Archives pour l'étiquette trou noir

L’univers holographique (6) : Black Holism

Suite du billet précédent : L’univers holographique (5) : la quête des dualités ET FIN

Dans son livre, le brillant physicien canadien Lee Smolin s'élève contre l'hégémonie de la théorie des cordes et analyse les aspects sociologiques de la recherche fondamentale.
Dans son livre, le brillant physicien américain Lee Smolin s’élève contre l’hégémonie de la théorie des cordes et analyse les aspects sociologiques de la recherche fondamentale.

La correspondance AdS/CFT, et plus généralement les dualités holographiques, ont soulevé énormément d’enthousiasme dans la communauté des cordistes, suscité des milliers de publications et des centaines de thèses de doctorat – ce qui après tout constitue l’activité courante et « normale » de la recherche scientifique. On peut cependant rester perplexe devant un tel phénomène qui, au-delà de l’intérêt technique certain qu’il peut représenter, relève surtout d’une certaine dérive sociologique pointée du doigt par d’éminents chercheurs de la discipline[1].

Au crédit de la correspondance, il faut reconnaître qu’elle permet de troquer certains calculs difficiles, voire impossibles, contre des calculs plus faciles. A minima, la dualité holographique apparaît comme un intéressant outil de calcul en physique fondamentale. Le « dictionnaire » qu’elle propose entre le monde en espace-temps plat et le monde courbe où se trouve la gravitation fonctionne dans les deux sens. Certains calculs sont plus simples avec la supergravité que dans la théorie de jauge duale, de sorte qu’aucun de ces mondes n’est plus fondamental que l’autre. Mais ce n’est pas parce que l’on peut considérer des calculs plus simplement dans un espace-temps plat, sans gravitation et de plus basse dimension que celui de la théorie des cordes, qu’il en découle que la réalité cosmique est un hologramme ! On peut entièrement encoder la topographie 3D d’un terrain dans une carte 2D sur laquelle le relief est indiqué par des courbes de niveau (un encodage bien utile aux randonneurs), mais, selon le célèbre aphorisme d’Alfred Korzybski, il ne faut jamais perdre de vue que « la carte n’est pas le territoire »[2].

Une vue bien naïve de l'holographie appliquée à l'univers dans son ensemble, ce qu'on appelle en anglais du "wishful thinking"...
Une vue bien naïve de l’holographie appliquée à l’univers dans son ensemble, ce qu’on appelle en anglais du « wishful thinking »…

A son crédit également, et là je parle en ardent pratiquant de la théorie de la relativité générale classique dont nous célébrons cette année le centenaire[3], la dualité jauge/gravité a conféré à la théorie d’Einstein un statut beaucoup plus large. L’édifice intellectuel de la relativité générale a certes connu de remarquables succès au cours du siècle dernier, et fourni un édifice crucial pour toute la partie de la physique théorique traitant de la gravitation. La révolution conceptuelle qu’elle a entraînée sur la nature de l’espace et du temps a rendu la théorie populaire, au point qu’il serait difficile de trouver aujourd’hui une personne possédant un minimum de culture scientifique mais n’ayant jamais entendu parler de la théorie d’Einstein.

Continuer la lecture

L’univers holographique (3) : De l’entropie à l’hypothèse holographique

Suite du billet précédent L’univers holographique (2) : la gravité quantique façon théorie des cordes

Dans le cadre de la théorie des cordes, il s’agissait dans un premier temps de retrouver les lois de la thermodynamique classique des trous noirs, c’est-à-dire savoir calculer, en termes de mécanique statistique quantique, leur entropie et leur température en fonction de leur aire et de leur gravité de surface. La tâche n’est pas aisée. Comme en thermodynamique, l’entropie mesure le nombre total d’états microscopiques internes correspondant à un état externe donné du trou noir, défini par ses trois paramètres (M, J, Q). Encore faut-il comptabiliser les « vrais » états microscopiques, c’est-à-dire les degrés de liberté ultimes sur lesquels il faut calculer l’entropie. Pour évaluer le contenu ultime en informations d’un élément de matière, c’est-à-dire son entropie thermodynamique, il faut en toute rigueur connaître ses constituants fondamentaux au niveau le plus profond de structuration. Dans le modèle standard de la physique des particules, les quarks et les leptons semblent suffisants pour coder toute l’information. Mais dans la théorie des cordes et sa théorie-mère (M-theory), les quarks et les leptons sont des états excités de supercordes, qui deviennent alors les constituants les plus élémentaires du monde physique.

