol martien pour s’enfoncer, et est resté désespérément en surface.

La sonde thermique (en bas) à moitié sortie d’un trou qu’elle n’est jamais parvenue à creuser.


La mission est déjà toutefois un beau succès avec la mane d’informations recueillies par le sismomètre en deux ans, qui ont brossé un premier portrait de la faible, mais très intéressante activité sismique martienne.

Deux nouveaux séismes de magnitude 3 (3,3 et 3,1) ont en effet été détectées les 7 et 18 mars de cette année, s’ajoutant aux deux autres de même magnitude (3,6 et 3,5) détectées en mai et juillet 2019, toutes provenant du même système de failles et de fossés, Cerberus Fossae, à 1600 km à l’est de la sonde, qui se révèle être une région particulièrement active. Les géologues espèrent que la sonde InSight enregistrera encore quelques données de pareille importance avant de sombrer dans un sommeil bien mérité.

Le fossé de Cerberus, photographié depuis orbite, montre des éboulements que déclenchent peut-être les séismes concentrés dans cette région.

Perseverance : cap au sud

Le rover Perseverance entame son premier parcours scientifique dans l’arène du cratère Jezero, qui l’occupera jusqu’à la fin de l’année au moins. Contrairement aux expectatives, ce sera vers le sud, en s’éloignant du delta qui est la cible principale de la mission. Il s’agit d’étudier le fond de l’ancien lac qui occupait le cratère, avant de remonter vers le delta qui s’y est superposé.

En pointillé, depuis le site d’atterrissage Octavia Butler, le trajet qu’effectuera Perseverance vers le sud (vers “Raised Ridges”), puis après retour à son point de départ, vers le nord (“Three Forks”)


Ce terrain, appelé CF-FR (Crater Floor Fractured Rough) par les responsables de mission, semble assez ferme et peu piégeux pour le déplacement du rover, celui-ci longeant son contact avec une autre unité plus variée qui comprend des dunes de sable et des crêtes rocheuses qui en émergent, baptisée pour sa part Séitah, qui signifie “parmi les sables” en langue navajo – langue retenue pour nommer les roches et paysages de la mission, en hommage à la tribu amérindienne et à l’un de ses ingénieurs qui travaille sur la mission.

Vue de la formation hétéroclite “Séitah”, avec ses dunes de sable, depuis une dizaine de mètres d’altitude grâce à l’hélicoptère Ingenuity.

Une fois cette reconnaissance vers le sud effectuée, Perseverance reviendra à son point de départ, et comme second acte de son programme d’exploration, roulera vers le nord, puis vers l’ouest pour longer le front du delta.

Rover chinois sur Mars

La Chine est devenue la seconde nation, après les Etats-Unis, à poser une sonde en état de marche sur la planète rouge : le 14 mai 2021, la plate-forme d’atterrissage de la mission Tianwen-1 a touché le sol en douceur au sud d’Utopia Planitia, le vieux bassin d’impact des hautes latitudes martiennes – bassin ou s’était d’ailleurs posé, mais plus au nord, l’une des deux premières sondes américaines Viking, en 1976.

Carte des sites d’atterrissage des sondes martiennes : Tianwen-1 est indiqué en magenta à droite, dans le bassin d’Utopia Planitia.


La sonde Tianwen-1, lancée le 23 juillet 2020, s’est d’abord mise en orbite de Mars le 10 mars 2021. Elle a passé deux mois à étudier les conditions atmosphériques au-dessus du site d’atterrissage. L’ESA a d’ailleurs contribué à la mission en communiquant à la Chine des images haute résolution et des données spectroscopiques du site visé, collectées par l’orbiteur européen Mars Express.

Le bus Tianwen-1 en orbite martienne (CNSA)


Au terme des deux mois, le module de descente s’est détaché du bus orbital, et après une plongée de neuf minutes à travers l’atmosophère, y compris un moment de vol stationnaire lors de la dernière phase d’approche, a touché le sol sans encombre. Dans les jours à venir, sa charge utile – le rover Zhurong – descendra par une rampe et entreprendra une mission de reconnaissance scientifique avec caméra stéréoscopique et caméra multispectrale ; un spectromètre laser infrarouge ; et un radar qui sondera le sous-sol jusqu’à 10 m de profondeur, à l’instar de celui de Perseverance. Le rover, alimenté par panneaux solaires, a une masse de 240 kg, légèrement supérieure à celle des rovers américains Spirit et Opportunity (185 kg) du début des années 2000.

