Travail d’équipe pour Planck et Herschel

Flambée d’étoiles et lentilles gravitationnelles

Commençons par l’actualité scientifique. Un nouveau communiqué ESA commun à Planck et Herschel a été très récemment publié à l’occasion d’un article Planck qui s’intéresse aux sources les plus lointaines détectées par Planck.
Du fait de sa faible résolution angulaire (environ 1/6 de Pleine Lune), déjà excellente pour étudier le rayonnement fossile mais pas fabuleuse pour faire de l’astrophysique, Planck ne détecte que quelques milliers de sources individuelles bien qu’il voit tout le ciel. En effet pour qu’une source soit identifiée il faut que sa luminosité soit grande devant le ciel moyen du pixel. Si la source est proche, elle va occuper une part importante du pixel et on la détectera facilement – les sources les plus proches comme l’amas de Virgo ou Coma sont même étendues, c’est-à-dire qu’elles occupent plusieurs pixels des cartes. Mais si la source est lointaine, elle ne sera visible que si la lumière qu’elle émet est vraiment particulièrement intense. Il y a alors deux possibilités : la source est intrinsèquement très brillante ou son éclat est amplifié par effet de lentille gravitationnelle. Les deux cas sont très intéressants mais Planck est incapable de distinguer les deux …
Les candidats “sources lointaines” sont alors cartographiés en détails par le satellite Herschel. Avec son miroir de 2m de diamètre concentrant la lumière sur seulement quelques arc-minutes carré, ce satellite, qui a partagé la coiffe d’Ariane avec Planck, peut distinguer les deux cas. Soit il s’agit d’un amas de galaxies, peut-être même un proto-amas, avec une formation stellaire très dynamique : Planck et Herschel voient alors le gaz prêt à faire une flambée d’étoiles, soit il s’agit d’un amas de galaxies ordinaire dont l’émission a été amplifiée : on peut alors étudier une source “ordinaire” mais lointaine, donc jeune, qui reste habituellement hors de portée.

Image de Herschel-SPIRE d'un candidat amas à grand redshift.
Image de Herschel-SPIRE d’un candidat amas à grand redshift.

Comme d’habitude, vous trouverez un peu plus de détails sur ces résultats ici. Ce travail a été dirigé par un collègue de l’IAS, Hervé Dole.

Planck : enfin les résultats de 2014

Je n’ai pas donné de nouvelles depuis un moment, mais j’ai beaucoup écrit pour Planck néanmoins !

Les résultats de la mission complète, y compris en polarisation étaient promis pour 2014. On y est, mais ca a été plus long et difficile que prévu. Et on garde les données de l’instrument haute fréquence en polarisation pour 2015, sauf à 353 GHz où ce n’est pas le rayonnement fossile mais l’émission des poussières froides de notre Galaxie qui domine. Ce n’est pas de l’égoïsme, c’est du « sérieux » : on a besoin d’encore un peu de travail pour être totalement sûr de livrer des données et des résultats fiables. Le niveau d’exigence est tel que c’est pas si facile, en fait … et le résultat mérite a priori ces efforts.

Région de Polaris vue à 353 GHz par Planck-HFI
Région de Polaris vue à 353 GHz par Planck-HFI

Un collègue (Marc-Antoine Miville-Deschenes à l’IAS) produit ces images somptueuses qui ont rencontré un certain succès (ici ou) bien mérité !

Mais il faut chercher dans la précision accrue des mesures du rayonnement fossile les quelques pépites déjà disponibles : les neutrinos fossiles et la matière noire.

On ne s’étend pas aujourd’hui sur l’inflation : les résultats de 2013 sont confortés, et on attend la publication de l’article collaboratif Planck/BICEP2 pour revenir sur le sujet. C’est prévu aussi pour 2014, donc pour bientôt … En tout cas le « draft » est fini.

Ce qui est le plus fascinant, je trouve, ce sont ces 19 pics pour 6 paramètres. Ce n’est pas très idéal médiatiquement peut-être, pas plus que les contraintes sur les neutrinos ou la matière noire d’ailleurs, mais c’est magnifique. Le modèle « simple » de la cosmologie, avec 6 pauvres paramètres, rend parfaitement compte d’une immense quantité d’information : la température et la polarisation scalaire sur tout le ciel sur une gamme d’échelles angulaires couvrant trois ordres de grandeur … On peut tester les hypothèses du modèle précisément et tout colle. Il n’est aucunement besoin de faire appel à un ingrédient non prédit par le modèle standard de la physique des particules ou de la cosmologie (ce dernier incluant constante cosmologique et matière noire stable, qui ne sont pas dans le modèle standard de la physique des particules en revanche). Bien-sur on n’exclut pas totalement la possibilité d’une quatrième famille de neutrinos, on n’exclut pas du tout une matière noire qui s’annihilerait. Le champ des possibles, vu par les théoriciens, est immense et en croissance permanente. Le champ des possibles, vu par les observateurs, se restreint car les mesures sont de plus en plus précises. C’est une combinaison de vraisemblable,  probable,  possible, envisageable, improbable … Mais on progresse inéluctablement. Des réponses solides deviennent les bases de nouvelles questions légitimes. Le pré-Big-Bang par exemple, j’aime bien …

Crédits : ESA-collaboration Planck
Carte en température et spectres en température TT , polarisation scalaire EE, et information croisée température/polarisation TE. Ce sont les mêmes 6 paramètres qui conduisent aux 3 courbes rouges qui ajustent les 19 pics des données expérimentales. Crédits : ESA-collaboration Planck

Il y aura le 22 décembre, a priori, les articles Planck soumis et en ligne, les données correspondantes disponibles, et une belle image du rayonnement fossile polarisé faite par l’ESA et la collaboration Planck. Notre cadeau de Noël (en plus des chocolats).