Gerard 't Hooft, né en 1946 aux Pays-Bas, est professeur à l'Institut de physique théorique de l'université d'Utrecht depuis 1977.
Gerard ‘t Hooft, né en 1946 aux Pays-Bas, est professeur à l’Institut de physique théorique de l’université d’Utrecht depuis 1977.

En 1993, Gerard t’Hooft (futur lauréat du prix de Nobel de physique 1999 pour ses travaux sur l’interaction électrofaible)  fut le premier à revisiter le travail de Hawking sur la thermodynamique des trous noirs dans le cadre de la théorie des cordes. Il calcula que le nombre total de degrés de liberté dans le volume d’espace-temps intérieur au trou noir était proportionnel à la superficie de son horizon[1]. La surface bidimensionnelle du trou noir peut être divisée en unités quantiques fondamentales appelées aires de Planck (10–66 cm2). Du point de vue de l’information, chaque bit sous forme de 0 ou de 1 correspond à quatre aires de Planck, ce qui permet de retrouver la formule de Bekenstein-Hawking S = A/4 pour l’entropie. Tout se passe comme si l’information perdue pour un observateur extérieur – l’entropie du trou noir – portée initialement par la structure 3D des objets ayant traversé l’horizon des événements, était codée sur sa surface 2D à la façon d’un hologramme, et t’Hooft en conclut que l’information avalée par un trou noir devait être intégralement restituée lors du processus d’évaporation quantique.

L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck (10–66 cm2) est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.
L’entropie d’un trou noir est proportionnelle à la surface de son horizon. Un trou noir dont l’horizon est constitué de A aires de Planck a une entropie de A/4 unités. Une aire de Planck  est l’unité quantique fondamentale de surface. Du point de vue de l’information, tout se passe comme si l’entropie était inscrite sur l’horizon du trou noir et que chaque bit d’information, sous forme de 0 ou de 1, correspondait à quatre aires de Planck.

Continuer la lecture

Astronomie et imaginaire collectif

Comment l’homme se forge-t-il des images mentales du cosmos, et quelle place ces représentations occupent-elles dans son imaginaire, qu’il soit scientifique, artistique, philosophique ou tout simplement populaire ?

Il est fascinant d’analyser les diverses façons d’imaginer le cosmos à travers la culture savante ou populaire, individuelle ou collective, et de les mettre en rapport avec le développement des connaissances astronomiques afin d’y déceler ce que Bachelard appelait des « archétypes de la pensée ». Nombre de thèmes astronomiques ont toujours été féconds pour l’imaginaire collectif et imprègnent l’univers quotidien de l’homme sous des formes diverses, comme le vocabulaire, l’usage qui en est fait et les représentations qu’il va créer.

place_d-orion_cropPrenons l’exemple basique de l’étoile – l’objet astronomique à la fois le plus familier et le plus transcendant. Le mot provient du latin stella, qui désignait tout ce qui scintille. Nous devons aux Arabes d’avoir baptisé la plupart des étoiles les plus brillantes. Qui n’a pas entendu parler d’Aldébaran, de Véga ou de Bételgeuse, ne serait-ce qu’à travers des marques de produits ou de slogans publicitaires ? Et on ne compte plus les lieux, places, rues, chemins, enseignes, marques baptisés Sirius, Antarès, Procyon, Rigel, Deneb, Capella ou Algol. Quant aux motifs étoilés à cinq, six, huit, dix branches ou davantage, ils se retrouvent dans un immense éventail de réalisations humaines : sculptures, architecture des espaces publics, guides touristiques, drapeaux, etc. Pensons aussi aux voûtes de tant de monuments – chapelles médiévales, cathédrales, tombeaux de rois et d’empereurs – qui rappellent la présence permanence de la voûte étoilée au-dessus de nos têtes. Continuer la lecture

La « lumière » gravitationnelle (3/4) : l’événément GW150914

Suite du billet précédent : De la barre à l’interféromètre

L’annonce historique de la première détection directe des ondes gravitationnelles a bel et bien été faite le jeudi 11 février 2016 par les équipes de chercheurs travaillant sur les interféromètres LIGO et VIRGO.

