Tag Archives: Expansion

The Rate of Expansion

There, where worlds seem, with slow steps,
Like an immense and well-behaved herd,
To calmly graze on the ether’s flower.
Giovanni Pascoli, Il Ciocco

A question often asked by the general public interested in cosmology about the expansion of the Universe is the distance scales on which it effectively acts. Before commenting on this, let me recall first some historical facts.

Georges Lemaître in 1927

In 1927, Georges Lemaître published a revolutionary article in the Annales de la Société scientifique de Bruxelles entitled “Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extragalactiques” (“A homogeneous universe of constant mass and increasing radius, accounting for the radial velocity of extragalactic nebulae.” As the title suggests, Lemaître showed that a relativistic cosmological model of finite volume, in which the Universe is in perpetual expansion, naturally explains the redshifts of galaxies, which at that point were not understood. In particular, the article contained a paragraph establishing that forty-two nearby galaxies, whose spectral shifts had been measured, were moving away at speeds proportional to their distances.

Lemaître gave the numerical value of this proportionality factor: 625 km/s per megaparsec, which means that two galaxies separated by 1 megaparsec (or 3,26 million light-years) moved away from each other at an apparent speed of 625 km/s, and that two galaxies separated by 10 megaparsecs moved apart at a speed ten times greater.

The paragraph of Lemaître’s paper in which he derives the law of proportionality between recession velocity and distance, later called the Hubble law.

This unit of measurement, the kilometer per second per megaparsec, shows clearly that the speed of recession depends on the scale. In 1377, in his Book of the Heavens and the World, the scholar Nicole Oresme had noted that, at dawn, one would not notice anything if the world and all living creatures had grown by the same proportion during the night. In Lemaître’s theory, on the contrary, the recession velocity between two points in space grows faster with greater separation, which renders it perceptible.

Eddington and Lemaître

Lemaître’s article, published in French, passed unnoticed until 1931, when it was finally read by Arthur Eddington, who published an English translation. Unfortunately, this version omits the paragraph in which Lemaître established his law of proportionality, see this article for all the details. Meanwhile, in 1929 the great American astronomer Edwin Hubble had published the experimental results he obtained with his collaborators and described a general law, according to which the speed of recession of a galaxy is proportional to its distance. This law, identical to Lemaître’s, with the same proportionality factor, would from now on carry the name of “Hubble’s law.” It forms the experimental basis for the theory of the expansion of the Universe, of which the big bang models are the fruit. Continue reading

Galaxies in Flight

This post is an adaptation of a chapter of my book  “The Wraparound Universe” with many more  illustrations.

 

Galaxies in Flight

                     The spawning galaxy in flight is a rainbow trout which goes
back against
the flow of time towards the lowest waters, towards the dark retreats of duration.
Charles Dobzynski (1963)

Since the time of Newton, we have known that white light, passing through a prism, is decomposed into a spectrum of all colors. Violet and blue correspond to the shortest wavelengths or, equivalently, to the largest frequencies; red corresponds to the largest wavelengths and to low frequencies. In 1814, the German optician Joseph von Fraunhofer discovered that the light spectrum from stars is streaked with thin dark lines, while that from candlelight has bright stripes. These phenomena remained puzzling until 1859. It was then that the chemist Robert Bunsen and the physicist Gustav Kirchhoff analyzed the light created from the combustion of different chemical compounds (burned with the now-famous Bunsen burner) and saw that each of them emitted light with its own characteristic spectrum.

Fraunhofer lines in the solar spectrum

At nearly the same time, Christian Doppler discovered in 1842 that moving the source of a sound produced shifts in the frequency of sound waves, a phenomenon experienced by anyone listening to the siren of an ambulance passing by. The French physicist Armand Fizeau noticed the same phenomenon with light waves: depending on whether a source of light was moving closer or farther away, the received frequencies are either raised or lowered with respect to the emitted frequencies. The shift becomes larger as the speed of displacement is increased. If the source is getting closer, the frequency grows, and the light becomes more “blue”; if it moves away, the frequency lowers and the wavelengths stretch out, becoming more “red,” with respect to the spectrum of visible light. Since this shift affects the whole spectrum by the same amount, it is easily quantified by looking at the dark or bright stripes, which are shifted together, either towards the blue or towards the red, and it furnishes an incomparable means of measuring the speed of approach or retreat for light sources.