En attendant, un point complet est disponible ici sur futura-sciences !

Visite au CERN

Après vingt-cinq à attendre parler d’Atlas, ça y est, je l’ai vu !

J’ai assisté à des dizaines de séminaires et autres soutenances présentant les dimensions et caractéristiques impressionnantes du plus grand détecteur de physique jamais construit (ou de son alter-ego CMS). En vrai, c’est autre chose …

Il était temps : les ingénieurs du CERN referment les détecteurs car le faisceau sera opérationnel dans quelques mois avec l’énergie initialement prévue de 13 TeV. Déjà seul le « bouchon » d’Atlas est encore visible pour quelques jours.

Vue vertigineuse vers le sol, nous sommes 80 m sous terre.
Vue vertigineuse vers le sol, nous sommes 80 m sous terre.
En haut, le puits par lequel sont arrivés tous les éléments du détecteur.
En haut, le puits par lequel sont arrivés tous les éléments du détecteur.

 

Détecteur "bouchon" qui ferme Atlas
C’est moi devant Atlas !
La salle de contrôle d'Atlas. C'est calme puisque c'est encore l'arrêt mais les physiciens se préparent au réveil du géant.
La salle de contrôle d’Atlas. C’est calme puisque c’est encore l’arrêt mais les physiciens se préparent au réveil du géant.

Après la visite du détecteur, petit tour dans l’exposition du Globe. Une exposition très bien faite, pour tout public avec une belle esthétique. Ils s’approprient un peu trop le « Big-Bang » à mon goût, mais c’est quand même très réussi, et nous avons maintenant l’habitude … C’est gratuit, c’est ouvert à tous : aucune excuse pour ne pas s’arrêter si vous passer par Genève, voire faire un détour, le CERN le mérite bien …

Film sur l'histoire de l'Univers dans le Globe du CERN
Film sur l’histoire de l’Univers dans le Globe du CERN

Les expositions et manifestations art-science sont très à la mode, profitons-en ! Cette magnifique sculpture dévoile ses secrets ici.

"Pérégrinations à l'infini". Crédits F. Malek
« Pérégrinations à l’infini ». Crédits F. Malek

Le CERN est une très belle réussite en termes de communication vers le public. C’est un devoir – c’est public et ses recherches appartiennent au citoyen, mais c’est un vrai défi car la physique des particules est autrement moins « sexy » que l’astrophysique ! Mais les efforts des chercheurs sont très importants pour mettre à la portée du plus grand nombre le sujet de leur recherche. Ce web-doc notamment est particulièrement réussi – on va essayer d’en faire un avec Planck en 2015 …

 

Une autre aventure spatiale : ROSETTA

Rosetta, une mission extraordinaire

Je n’ai aucune compétence particulière pour parler de cette mission mais son actualité est trop fascinante pour être ignorée !

En parallèle de la quête des origines des grandes structures, aventure dans laquelle Planck a bien-sûr un rôle majeur, il y a la quête des origines de la vie. La multiplication des exoplanètes identifiées permet d’envisager l’une des plus grandes découvertes de l’histoire de l’humanité – la preuve de vie dans d’autres systèmes stellaires- dans un avenir raisonnable. Mais les pièces du puzzle ne s’assembleront correctement qu’à la condition de comprendre mieux l’apparition de la vie sur Terre. Là, c’est Rosetta qui entre en scène.

Des acteurs communs

Individuellement, aucun chercheur ne travaille je pense sur ces deux projets car leurs thématiques scientifiques sont vraiment éloignées. Cependant les principales entités qui œuvrent sur ce projet sont les mêmes:

  • l’ESA, l’agence spatiale européenne. Elle coordonne le projet dans sa globalité, de l’appel d’offre à la communication des résultats scientifiques
  • le CNES, l’agence spatiale française est chargée du lancement, et coordonne les activités instrumentales dont elle a la responsabilité. Ces agences sont aussi en charge du lancement et des manœuvres. Dans le cas de Rosetta elles sont naturellement nombreuses, délicates et de première importance !

Le site du CNES est concis mais contient plein d’informations.

rosetta_comete

Vue d’artiste du satellite Rosetta approchant de sa comète.

Crédits CNES.

Côté laboratoire de recherche, l’IAS à Orsay, l’IPAG à Grenoble et l’IRAP à Toulouse et le LERMA à Paris sont impliqués dans Planck et dans Rosetta. L’été est actif entre Planck qui prépare intensivement la publication de ses résultats complets dans 2-3 mois et Rosetta qui commence son observation scientifique de la comète Tchouri (je me contente du « petit nom  » …).