Il y a eu tant d’articles, billets de blog et autres interviews délivrés depuis dans les médias du monde entier que je ne vais pas développer longuement mon point de vue sur la découverte elle-même. Son intérêt majeur (on fera l’impasse sur les titres idiots du genre « Einstein avait raison ») n’est pas la détection en soi, prédite et attendue, mais:
1/ la confirmation directe de l’existence des trous noirs, vivement décriée par certains,
2/ non pas la fin d’une grande aventure scientifique comme c’était le cas avec la découverte du boson de Higgs-Englert (qui mettait un point final au modèle standard de la physique des particules, sans aller au-delà), mais au contraire le début d’une nouvelle ère pour l’astronomie expérimentale. Les fabuleuses prouesses technologiques mises en œuvre dans les interféromètres LIGO et VIRGO ont permis d’ouvrir enfin la fenêtre de l’astronomie gravitationnelle, avec vue à venir sur d’immenses territoires encore inconnus.

Au moment de l’annonce j’étais en voyage au Maroc. Je n’ai donc pas  pu assister à la conférence de presse, encore moins répondre aux nombreuses demandes d’interviews pour la presse écrite, la radio et la télévision.  Peu importe, de nombreux chercheurs l’ont fait et très bien fait, notamment mon ancien collègue à l’Observatoire de Paris Thibault Damour dans cette excellente interview pour le journal Le Monde. Ayant été l’un des premiers théoriciens à calculer les courbes d’émission gravitationnelle issue de la coalescence de trous noirs, Damour mériterait de figurer sur la liste des physiciens nobélisables, au même titre que son homologue américain Kip Thorne ou que le directeur du programme LIGO, David Reitze. Hélas, l’histoire montre que les prix Nobel de physique sont rarement donnés aux théoriciens qui prédisent tel ou tel phénomène, ils sont très généralement attribués aux expérimentateurs qui confirment la prédiction (à cet égard  le prix Nobel attribué à Higgs et Englert a été une heureuse exception).

Pour ma modeste part, je n’ai jamais travaillé directement sur le sujet des ondes gravitationnelles, mais je l’ai souvent évoqué dans des interviews (ci-dessous, sur ma chaîne youtube)

Pour en savoir beaucoup plus...

ainsi que dans mes articles et livres de vulgarisation. J’ai mis à profit les deux nuits blanches passées dans mon hôtel de Casablanca pour rédiger les deux billets de blogs précédents, ici et ici, qui reprenaient pour l’essentiel (en les actualisant légèrement) des éléments du chapitre que j’avais consacré à « La lumière gravitationnelle » dans mon livre de 2006, Le Destin de l’Univers : trous noirs et énergie sombre. Dans ce troisième billet je quitte le livre pour délivrer mes premières impressions sur la découverte annoncée jeudi. Dans un quatrième et dernier billet, je discuterai du futur de l’astronomie gravitationnelle. Continuer la lecture

La « lumière » gravitationnelle (1/4) : principes de base

Je voudrais poser une question à monsieur Einstein, à savoir, à quelle vitesse l’action de la gravitation se propage-t-elle dans votre théorie ?
Max Born, 1913

Dans la théorie de Newton, la gravitation est une force agissant instantanément entre les corps massifs. Cette idée était inadmissible aux yeux de nombreux physiciens, Newton compris, et un siècle plus tard Laplace proposait une modification de la théorie dans laquelle l’interaction gravitationnelle se propageait à vitesse finie. L’idée fut vite abandonnée, car elle soulevait immédiatement une question à laquelle personne ne savait répondre : lorsqu’un corps massif est violemment perturbé, le champ gravitationnel qu’il engendre doit s’ajuster de proche en proche à la nouvelle configuration du corps ; sous quelle forme se propage le réajustement ?

La théorie de la relativité générale d’Einstein permet d’organiser en un schéma cohérent les intuitions sur la propagation de la gravitation. Einstein s’était demandé si une masse en mouvement accéléré pouvait rayonner des ondes de gravité, de la même façon qu’une charge électrique en mouvement accéléré rayonne des ondes électromagnétiques. Dès 1916, il découvrit effectivement des solutions de ses équations du champ gravitationnel représentant des ondulations de la courbure de l’espace-temps se propageant à la vitesse de la lumière. Il venait d’inventer la  « lumière gravitationnelle ».