Shortly after this discovery, astronomers began an ambitious program of spectroscopy, with the aim of measuring the speed of the planets and stars by using their spectral shifts. Continue reading

Expansion and the Infinite

This post is an adaptation of a chapter of my book  “The Wraparound Universe” with many more  illustrations.

Expansion and the Infinite

Space alike to itself
that it grows or denies itself
Stéphane Mallarmé

The Universe is expanding. What does this really mean? Most people imagine an original huge explosion, as the term “big bang” suggests, and the metaphor is constantly used in popular accounts. Some speakers even have the tendency to mime a gesture of expansion with their hands, as if they were holding a piece of space or an immaterial balloon in the process of inflating. The public imagines some matter ejected at prodigious speeds from some center, and tell themselves that it would be better not to be there at the moment of explosion, so as not to be riddled through with particles.

A misleading view of the expanding universe commonly used in popular science

None of all this is accurate. At the big bang, no point in the Universe participated in any explosion. Put simply, if one considers any point whatsoever, we notice that neighboring points are moving away from it. Is this to say that these points are animated by movement, given a speed? No, they are absolutely fixed, and nevertheless they grow apart.

To unravel this paradox, it is necessary to make more precise what one exactly means when speaking of a fixed point. The position of a point is fixed by coordinates: one number for a line (the miles along a highway), two numbers for a surface (latitude and longitude), and three for space in general (length, width, and height). A point is said to be fixed if its coordinates do not change over the course of time. In an arbitrary space, curved or not, the distance between two points is given by the so-called metric formula, which depends on the coordinates and generalizes the Pythagorean theorem. In principle, therefore, the distance between two points does not vary. In an expanding space, on the other hand, this distance grows, while the points do not move, even by a millimeter, meaning that they strictly conserve the same coordinates. These fixed coordinates are known as “comoving” coordinates. In relativistic cosmology, galaxies remain fixed at comoving positions in space. They may dance slight arabesques around these positions, under the influence of local gravitational fields, but the motion which moves them apart from each other resides in the literal expansion of the space which separates them. Continue reading

The Rise of Big Bang Models (4) : Lemaître

Sequel of previous post : Dynamical solutions

In this series of posts about the history of relativistic cosmology, I  provide an epistemological analysis of the developments of the field  from 1917 to 2006, based on the seminal articles by Einstein, de Sitter, Friedmann, Lemaître, Hubble, Gamow and other main historical figures of the field. It appears that most of the ingredients of the present-day standard cosmological model, including the accelation of the expansion due to a repulsive dark energy, the interpretation of the cosmological constant as vacuum energy or the possible non-trivial topology of space, had been anticipated by Lemaître, although his papers remain mostly  unquoted.

The discovery of expanding space

The 1920’s were precisely the time when the experimental data began to put in question the validity of static cosmological models. For instance, in 1924 the British theorist Arthur Eddington pointed out that, among the 41 spectral shifts of galaxies as measured by Vesto Slipher, 36 were redshifted ; he thus favored the de Sitter cosmological solution while, in 1925, his PhD student, the young Belgian priest Georges Lemaître, proved a linear relation distance-redshift in de Sitter’s solution. The same year 1925, Edwin Hubble proved the extragalactic nature of spiral nebulae. In other words, he confirmed that there existed other galaxies like our own, and the observable Universe was larger than previously expected. More important, the radiation from the faraway galaxies was systematically redshifted, which, interpreted as a Doppler effect, suggested that they were moving away from us at great speed. How was it possible ?

Arthur Eddington (1882-1944)
Arthur Eddington (1882-1944)

Young-Lemaitre
The young Georges Lemaître

It was Lemaître who solved the puzzle. In his 1927 seminal paper Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extragalactiques, published in French in the Annales de la Société Scientifique de Bruxelles, Lemaître calculated the exact solutions of Einstein’s equations by assuming a positively curved space (with elliptic topology), time varying matter density and pressure, and a non-zero cosmological constant. He obtained a model with perpetual accelerated expansion, in which he adjusted the value of the cosmological constant such as the radius of the hyperspherical space R(t) constantly increased from the radius of the Einstein’s static hypersphere RE at t = – ∞. Therefore there was no past singularity and no « age problem ». The great novelty was that Lemaître provided the first interpretation of cosmological redshifts in terms of space expansion, instead of a real motion of galaxies : space was constantly expanding and consequently increased the apparent separations between galaxies. This idea proved to be one of the most significant discoveries of the century. Continue reading