Des calendriers entre-croisés

  • 1993 : Rosetta est sélectionnée, le projet Planck répond à un appel de l’ESA
  • 1996-2002 : période de construction des instruments, du satellite Planck (qui s’achèvera quelques années plus tard) et du vaisseau Rosetta. Rosetta ne peut se permettre de retard de toute façon, le calendrier est dicté par la comète …
  • 2004 : lancement de Rosetta, voyage de 1,6 milliards de kilomètres dans le système solaire pour se positionner près de la comète
  • 2009 : lancement de Planck. Voyage de 1,5 millions de kilomètres pour se positionner au point L2 d’observation. Ça fait un peu ridicule comparativement mais bon …
  • 2011 : premiers résultats astrophysiques de Planck alors que Rosetta entre en hibernation
  • 2014 : résultats cosmologiques, polarisation incluse pour Planck et réveil, approche, mise en orbite de Rosetta, « atterrissage » de Philae sur la comète
  • 2015 : fin de la collaboration Planck avec une analyse finale, fin de la collaboration Rosetta après le passage au périhélie de la comète

De la théorie à la réalité

J’aime beaucoup ces deux images, l’une dite « d’artiste », imaginée il y a des années et l’autre, bien réelle prise il y a quelques jours. La réalité dépasse la fiction …

 Rosetta_and_Philae_at_comet

Vue d’artiste du vaisseau approchant la comète.

Crédits ESa/ Ch. Carreau

esa_rosetta_osirisnac_130806_b

Détails d’une zone du noyau de la comète. L’image a été prise le 6 août 2014 montrant en avant plan le plus petit des 2 lobes, la tête de la comète projetant son ombre sur la partie centrale, le cou, et le plus gros lobe, le corps.

Crédits ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Pour suivre cette aventure, il a le site de l’ESA (en anglais), des relais partout et  futurasciences bien-sûr.

Ambiance assortie à la carte du ciel vu par Planck pour l'Espace Planck, nuit des chercheurs 2013 à Dijon

La médiation scientifique : tout un art

Le point de départ de cette page est de féliciter Jean-François Desmarchelier pour son prix Diderot-Curien 2014.

Jean-François Desmarchelier reçoit son prix Diderot-Curien , juin 2014

Jean-François est déjà présent sur ce blog puisqu’il est le réalisateur des vidéos sur Andrea, un collègue, et moi.

La médiation scientifique est le chaînon, indispensable, entre le « grand public » et les « acteurs de la recherche ».

De multiples activités

Revenons à l’exemple de Jean-François. Son métier, ou plutôt ses métiers : concepteur d’exposition, scénographe, réalisateur de documentaires et de web documentaires. Son site ataouk.com donne un aperçu de ses activités.  Son travail artistique et ses compétences techniques sont essentiels pour une médiation efficace de la science. Donner envie, faire rêver, guider la découverte, aider à la compréhension. Ensuite libre à chacun d’aller plus loin avec des livres, des conférences plus spécialisées …

Je n’oublie bien-sur pas l’agence Canopée (Lionel, Amandine, Samuel Alexis …) sans qui notre exposition et notre site Planck (entre autres) n’auraient pas pu voir le jour. J’y reviendrai dans d’autres pages sans faute !

Rendre la science humaine et compréhensible

Au niveau d’une manifestion scientifique (Nuit des chercheurs à Dijon, Ouf d’astro à Vaulx-en-Velin), l’ambiance est travaillée : atmosphère sereine, juste ce qu’il faut de mystérieuse (car tout de même « on cherche » !) et propice à l’échange – les scientifiques sont des personnes comme les autres et prêtent à partager le pourquoi et le comment de leur travail.

 

Andrea Catalao, espace Planck à la Nuit des chercheurs 2013, Dijon

Les secrets du bolomètre et du rayonnement fossile, Nuit des chercheurs 2013, Dijon. Crédits : Jean-François Desmarchelier.

L’autre défi est rendre les choses intelligibles … Ce n’est naturellement pas un cours, mais un partage impose un langage commun. Les acteurs de la médiation scientifique travaillent en étroite collaboration avec les chercheurs. Leur rôle est un peu d’accompagner le public vers les étoiles tout en ramenant les chercheurs sur Terre !

Éviter au maximum le jargon, identifier les mots et notions clés, se baser sur des savoirs ou des questions largement établis pour présenter les recherches en cours ou en projet, leurs objectifs et leurs moyens, tel est une partie de leur rôle.

Rendre la science belle

Évidemment avec l’astrophysique la base est déjà – en toute objectivité … – « belle » : les images sont très souvent somptueuses. Mais il faut reconnaitre que ce que les chercheurs trouvent « beau » c’est souvent plus ce qu’elles incarnent que leur aspect visuel. Le rayonnement fossile est archétypal. Ses petits grumeaux objectivement monotones sont plus émouvants que beaux. Il faut donc du talent et une mise en scène pour présenter l’image scientifique originelle, la rendre intelligible ET belle.

L’une de mes préférées est celle faite par l’un des infographistes de l’ESA :

Rayonnement fossile et carte composite de tout le ciel par Planck

Visuel emblématique des résultats cosmologiques de mars 2013. Crédits : ESA – collaboration Planck

L’uniformité est brisée par la superposition de la carte du rayonnement fossile et de l’image composite la carte « rose », devenue un peu un symbole de Planck. Cette dernière  représente essentiellement notre Galaxie, ainsi la mise en place des cartes explique que le rayonnement fossile est plus loin que notre environnement proche – et implicitement qu’il faut réussir à l’isoler et le soustraire pour accéder à l’image primordiale.