Good Vibrations

Et quel vent d’outre-monde emporte au gré des ondes
la promesse de toutes les germinations?
Charles Dobzynski

L’analogie entre ondes gravitationnelles et ondes électromagnétiques est utile pour la conception du phénomène, mais elle ne conduit guère plus loin. La structure d’une onde gravitationnelle et ses effets sur la matière sont bien plus complexes que ceux de l’onde électromagnétique. Une première différence notable vient du fait que la gravitation est purement attractive ; la masse, c’est-à-dire la « charge gravitationnelle », a toujours le même signe. Il en résulte qu’un oscillateur gravitationnel élémentaire, constitué de deux masses vibrant aux extrémités d’un ressort, ne rayonne pas le même type d’ondes que deux charges électriques de signe opposé. Dans le cas électromagnétique, le rayonnement est du type dipolaire, dans le cas gravitationnel il est du type quadripolaire.

La nature quadripolaire des ondes gravitationnelles. La figure montre l’effet d’une onde gravitationnelle parvenant perpendiculairement au plan d’un anneau de particules test. Selon la relativité générale, les ondes gravitationnelles peuvent adopter deux motifs particuliers, ou états de polarisation. La polarisation du haut, dite "plus", dilate et contracte alternativement l’anneau sans changer la direction de ses axes principaux ; la polarisation du bas, dite "en croix", tourne de 45° les directions de compression et d’étirement.
La nature quadripolaire des ondes gravitationnelles. La figure montre l’effet d’une onde gravitationnelle parvenant perpendiculairement au plan d’un anneau de particules test. Selon la relativité générale, les ondes gravitationnelles peuvent adopter deux motifs particuliers, ou états de polarisation. La polarisation du haut, dite « plus », dilate et contracte alternativement l’anneau sans changer la direction de ses axes principaux ; la polarisation du bas, dite « en croix », tourne de 45° les directions de compression et d’étirement.

Une autre complication vient de ce que le graviton, l’hypothétique particule médiatrice de l’onde gravitationnelle, transporte une charge gravitationnelle associée à son énergie, tandis que le photon, particule médiatrice de l’interaction électromagnétique, ne transporte pas de charge électrique. Par conséquent, l’onde de gravitation produite par une masse accélérée est elle-même source de gravitation : la gravitation gravite. En termes techniques, on dit qu’elle est non linéaire. Cette non-linéarité introduit des difficultés considérables dans la résolution des problèmes apparemment les plus simples, comme le calcul du champ gravitationnel engendré par deux corps en mouvement. Continuer la lecture

La physique étrange d’Interstellar (5/6) : machines à remonter le temps et cinquième dimension

Suite du billet précédent La physique étrange d’Interstellar (4/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le cinquième.

Gargantua, une machine à remonter le temps

Au cours d’une scène de la dernière partie du film, Cooper plonge dans Gargantua, de façon à s’assurer que le vaisseau Endurance puisse bien atteindre la troisième et dernière planète. En dépit de la menace posée par les forces de marée, Cooper survit. Il est donc chanceux, car les forces de marée deviennent infinies quand r tend vers 0. Ainsi, même pour un trou noir supermassif comme Gargantua, une fois passé sain et sauf l’horizon des événements, tout corps s’approchant de la singularité centrale doit être en fin de compte détruit. Heureusement, Gargantua est un trou noir en rotation rapide, et sa létale singularité a la forme d’un anneau évitable.

La structure interne d'un trou noir en rotation montre une singularité en forme d'anneau, qui peut donc être évitée selon certaines trajectoires.
La structure interne d’un trou noir en rotation montre une singularité en forme d’anneau, qui peut donc être évitée selon certaines trajectoires.

Cooper utilise donc le trou de ver associé au trou noir géant pour se transporter dans une autre région de l’espace-temps, un univers pentadimensionnel auquel le film se réfère sous le nom de tesseract. Continuer la lecture

La physique étrange d’Interstellar (4/6) : dilatation temporelle et processus de Penrose

Suite du billet précédent La physique étrange d’Interstellar (3/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le quatrième.

