Tag Archives: Gamow

Cosmogenesis (9) : The Big Bang Discovery

Sequel of the preceding post Cosmogenesis (8) : The Nebular Hypothesis

Star Clusters and Nebulae. This page from "Telescopic views of Nebulae and Clusters by the Earl of Rosse and Sir J. Herschel" (1875) includes a variety of drawings of nebulosities by different observers. There are star clusters and gaseous nebulae (now known to belong to our own galaxy) as well as other galaxies. Observational techniques of the time were unable to distinguish between these very different types of objects.
Star Clusters and Nebulae. This page from “Telescopic views of Nebulae and Clusters by the Earl of Rosse and Sir J. Herschel” (1875) includes a variety of drawings of nebulosities by different observers. There are star clusters and gaseous nebulae (now known to belong to our own galaxy) as well as other galaxies. Observational techniques of the time were unable to distinguish between these very different types of objects.

In the first quarter of the 20th century cosmology became a distinct scientific discipline, thanks in part to the theoretical advance made in 1915 by Einstein with his theory of general relativity and in part to the revolution in observational techniques which revealed the true extent of the universe. Having at last been able to measure the distance of certain spiral nebulae, Edwin Hubble could confirm in 1925 that there existed other galaxies like our own.

His colleague Vesto Slipher had previously discovered that the radiation from these galaxies was constantly shifting towards the red end of the optical spectrum, which suggested that they were moving away from us at great speed. This movement was not understood until scientists came to accept an idea based on the theory of general relativity and first proposed by Alexandre Friedmann in 1922 and independently Georges Lemaître in 1927: that space was constantly expanding and consequently increasing the distance between galaxies. This idea proved to be one of the most significant discoveries of the century[i].

Alexander Friedmann in 1922
Alexander Friedmann in 1922

In an article which appeared in 1922, entitled “On the Curvature of Space“, Friedmann took the step which Einstein had balked at: he abandoned the theory of a static universe, proposing a “dynamic” alternative in which space varied with time. For the first time the problem of the beginning and the end of the universe was couched in purely scientific terms. Friedmann suggested that the universe was several tens of billions of years old, much older than the earth (then estimated to be about one billion years old) or the oldest known celestial objects. It was a remarkable prediction, the most recent estimate for the age of the universe being between 10 and 20 billion years.

In 1927, in a seminal article entitled “A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-Galactic Nebulae“, Lemaître explained the observations of Hubble and Slipher by interpreting them, within the context of general relativity, as manifestations of the expansion of the universe. This expansion was taking place uniformly across the entire universe (which might be finite or infinite), not outwards from a particular point (in this sense the often quoted analogy of a balloon being inflated is misleading). It was not a case of matter moving within a fixed geometric framework, but of the framework itself dilating, of the very “fabric” of space-time stretching. Continue reading

The Rise of Big Bang Models (5) : from Gamow to Today

Sequel of previous post : Lemaître

In this series of posts about the history of relativistic cosmology, I  provide an epistemological analysis of the developments of the field  from 1917 to 2006, based on the seminal articles by Einstein, de Sitter, Friedmann, Lemaître, Hubble, Gamow and other main historical figures of the field. It appears that most of the ingredients of the present-day standard cosmological model, including the accelation of the expansion due to a repulsive dark energy, the interpretation of the cosmological constant as vacuum energy or the possible non-trivial topology of space, had been anticipated by Lemaître, although his papers remain mostly  unquoted.

First English Edition of The primeval atom
First English Edition of The primeval atom

Lemaître, the "Big bang Man"
Lemaître, the “Big bang Man”
The hot big bang model

By 1950, when Lemaître published a summary, in English, of his theory, entitled The Primeval Atom: An Essay on Cosmogony, it was thoroughly unfashionable. Two years previously the rival theory of a « steady state » universe, supported principally by Thomas Gold in America and by Hermann Bondi and Fred Hoyle in Britain, had met with widespread acclaim. Their argument was that the universe had always been and would always be as it is now, that is was eternal and unchanging. In order to obtain what they wanted, they assumed an infinite Euclidean space, filled with a matter density constant in space and time, and a new « creation field » with negative energy, allowing for particles to appear spontaneously from the void in order to compensate the dilution due to expansion ! Seldom charitable towards his scientific adversaries, Fred Hoyle made fun of Lemaître by calling him « the big bang man ». In fact he used for the first time the expression « big bang » in 1948, during a radio interview.

Thomas Gold, Hermann Bondi and Fred Hoyle, promotors of the steady state theory"
Thomas Gold, Hermann Bondi and Fred Hoyle, promotors of the steady state theory”

The term, isolated from its pejorative context, became part of scientific parlance thanks to a Russian-born American physicist George Gamow, a former student of Alexander Friedmann. Hoyle therefore unwittingly played a major part in popularising a theory he did not believe in; he even brought grist to the mill of big bang theory by helping to resolve the question why the universe contained so many chemical elements. Claiming that all the chemical elements were formed in stellar furnaces, he was contradicted by Gamow and his collaborators Ralph Alpher and Robert Hermann. The latter took advantage of the fact that the early universe should have been very hot. Assuming a primitive mixture of nuclear particles called Ylem, a Hebrew term referring to a primitive substance from which the elements are supposed to have been formed, they were able to explain the genesis of the lightest nuclei (deuterium, helium, and lithium) during the first three minutes of the Universe, at an epoch when the cosmic temperature reached 10 billion degrees. Next they predicted that, at a later epoch, when the Universe had cooled to a few thousand degrees, it suddenly became transparent and allowed light to escape for the first time. Alpher and Hermann calculated that one should today receive an echo of the big bang in the form of « blackbody » radiation at a fossil temperature of about 5 K. Their prediction did not cause any excitement. They refined their calculations several times until 1956, without causing any more interest; no specific attempt at detection was undertaken. Continue reading