Une telle image est une base sur laquelle on peut expliquer presque tous les résultats de la mission Planck lors d’une exposition, quelques phrases ou bien plus selon l’intérêt, le temps disponible, les connaissances. Elle est agréable à regarder mais aussi intrigante : on a envie de savoir ce qu’elle veut dire …

Retour sur les résultats de BICEP2

L’intérêt ne faiblit pas, les tensions non plus …

Si vous n’avez pas en tête ce résultat majeur s’il était confirmé, vous pouvez faire un tour ici ou sur ce blog.
En très bref, la collaboration BICEP2 avait annoncé la détection d’ondes gravitationnelles primordiales. La détection semble très sérieuse, l’interprétation plus sujette à discussion: signature de l’inflation primordiale, ou juste émission thermique de la poussière galactique ? Le Nobel en dépend !

Depuis mi-mars, chercheurs, journalistes, grand public se demandent si c’est la découverte du siècle (enfin de la décennie, soyons raisonnable et laissons une place pour la matière noire …) ou une erreur – ou au moins un manque de prudence … Une chose est sûre : c’est une incroyable publicité pour Planck dont les résultats sont attendus comme le messie !

Bataille scientifique

Un journaliste m’a appris qu’une dépêche de l’APF annonçait que l’équipe de Princeton était très critique avec les résultats de l’équipe de Caltech et Harvard. Je n’étais pas au courant j’avoue – et je ne suis pas sûre que la presse soit le lieu idéal pour régler ses comptes entre instituts. Mais après l’annonce initiale en toute confiance, les propos sont à présent plus nuancés : l’article maintenant publié par l’équipe BICEP2 dans une revue scientifique est plus prudent quant à la précision de l’estimation de la part galactique du signal.

Cette évolution a été largement relayée (par exemple dans cet article).

Planck travaille sérieusement

La collaboration Planck est priée de donner le fin mot de l’histoire sur les avant-plans (au moins). Un premier pas a été fait.

Certains semblent estimer que Planck fait de la rétention d’information ou “se fait désirer”. Non, on essaie juste de donner un résultat fiable, tant au niveau du signal que de son erreur.

Si c’était facile, on l’aurait déjà donné en 2013 ! Mais il faut maitriser l’ensemble des effets instrumentaux à un niveau tel que c’était impossible avant. Toute analyse est itérative : on enlève les effets principaux, on comprend les défauts résiduels, on trouve comment les corriger, on ré-analyse avec cette amélioration ... et on recommence. On peut arrêter quand les défauts résiduels sont suffisamment faibles devant le signal attendu - et qu’on estime que l’on est suffisamment sûrs de cette affirmation.  Afin de s’assurer que ce processus s’arrête quand même un jour, les agences spatiales nous imposent des délais maximums. Délais repoussés dans les limites du raisonnable ... et c’est ainsi qu’on arrive à octobre 2014. Toutes nos idées ne sont pas encore dans ces résultats - certaines encore en test, d’autres en cours d’implémentation. Ainsi de nouvelles publications basées sur une analyse encore plus raffinée sont prévues pour 2015.

Le champ magnétique de la Voie Lactée vu par le satellite Planck. Les régions les plus sombres correspondent à une émission polarisée plus forte et les stries indiquent la direction du champ magnétique projeté sur le plan du ciel.

Crédits : ESA – collaboration Planck

Si c’était facile, on l’aurait déjà donné en 2013 ! Mais il faut maitriser l’ensemble des effets instrumentaux à un niveau tel que c’était impossible avant. Toute analyse est itérative : on enlève les effets principaux, on comprend les défauts résiduels, on trouve comment les corriger, on ré-analyse avec cette amélioration … et on recommence. On peut arrêter quand les défauts résiduels sont suffisamment faibles devant le signal attendu – et qu’on estime que l’on est suffisamment sûrs de cette affirmation.

Afin de s’assurer que ce processus s’arrête quand même un jour, les agences spatiales nous imposent des délais maximums. Délais repoussés dans les limites du raisonnable … et c’est ainsi qu’on arrive à octobre 2014. Toutes nos idées ne sont pas encore dans ces résultats – certaines encore en test, d’autres en cours d’implémentation. Ainsi de nouvelles publications basées sur une analyse encore plus raffinée sont prévues pour 2015.

Bref l’histoire est bien loin d’être finie, d’autant que BICEP2 et Planck ne sont pas seuls : au moins une demi-douzaine d’expériences au sol ou en ballon ont des mesures en cours d’analyse.

LSST : une machine à rêver

Quand on travaille sur l’analyse des données – entre autres, il faut nécessairement être dans une collaboration puisqu’il faut des données !
Après 3 ans sur EROS pour chercher de la matière noire, 3 ans sur CAT et 1 an sur HEGRA pour étudier les noyaux actifs de galaxies avec leur émission à très haute énergie, j’achève 14 années consacrées au rayonnement fossile – 4 essentiellement sur l’expérience embarquée en ballon Archeops et … 10  sur Planck. Il est temps de changer !

Certain(e)s se spécialisent dans un domaine, d’autres papillonnent un peu plus. En ce qui me concerne, j’aime bien changer. Après Planck, ma prochaine aventure – qui pourrait être encore plus longue que celle qui s’achève – s’appelle LSST.

article-2135626-12C72189000005DC-869_634x305

Nom de code LSST

LSST signifie Large Synoptic Survey Telescope. Pas très joli à l’oreille et à peu près intraduisible. Ca commence pas très bien. Si on ne tente pas une traduction trop littérale, LSST signifie “un télescope pour tout voir”. Ça devient intriguant …

Ce que c’est : un télescope avec un miroir d’une surface équivalente à celle d’un 8 mètres de diamètre qui scrute tout le ciel visible du sol tous les 11 jours avec une caméra de plus de 3 milliards de pixels … Ses objectifs : tout. Des astéroïdes aux galaxies, des étoiles aux lentilles gravitationnelles. Naturellement il sera installé au Chili dans la Cordillère des Andes. Là, je ne peux pas résister !

