Tag Archives: solar system

Cosmogenesis (10) : A Modern Account

Sequel of the preceding post Cosmogenesis (9) : The Big Bang Discovery and End of the Cosmogenesis Series.

According to modern physics the universe has undergone a gradual process of expansion and cooling ever since the big bang; at the same time increasingly complex physical structures have evolved. The history of the universe can conveniently be divided into two main periods: the first million years (infancy) and the remaining 15 billion years (maturity).

The Infant Universe

The Bubble Theory of Cosmogenesis. According to some models constructed according to the laws of quantum physics, the observable universe is merely one of a multitude of ephemeral "bubbles" created by spontaneous fluctuations in the quantum vacuum. The universe as a whole is like a rapidly expanding foam, each "baby universe" giving birth to more "baby universes" and so on in an eternally self-reproducing system. Artistic view by S. Numazawa.
The Bubble Theory of Cosmogenesis. According to some models constructed according to the laws of quantum physics, the observable universe is merely one of a multitude of ephemeral “bubbles” created by spontaneous fluctuations in the quantum vacuum. The universe as a whole is like a rapidly expanding foam, each “baby universe” giving birth to more “baby universes” and so on in an eternally self-reproducing system.
Artistic view by S. Numazawa.

During the Planck era, time and the dimensions of space as we know them were so intimately linked as to be practically indistinguishable. Various speculative theories of “quantum cosmogenesis”, as yet in their infancy, attempt to explain how our universe emerged at the end of the Planck era. Some physicists refer to its “spontaneous emergence”, others to an infinite number of separate “cosmic bubbles” arising from the quantum vacuum like foam from the surface of the sea.

Between 10-43 and 10-32 seconds after the big bang the infant universe consisted of elementary particles bound by a primeval superforce. A few billiseconds later gravity separated itself from the surviving electrostrong force, which in turn, as the temperature fell to 1027 degrees, divided into the strong force and the electroweak force. Recent experiments in high energy physics suggest that these “symmetry breakdowns” had spectacular consequences: the appearance of strange objects; “topological defects” such as “cosmic strings”; even the onset of “inflation” – a very short period during which the universe grew immeasurably. The fundamental constituents of matter – quarks, electrons and neutrinos – also appeared at this time.

10-11 seconds after the big bang the temperature of the universe had dropped to 1015 degrees and the electroweak force split into an electromagnetic and a weak force, thus establishing the four fundamental forces  and fixing the physical conditions for the formation of complex structures.

10-6 seconds after the big bang all quarks were “linked” in threes by the strong force to form the first nucleons, i.e. protons and neutrons. By this time the temperature had fallen to a billion degrees as the universe continued to expand. As particles became more widely spaced, they collided less frequently but one hundred seconds or so later the crucial process of nucleosynthesis began. Neutrons and protons combined to form the simplest atomic nuclei: hydrogen, helium and lithium (in various isotopes). Most of the universe, however, remained as isolated protons, i.e. as hydrogen nuclei.

Nucleosynthesis took place only for a very short time: the universe was cooling so rapidly that there was only time for the lightest elements to form. These therefore constitute 99 per cent of the visible matter in the universe today (75% hydrogen and 24% helium). The remaining one per cent, consisting of heavier elements like carbon, nitrogen and oxygen, would not be created until billions of years later, when the stars were formed.

Nucleosynthesis. Scientists at the particle accelerator near Caen in France (known as GANIL — Grand Accélérateur National d'lons Lourds) have managed to fuse heavy ions by making them collide at high speed. These computer-generated images show the fusion of a lanthanum nucleus with a copper nucleus. Such experiments help scientists to understand the process of nucleosynthesis which, during the first few seconds after the big bang, caused the fusion of hydrogen ions and helium ions, creating the first lightweight elements. Nucleosynthesis is one way of testing big bang theory, whose predictions as to the quantity of each element in the universe can be compared with experimental results. Indeed they are remarkably similar: the universe does in fact comprise 75% hydrogen (in mass) and between 24 and 25% helium (in mass). There is an equally close correlation between the predicted and observed prevalence of deuterium and tritium. Other experimental results are valuable in limiting the possibilities open to those refining big bang theory. Montage by Philippe Chomaz (GANIL)
Nucleosynthesis. Scientists at the particle accelerator near Caen in France (known as GANIL — Grand Accélérateur National d’lons Lourds) have managed to fuse heavy ions by making them collide at high speed. These computer-generated images show the fusion of a lanthanum nucleus with a copper nucleus. Such experiments help scientists to understand the process of nucleosynthesis which, during the first few seconds after the big bang, caused the fusion of hydrogen ions and helium ions, creating the first lightweight elements. Nucleosynthesis is one way of testing big bang theory, whose predictions as to the quantity of each element in the universe can be compared with experimental results. Indeed they are remarkably similar: the universe does in fact comprise 75% hydrogen (in mass) and between 24 and 25% helium (in mass). There is an equally close correlation between the predicted and observed prevalence of deuterium and tritium. Other experimental results are valuable in limiting the possibilities open to those refining big bang theory.
Montage by Philippe Chomaz (GANIL)

Until it was 300,000 years old the universe remained opaque; in other words it emitted no radiation: the density of electrons prevented photons from moving freely. But the universe, consisting of a “soup” of particles and radiation, continued to cool and expand until, at 3,000 degrees, it became transparent and emitted its first electromagnetic signal in the form of what we now detect as cosmic background radiation.

A million years after the big bang the first atoms were formed, when electrons were captured by hydrogen and helium nuclei, and these atoms combined into molecules to create vast clouds of hydrogen, out of which stars would later emerge. Continue reading Cosmogenesis (10) : A Modern Account