Dilatation temporelle

La théorie de la relativité restreinte d’Einstein prédit que des observateurs placés dans des référentiels différemment accélérés perçoivent le temps différemment. Ce phénomène bien connu de « dilatation » temporelle a été vérifié expérimentalement à un haut degré de précision. Les conséquences de la dilation temporelle se font sentir tout au long de l’histoire d’Interstellar.

Les fameuses "montres molles" de Salvador Dali sont une belle métaphore de l'élasticité du temps prévue par la relativité d'Einstein.
Les fameuses « montres molles » de Salvador Dali sont une belle métaphore de l’élasticité du temps prévue par la relativité d’Einstein.

Près de l’horizon des événements d’un trou noir, où le champ gravitationnel est énorme, la dilatation temporelle est également énorme. Les horloges sont fortement ralenties par rapport aux horloges lointaines. Une heure sur Miller (temps propre de Miller) équivaut à sept années sur Terre. Ceci correspond à un facteur de dilatation de 60 000. Bien que la dilatation temporelle tende vers l’infini quand l’horloge tend vers l’horizon des événements, un facteur de dilatation de 60 000 est impossible pour une planète en orbite stable autour d’un trou noir.

Dans son livre, The Science of Interstellar, Kip Thorne explique qu’un facteur de dilatation temporelle de cette grandeur était une exigence non négociable de la part du réalisateur[1]. Après quelques heures de calcul, Thorne est parvenu à la conclusion que le scénario, bien que très peu vraisemblable, était marginalement possible. Le facteur-clé est la période de rotation du trou noir. Un trou noir de Kerr (tournant) se comporte très différemment d’un trou noir de Schwarzschild (statique). L’équation de dilatation temporelle dérivée de la métrique de Kerr s’écrit:

1 – (dτ/dt)2 = 2GMr/c2rho2, où rho2 = r2 + (J/Mc)2cos2θ.

En substituant dτ = 1 heure et dt = 7 ans, on obtient:

formule-dilation Continuer la lecture

La physique étrange d’Interstellar (3/6): disque d’accrétion et forces de marée

Suite du billet précédent La physique étrange d’Insterstellar (2/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le troisième.

Visualisation du disque d’accrétion

Interstellar est le premier film long métrage d’Hollywood qui tente de représenter correctement un trou noir tel qu’il apparaîtrait à un observateur proche de lui. L’image sans doute la plus captivante du film est le spectacle de Gargantua et de son disque d’accrétion se déployant tout autour et devant lui.

La simulation de trou noir entouré d'un disque d'accrétion montrée dans "Interstellar"
La simulation de trou noir entouré d’un disque d’accrétion montrée dans « Interstellar »

Un trou noir engendre des déformations extrêmes de l’espace-temps. Il crée aussi les déviations de rayons lumineux les plus fortes possibles. Cela engendre de spectaculaires illusions d’optique de type « mirage gravitationnel ». Pour les représenter, la compagnie en charge des effets spéciaux du film, Double Negative, a développé en collaboration avec Kip Thorne un logiciel capable d’intégrer les équations de propagation de la lumière dans l’espace-temps courbe du trou noir[1]. Les équations produites pour le film ont permis de décrire le mirage gravitationnel produit sur les étoiles d’arrière-plan, tel qu’il serait vu par une caméra proche de l’horizon des événements[2].

Mirage gravitationnel produit par un trou noir situé sur la ligne de visée du Grand Nuage de Magellan (LMC). En haut de l'image on reconnaît aisément la partie méridionale de la Voie Lactée avec, en partant de la gauche, Alpha et Beta Centauri, la Croix du Sud. L'étoile la plus brillante proche du LMC est Canopus (vue deux fois). La seconde étoile plus brillante est Achernar, vue aussi deux fois© Alain Riazuelo, CNRS/IAP
Mirage gravitationnel produit par un trou noir situé sur la ligne de visée du Grand Nuage de Magellan (LMC). En haut de l’image on reconnaît aisément la partie méridionale de la Voie Lactée avec, en partant de la gauche, Alpha et Beta Centauri, la Croix du Sud. L’étoile la plus brillante proche du LMC est Canopus (vue deux fois). La seconde étoile plus brillante est Achernar, vue aussi deux fois© Alain Riazuelo, CNRS/IAP