Un bref aperçu en images :

Retour aux sources

En thèse, je travaillais dans EROS, plus précisément EROS 1 CCD. Un télescope de 40 cm de diamètre certes, mais à La Silla au Chili. Et la plus grande caméra CCD du monde, enfin la plus grande à l’époque bien-sûr, avec 16 CCD de 579 x. 400 pixels soit plus de 3,7 millions de pixels. Et la prouesse était de les lire en quelques minutes (2 je crois …) alors que d’autres instruments mettaient une quinzaine de minutes pour récupérer les informations de quelques centaines de milliers de pixels.

En 2022, trente ans plus tard, la plus grande caméra CCD du monde commencera ses observations scientifiques avec 1000 fois plus de pixels … lus en 2 secondes.

Un programme chargé

Que verra LSST ? Juste quelques milliards d’étoiles, quelques milliards de galaxies, quelques dizaines de millions d’exoplanètes. Et bien-sûr les astéroïdes qui risquent de menacer un jour la vie sur Terre ! Après tout, si l’astrophysique pouvait devenir utile, pourquoi s’en priver ?
Tous les champs de la discipline sont concernés puisque LSST va observer tout le ciel qui lui sera accessible. Un peu comme Planck, mais cette fois ce n’est pas dans le domaine submillimétrique mais tout “simplement” dans le visible.

LSST grand public

Vous voulez en savoir plus ? Le site www.lsst.org (en anglais) devrait vous plaire ! J’espère que nous proposerons bientôt un site en français, j’y travaillerai. En attendant je donnerai des nouvelles sur ce blog – sans oublier futura-sciences avec des articles sur  site du Chili et le miroir notamment.

 

Vidéo Un chercheur / une manip, sur Planck bien-sûr

Cette vidéo a été réalisée par Jean-François Desmarchelier à la demande de Simon Meyer, directeur du planétarium de Vaulx-en-Velin . Deux acteurs fort sympathiques et très talentueux de la diffusion de la culture scientifique !

Le principe : Un chercheur / une manip. Donc ici c’est moi et l’expérience c’est, sans surprise !, Planck. Vous pouvez aussi retrouver celle consacrée à mon collègue Andrea Catalano : un autre chercheur mais toujours sur Planck :

Kandinsky, sorte de guide spirituel

Mon paysage

J’ai découvert Kandinsky adolescente par une petite image dans mon dictionnaire des noms propres. Cette reproduction de quelques centimètres de cotés m’a « attrapée ». Des cartes postales et des posters, des livres et des expositions m’ont permis de découvrir son univers au fil des ans. Et depuis Kandinsky n’a jamais quitté ma chambre d’étudiante ou mon bureau … Ce n’est pas très original mais c’est ainsi !

Cette grande œuvre habite le mur face à mon bureau (pas la peine de préparer un cambriolage, c’est une belle affiche mais juste une affiche en vente au musée de Grenoble !) :

kandinsky_full

Un artiste « scientifique »

J’apprécie la rationalité de Kandinsky. Il a la liberté de l’artiste, mais elle s’appuie sur un ensemble solide de réflexions. Certes beaucoup de ses tableaux sont « agréables » mais  leur impact va bien au-delà. Il écrit dans son livre Du spirituel dans l’art, et dans la peinture en particulier :

Action de la couleur

« Lorsqu’on laisse les yeux courir sur une palette couverte de couleurs, un double effet se produit :
1. Il se fait un effet purement physique,  c’est-à-dire l’œil lui-même est charmé par la beauté et par d’autres propriétés de la couleur. Le spectateur ressent une impression d’apaisement, de joie, comme un gastronome qui mange une friandise.

Dans le cas d’un développement plus complet, cet effet élémentaire en provoque un plus profond qui entraine une émotion de l’âme.
2.
Dans ce cas, on atteint le deuxième résultat primordial de la contemplation de la couleur, qui provoque une vibration de l’âme. Et la première force, physique, élémentaire, devient maintenant la voie par laquelle la couleur atteint l’âme. »

Et c’est, je trouve …, similaire à ce que je ressens – comme beaucoup d’autres – devant une image de la nébuleuse d’Orion ou d’un champ de galaxies avec ses arcs gravitationnels. Ce n’est pas juste agréable, joli, poétique. Tout ce qui est contenu dans ces images les rend fascinantes, que ce soient les molécules complexes qui se forment dans des nuages pour ensemencer de futures planètes ou la matière noire trahie par la lumière d’un lointain quasar. L’astrophysique a toujours beaucoup de succès mais je pense que c’est encore plus par les portes qu’elle ouvre que par son esthétisme.

Art et science fondamentale : inutiles mais essentiels

La science fondamentale semble à certains du gâchis de temps et d’argent. D’autres estiment que subventionner les musées ou soutenir des artistes est inutiles. Il est vrai que les deux ne satisfont aucun de nos besoins physiques vitaux (sauf nourrir les artistes et les chercheurs bien-sûr).