Vue d’artiste du rover Zhorong au sol. (CNSA)

Hélicoptère opérationnel sur Mars

L’hélicoptère en vol, photographié par Perseverance.

L’hélicoptère Ingenuity déposé sur le sol martien par la sonde Perseverance a effectué son quatrième vol le 30 avril 2021, en s’élevant à une altitude de 5 mètres et en volant 133 mètres, avant de revenir à son point de décollage. Ce quatrième succès achève le test technologique du petit hélicoptère (1,8 kg) alimenté par panneaux solaires. Le JPL en charge de la direction de mission compte désormais prolonger les tests pour en faire des opérations de repérage, tant de cibles que de trajets, pour le rover principal.

Le rover Perseverance, photographié depuis l’hélicoptère



Les géologues, de leur côté, ont résolu de laisser le rover barouder sur le site d’atterrissage encore quelques mois pour faire des prélèvements, car le site leur paraît tout à fait convenable dans un premier temps, avant de l’envoyer vers le nord pour se rapprocher des escarpements de la pile de sédiments deltaïques.

L’hélicoptère martien a volé

L’hélicoptère Ingenuity sur le sol de Mars

Le prototype d’hélicoptère Ingenuity, déposé sur le sol martien sous le châssis du rover Perseverance, a effectué son premier vol dans la fine atmosphère martienne le lundi 19 avril. D’une masse de 1,8 kilogramme, l’hélicoptère à deux pales s’est élevé de trois mètres au-dessus du sol et est resté en lévitation une trentaine de secondes avant de se reposer.

L’ombre portée d’Ingenuity sur le sol martien


D’autres tests sont prévus dans la foulée, chaque vol étant suivi de deux journées de récupération et d’analyse des données. Le rayon d’action maximal de l’hélicoptère est estimé à 600 mètres environ.
Simple appareil de démonstration technologique, Ingenuity ne possède qu’une caméra et pas d’appareil scientifique. Mais elle ouvre d’intéressantes perspectives des reconnaissance pour de futurs modèles améliorés, lors de missions ultérieures.

L’équipe de contrôle de l’hélicoptère au centre JPL de Pasadena

Un hélicoptère va voler sur Mars

Un mois après s’être posé sur Mars, le rover Perseverance va entreprendre la première étape de son périple: rouler quelques mètres vers un terrain relativement plat à une vingtaine de mètres du point d’atterrissage, et y déposer le petit hélicoptère replié sous son chassis. D’une masse de 1,8 kilogramme, de la taille d’un drone, ce prototype baptisé Ingenuity a pour fonction de démontrer le vol d’un objet en mode hélicoptère dans la fine atmosphère martienne.

La coque de l’hélicoptère éjectée au sol, avec au-dessus, l’appareil replié sous le chassis de Perseverance.


Le 21 mars, sa coque protectrice a été éjectée et le rover s’est mis en route pour déposer l’hélicoptère sur son aire de décollage qui mesure environ dix mètres sur dix. Après l’avoir déployé et chargé ses batteries, Perseverance reculera de cinq à six mètres.

La zone de décollage est le petit carré “Airfield” en bas de la cartouche, laquelle représente la zone à survoler durant les tests (“Flight zone”).


Le premier vol est programmé le 8 avril : après une mise en rotation de son rotor à 2500 rotations/minute, l’appareil devrait s’élever d’environ trois mètres, faire du sur place et un petit virage avant de se reposer au bout d’une trentaine de secondes.

Représentation des survols qu’effectuera l’hélicoptère Ingenuity.


Au cours du mois qui suivra, plusieurs autres tests auront lieu, sur une distance d’une cinquantaine de mètres et des durées de vol d’une minute et demie. Puis, après épuisement des batteries, ce premier test technologique d’un hélicoptère sur Mars sera achevé. Les ingénieurs en tireront des leçons pour des prototypes plus sophistiqués à l’avenir ; et le rover débutera de son côté sa mission principale d’exploration géologique de Jezero Crater.