Compte tenu des immenses distances mises en jeu dans l’observation astronomique des trous noirs et de la trop faible résolution de nos télescopes actuels, aucune image détaillée de disque d’accrétion n’a encore été obtenue[3]. Mais en 1979, j’ai été le premier à simuler (en noir et blanc) l’aspect d’un disque d’accrétion mince gravitationnellement déformé par un trou noir sphérique, tel qu’il serait vu par un observateur lointain ou saisi par une plaque photographique[4]. Continuer la lecture

La physique étrange d’Interstellar (2/6)

Suite du billet précédent La physique étrange d’Insterstellar (1/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le deuxième.

Un trou noir supermassif en rotation rapide

Ayant franchi sans encombre le trou de ver artificiel d’Interstellar, le vaisseau spatial Endurance émerge dans un système de trois planètes gravitant autour de Gargantua, un trou noir supermassif. A première vue, une telle proximité entres les planètes et le trou noir semble invraisemblable.

Les trous noirs supermassifs, dont les masses courent de quelques millions à plusieurs milliards de masses solaires, sont censés occuper le centre de la plupart des galaxies[1]. Notre propre Voie lactée abrite un tel objet, Sagittarius A*, dont la masse mesurée indirectement vaut quatre millions de fois celle du soleil[2]. D’après Thorne, Gargantua serait semblable au trou noir encore plus gros qui se trouve au centre de la galaxie d’Andromède, rassemblant 100 millions de masses solaires[3].

CGal_IR_1al
Une vue du Centre Galactique en rayons X

CGal_*Keck
L’analyse des trajectoires des étoiles gravitant autour du Centre Galactique conduit à estimer la masse du trou noir central à 4 millions de masses solaires

Andromede_spiral
La Galaxie d’Andromède M31, située à 2,2 millions d’années-lumière

coeurM31_HST
Détail du noyau de la Galaxie d’Andromède par le Hubble Space Telescope. Il abriterait un trou noir d’environ cent millions de masses solaires.

Gargantua est décrit comme un trou noir supermassif en rotation rapide. Sa rotation dépend de deux paramètres: la masse M et le moment angulaire J. Contrairement aux étoiles qui sont en rotation différentielle, les trous noirs tournent de façon parfaitement rigide. Tous les points de leur surface, l’horizon des événements, se meuvent à la même vitesse angulaire. Il y a cependant une valeur critique du moment angulaire, Jmax, au-dessus de laquelle l’horizon des événements se disloque. Cette limite correspond à une surface tournant à la vitesse de la lumière. Pour de tels trous noirs dits « extrémaux », le champ de gravité à l’horizon des événements serait annulé, l’attraction gravitationnelle étant contrebalancée par d’énormes forces centrifuges répulsives. Il est bien possible que la plupart des trous noirs formés dans l’univers réel aient un moment angulaire proche de cette limite critique[4]. Continuer la lecture

La physique étrange d’Interstellar (1/6)

Il y a tout juste un an, en novembre 2014 donc, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. Moi-même, sollicité par la presse, j’y ai un peu sacrifié de mon temps, par exemple ici sur  slate.fr ou là sur figaro.fr .

A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre ici la traduction française, découpée en 6 billets.

interstellar-posterPetit rappel pour les lecteurs qui n’ont pas vu le film (c’est tout à fait permis!). Interstellar conte les aventures d’un groupe d’astronautes partis en quête de planètes habitables situées dans une autre galaxie, dans l’espoir d’une colonisation future. Sur Terre en effet, ravages climatiques et famines ont conduit l’humanité à chercher un nouvel habitacle dans les mondes lointains.

Le scénario d’Interstellar s’appuie en grande partie sur des développements de la physique contemporaine. Le film se réfère constamment à une vaste palette de sujets relevant de l’astrophysique, de la relativité générale et de la cosmologie, allant de concepts relativement bien établis comme les trous noirs en rotation, les disques d’accrétion, les forces de marée et les distorsions temporelles, à des idées beaucoup plus spéculatives comme les trous de ver, les dimensions spatiales supplémentaires et la « Théorie de Tout ».