Lors d’une fête de la Science un homme, cultivé et qui avait sérieusement réfléchit à son propos, m’a demandé à quoi servait dans le fond Planck, la cosmologie etc. Je lui ai d’abord répondu que nous avions besoin de comprendre et de toujours questionner pour aller plus loin, c’est dans notre nature humaine. Il insistait, franchement pas convaincu. Je lui ai alors demandé s’il aimait la musique. Oui il avait absolument besoin d’écouter de la musique ! A quoi cela lui servait-il ? … Il est reparti satisfait et plutôt heureux je pense.

Le rôle de l’artiste et du chercheur

Un autre extrait du livre de Kandinsky:

« L’artiste n’est pas un enfant du dimanche de la vie : il n’a pas le droit de vivre sans devoirs, il a une lourde tache à accomplir, et c’est souvent sa croix. Il doit savoir que chacun de ses actes, chacune de ses sensations, chacune de ses pensées est le matériau impalpable, mais solide, d’où naissent ses œuvres et que, pour cela, il n’est pas libre dans sa vie, mais seulement dans son art. »

En aucun cas je ne me comparerais à ce grand peintre, ni même à un artiste ! Mais l’art et la science fondamentale sont extrêmement proches. Leurs propres codes, toujours à réinventer. Leur inutilité essentielle. Leur nécessité impérieuse pour leurs acteurs. En revanche si la démarche artistique est très individuelle, la pratique scientifique est beaucoup plus collective. Mais au final il y a des courants, des groupes, des constructions collectives qui nous font avancer.

L’histoire de l’univers en pop-up

Je trouve les livres en pop-up absolument magiques … Donc quand je suis tombée par hasard sur le Big-Bang, je me devais de jeter un oeil !

Je suis pas vraiment fan de l’ “explosion” du Big-Bang (qui n’est pas une explosion), mais j’ai fait une exception car le genre s’y prête parfaitement et je suis rentrée chez moi avec ce bel ouvrage.

Notre histoire, du Big-Bang au Soleil, en quelques pages pleines de relief et de couleurs. Les grandes étapes s’animent avec poésie. Juste pour vous faire envie :

IMG_2767

IMG_2762

IMG_2763

 

“Rencontres de Moriond”, session cosmologie 2014

Les conférences internationales sont l’occasion pour les chercheurs de présenter leurs travaux, de nouer de nouveaux contacts … ou de retrouver d’anciens copains !
Les rencontres de Moriond sont entrées dans la tradition, avec plusieurs sessions chaque année (physique des particules surtout mais aussi cosmologie et gravitation, en alternance une année sur deux).

Si, si on travaille !

Il faut l’avouer, il y a un petit côté vacances : une belle station en Italie, les pistes presque pour nous tout seuls durant la “session ski” du début d’après-midi, les parties de billard le soir …

Moriond_montagnes

Mais il y a aussi sept heures d’exposé par jour – dont le sien à un moment donné pour la plupart des participants, et on discute bien souvent physique, même si c’est au bar. Beaucoup de jeunes car traditionnellement doctorants et post-doctorants présentent leurs résultats à Moriond, souvent c’est même leur première conférence internationale. Et les moins jeunes – moi par exemple … se souviennent de leur “premier Moriond”, quand ils étaient encore étudiants.
Ce post n’est toutefois pas pour vous raconter que j’ai papoté avec plaisir avec mon ancien directeur de thèse, ou que j’ai significativement progressé au billard américain (je partais de bas, donc c’était facile).

La cosmologie “vivante”

Ce post est pour partager le sentiment de vivre un moment vraiment intense en cosmologie. Il faut dire que BICEP2 avait annoncé ses résultats juste une semaine avant le début de la conférence. L’un des responsables de l’analyse de cette collaboration a été invité “en urgence” et les organisateurs ont un peu chamboulé le programme pour rajouter cet exposé. Nous étions ravis, bien que nous n’ayons en fait presque rien appris de plus que ce qui est dans les articles – normal puisqu’une présentation au nom de la collaboration ne peut pas dire tellement plus que ce qui est publié. Mais quand même ! Une chose est claire : les US avaient décidé de détecter les modes B et ils ont mis en place une “agressive strategy” pour reprendre les termes belliqueux de l’orateur. C’est une bonne leçon pour nous. Quand une manip européenne est en cours de finalisation du budget après déjà pas mal d’années de mise en oeuvre, plusieurs manips américaines au Pôle sud, dans le désert d’Atacama, embarquée en ballon stratosphérique ont pris des données et fournissent des résultats.  Savoir dire oui ou non, et si on dit oui mettre les moyens financiers et humains pour que ça aboutisse, nos collègues outre-Atlantique font ça très bien.
Mais toute la communauté profite de l’enthousiasme suscité. Encore mieux : tout le monde attend les résultats de Planck pour confirmer/affiner !

Ça bouillonne

L’ébullition des idées et des résultats est bien présente. Rayonnement fossile, supernovae, amas de galaxies, grandes structures. Détection directe de matière noire, modification de la gravité pour rendre compte de la constante cosmologique.  Explications des anomalies à grande échelle par des neutrinos massifs ou par l’impact de l’environnement astrophysique “local”. Ceux qui ont l’impression que tous les chercheurs pensent pareils et cherchent dans la même direction sans jamais mettre en doute le modèle cosmologique “standard” peuvent jeter un œil sur le programme de n’importe quelle conférence et ils constateront que c’est bien loin d’être le cas !!! Heureusement d’ailleurs.

Pour tout savoir sur les Rencontres de Moriond : http://moriond.in2p3.fr/J14/

Sous le ciel de Planck

parapluie

Jaloux de mon parapluie ? Je vous comprends !!! Édité à 700 exemplaires pour la conférence des premiers résultats de Planck en 2011, plus un seul n’est disponible dans le monde entier. Il nous rappelle joliment que nous sommes un tout petit observateur immergé dans l’univers.

Il pourrait, aussi, protéger de la pluie mais c’est très accessoire – et le mien ne verra jamais le ciel,  le vent risquerait de me le voler …

La déferlante BICEP2

Impossible d’y échapper, le sujet s’impose.

La nouvelle

Lundi matin (le 17 mars), on reçoit un mail d’un collègue de Planck avec le lien pour suivre la conférence de presse annonçant la présentation scientifique et la conférence de presse de BICEP2. Que dit la rumeur ? Le week-end, sur les réseaux, un “r=0.2” circulait, mais ça, on n’y croit pas !!!

Nous sommes à l’affut

On réserve une salle pour suivre ensemble la présentation, tout le groupe Planck et quelques autres cosmologistes sont là et il n’est pas encore 15h45 quand nous essayons de nous connecter. Ca ne marche pas. On re-essaie, un nouveau mail avec un autre lien arrive, ça ne marche toujours pas : visiblement ils sont victimes de leur succès. Ce n’est pas bien grave, ils ont effectivement mis en ligne, en parallèle, leurs articles.

Alors, qu’ont-ils trouvé ??

Que dit l’abstract, le résumé présent au début de chaque article ? Une détection à plus de 5 sigma (soit moins d’une chance sur un million environ que ce soit du hasard, c’est le seuil usuel pour considérer que l’on a une détection fiable). Ah quand même … Oui c’est mais peut-être un signal des avant-plans galactiques ? “r=0.2” est écrit, il signifie que l’amplitude du signal  laissé sur le rayonnement fossile par les ondes gravitationnelles primordiales serait vraiment très fort. On est toujours dubitatifs, nous regardons cartes et spectres. Les cartes en polarisation scalaire et tensorielle sont … impressionnantes … Les spectres, bon, il y a des barres d’erreur importantes mais la petite descente au bon endroit …. Il faut lire en détails mais le travail a l’air très complet et le résultat excitant/intrigant/étonnant. Évidemment leur faiblesse c’est de n’observer le ciel que dans une seule fréquence (une seule “couleur”). Ils le savent et font une batterie de tests pour mettre à l’épreuve l’origine cosmologique du signal. L’interprétation est, comme ils le disent eux-même, une première analyse rapide.  Vous trouverez un résumé j’espère bien accessible de leur article ici.

Extrait des cartes en polarisation publiées par la collaboration BICEP2 en mars 2014

Ces cartes vous semblent peut-être un peu petites, avec un résolution médiocre (comme celle à la Une) ? Elles viennent de leur article – je ne peux pas faire mieux. Et, surtout, il ne faut pas oublier ce qu’elles représentent : elles sont faites avec de la lumière qui a voyagé environ 13,8 milliards d’années et elles sont censées tracer les mouvements de la matière et les mouvements de l’espace sur un bout de ciel de la taille de deux pleine Lune . Donc c’est déjà vraiment impressionnant en fait !!!

Et maintenant, à nous de jouer

Nous sommes heureux de cette découverte : ce signal serait donc intense. Peut-être (sans doute ?) est-il un peu plus faible que cette première détection ne le laisse penser, mais il nous semble probable que « quelque chose » est bien là. Ce signal,  on va pouvoir l’étudier en détails et il va alors nous raconter durant ces prochains mois, ces prochaines années comment ce sont déroulés les tous premiers instants. L’enjeu est de comprendre quel mécanisme est à l’origine des structures. Le travail va se poursuivre, il faut confirmer (ou infirmer qui sait), affiner.

Nous sommes un petit peu jaloux aussi, forcément, mais Planck a d’autres atouts ! BICEP a été entièrement conçu pour traquer ce signal, rien que ce signal, et cette stratégie s’est révélée payante.
Nous n’avions bien-sur pas attendu les résultats de BICEP2 pour analyser les données de Planck en polarisation, mais la pression est montée d’un cran, voire de deux, c’est certain !

Du Big-Bang au grain de sable

C’est le titre de l’exposition permanente du planétarium de Vaulx-en-Velin qui a ouvert ses portes samedi dernier, et l’occasion de raconter notre collaboration avec ce lieu de culture scientifique exemplaire.

photo_VV_satellite
© Cécile Renault, Planétarium de Vaulx-en-Velin

Mes premiers contacts avec Simon, actuel directeur, ont été en 2009 pour la première édition d’Ouf d’astro. Il monte un évènement autour de l’astro (c’est l’année mondiale de l’astronomie) en coopération avec les labos de la région. Vaulx-en-Velin, de prime abord, ça rappelle à ma génération une actualité de banlieue en feu. Mais c’était il y a longtemps et depuis ils travaillent pour changer cette image par une véritable politique sociale et culturelle, une équipe dynamique, sympathique, pleine d’idées et de talents.

Continuer la lecture

Pourquoi autant de méfiance face à la matière noire ?

L’annonce des résultats de Planck en mars dernier incluait “26% de l’énergie de notre univers aujourd’hui est sous forme de matière noire (avec une précision de l’ordre du pour-cent)”. Que la matière noire soit source de questions, c’est bien normal ! Mais elle a souvent été lors de conférences sujet de questions provocatrices (soit), sceptiques (soit …) voire soupçonneuses, quand ce n’était pas agressives. J’ai donc été amenée à réfléchir à la meilleure réponse – enfin pas trop mauvaise en tout cas, pour les matièrenoirosceptiques.

L'expérience zen d'un voyage au cœur d'un tableau de Pierre Soulages
L’expérience zen d’un voyage au cœur d’un tableau de Pierre Soulages

Soit on mesure mal …

Les chercheurs ne “croient pas” en la matière noire. Il y a des observations en contradiction avec la loi de la gravité (newtonienne, même pas la peine de faire appel à Einstein). Donc soit les mesures sont fausses, soit la loi est fausse, soit on relie mal les paramètres de la loi (ici la masse) aux mesures. Les mesures se sont largement affinées au cours de ces dernières dizaines d’années et le “problème” apparait à l’échelle des galaxies, des amas de galaxies, des grandes structures. Difficile d’imaginer que tout le monde se trompe alors que les résultats sont cohérents.

Soit c’est la faute d’Einstein …

Modifier la loi de gravité est très tentant. Après tout, Einstein a corrigé Newton pour les vitesses proches de celle de la lumière, pourquoi ne pas imaginé une modification qui aurait un effet aux très grandes échelles de distance, aux échelles “astronomiques” à proprement parler ? Plusieurs modifications ont été proposées mais aucune n’explique vraiment les observations des galaxies aux échelles cosmologiques. Et puis il y a eu l’amas du Boulet. Deux galaxies sont récemment rentrées en collision, on observe la distribution de matière ordinaire en rayon X, on déduit la distribution de masse totale par effet de lentille gravitationnelle. L’essentiel de la masse n’est pas là où on voit la matière ordinaire. Or c’est incompatible avec une modification de la loi ! Il existe des subtilités qui permettent de s’en sortir avec quand même un peu de matière noire mais l’élégance de cette solution a pris un coup quasi-fatal.

Soit on ne connait pas !

Reste l’interprétation : la masse “vue”, quel que soit le domaine de longueur d’ondes exploré, n’est qu’une petite partie de la masse “nécessaire” aux équations. Quelle est alors la nature de cette matière sombre ? Il y a une vingtaine d’années, on pouvait remplir notre galaxie de matière ordinaire car les erreurs sur la densité de matière baryonique (produite peu après le Big-Bang) et sur la masse nécessaire pour expliquer les vitesses des étoiles loin du centre galactique le permettaient. Ce n’est plus le cas. Il y a une vingtaine d’années la matière noire pouvait être “chaude” car on n’avait pas de simulations et d’observations des grandes structures assez fiables pour trancher. Le neutrino, particule non-baryonique qui a une vitesse très proche de celle de la lumière, était un candidat fort intéressant. Ce n’est plus le cas.

Aujourd’hui on calcule précisément la quantité de matière noire nécessaire pour expliquer les observations, on “voit” (indirectement) où elle est, on connait certaines de ses propriétés (neutre, sans interaction avec la lumière), mais on ignore toujours sa nature exacte (bien que de très nombreux modèles théoriques existent !) – on sait juste qu’elle doit être différente que ce qui compose les étoiles et nous, le gaz et les planètes.

Quand la lumière nous montre le noir
Quand la lumière nous montre le noir

Il ne faut pas croire que les chercheurs “veulent” de la matière noire, on rêvait plutôt de mettre en évidence une faille dans ce modèle ! Trouver une alternative à la nécessité de la matière noire était très très excitant. Mais non, les observations nous disent que l’ensemble est cohérent à l’unique condition de la présence (massive) de matière noire. Alors 13.8 milliards d’années deviennent limpides, plus limpides en tout cas.

Il est difficile de saisir l'ensemble, ce n'est pas une raison pour détourner le regard.
Il est difficile de saisir l’ensemble, ce n’est pas une raison pour détourner le regard.

Mais pourquoi est-ce impensable pour certains au point de mettre en doute (sans aucune connaissance permettant une critique légitime) les résultats d’années de travail de centaines de personnes ?

C’est finalement incroyablement “prétentieux”. Pourquoi ce qui n’est pas “comme nous” est donc si suspect ? Pourquoi ce que nous ne voyons pas avec nos yeux est donc impensable ?

Pourtant on a découvert que les ondes radio ou les rayons X sont tout autant de la lumière que ce que la photosphère du Soleil nous envoie : nos yeux ne voient pas tout. Pourtant on a découvert le neutrino par de la masse manquante, c’est une particule du modèle standard certes mais ses propriétés sont bien étranges pour un humain !

Il semble qu’il faille bien admettre que l’univers contient de la masse essentiellement sous une forme qui nous est étrangère et, pour l’instant, inaccessible. C’est une mauvaise nouvelle pour notre égo : non seulement nous sommes le centre de rien du tout mais en plus nous sommes fait d’une matière quasi-insignifiante à l’échelle du cosmos. Ce n’est pas une raison pour abandonner ! Le défi n’en devient que plus pimenté : comprendre le cosmos sculpté par la matière noire avec notre cerveau de matière ordinaire.