La promotion d’Interstellar a beaucoup insisté sur le réalisme et la crédibilité scientifiques du film. Mention particulière a été faite de l’implication de Kip Thorne comme conseiller scientifique et producteur exécutif. Thorne a écrit un ouvrage de vulgarisation expliquant comment il avait tenté d’assurer au film la plus grande exactitude scientifique possible, malgré les exigences parfois exorbitantes des scénaristes. Selon ses dires, il a fait de son mieux[1]Continuer la lecture

Un mini-trou noir au CERN ? Absurde !

Les trous noirs artificiels

Qu’est-ce qui arrive dans ces machines atomiques ? La matière se réduit en bouillie, vous y mettez du gruyère et il en sort du quark, des trous noirs, de l’uranium centrifugé ou que sais-je encore ?
Umberto Eco, Le Pendule de Foucault

 Après deux années de travaux intenses de maintenance et de consolidation et plusieurs mois de préparation en vue du redémarrage, le Grand collisionneur de hadrons (LHC) du CERN, le plus puissant accélérateur de particules du monde, est de nouveau en service. Il fonctionnera à une énergie sans précédent, près de deux fois l’énergie obtenue lors de la première campagne qui avait conduit à la découverte du boson de Brout-Englert-Higgs. Les collisions proton-proton de 14 TeV attendues avant l’été permettront aux expériences LHC d’explorer de nouveaux territoires de la physique.
Mais déjà les titres absurdes fleurissent dans les médias : « mini-trou noirs et univers parallèles : ce que nous réserve le CERN », « LHC can help detect parallel universes », etc., pour ne pas parler des délires dignes d’un asile d’aliénés, type :   « ouverture imminente des portes de l’enfer », « black hole doomsday », etc.

Cette psychose du désastre n’est pas nouvelle; elle est même profondément ancrée dans l’esprit humain, ou tout au moins dans certains esprits à tendance paranoiaque. Déjà, dans son édition du 18 juillet 1999, l’hebdomadaire britannique Sunday Times annonçait la mise en chantier du nouvel accélérateur de particules du laboratoire de Brookhaven (États-Unis) d’une manchette tonitruante : « La machine à big-bang pourrait détruire la Terre ». Suivait un commentaire fantaisiste, suggérant que le risque d’engendrer, lors d’une collision de particules à haute énergie, un mini-trou noir capable d’aspirer la Terre n’était pas négligeable. Malgré les démentis des physiciens, l’émoi provoqué par ce titre fut planétaire – ce qui était bien l’effet recherché.
En 2007, rebelote et surenchère avec la mise en œuvre du LHC. Comme aucun mini-trou noir n’a évidemment pointé son nez, les médias se sont un peu calmés. Et maintenant, cela recommence de plus belle avec la remise en service de l’accélérateur qui s’est effectuée cette semaine, et la montée en puissance prévue pour l’été. Continuer la lecture

Un trou noir à Hollywood (3) : Pile et face

Suite du billet précédent : Retour aux bases

Le calcul de la trajectoire des rayons lumineux autour d’un trou noir suppose une bonne connaissance de la nature de la source lumineuse. Si les trous noirs existent réellement dans la nature (et il semble bien que ce soit le cas), ils ont de bonnes chances d’être éclairés par des sources extérieures de lumière. Une situation intéressante est celle où la source d’éclairage est une série d’anneaux matériels en orbite autour du trou noir. On pense que de nombreux trous noirs sont entourés de telles structures, nommées disques d’accrétion. Les anneaux de la planète Saturne sont un exemple célèbre de disque d’accrétion ; ils sont constitués d’un amalgame de cailloux et de glace qui réfléchit la lumière du Soleil lointain.

La planète Saturne et ses anneaux. On considère que le disque d'accrétion d'un trou noir, bien que constitué de gaz, a une forme similaire, c'est-à-dire des anneaux circulaires et une faible épaisseur.
La planète Saturne et ses anneaux. On considère que le disque d’accrétion d’un trou noir, bien que constitué de gaz, a une forme similaire, c’est-à-dire des anneaux circulaires et une faible épaisseur.

En revanche, dans le cas d’un trou noir, les anneaux d’accrétion se composent d’un gaz chaud qui rayonne lui-même. Ce gaz tombe peu à peu en spirale dans le trou noir, de façon analogue au mouvement de l’eau entraînée dans un tourbillon. Sa chute s’accompagne d’une élévation de sa température et d’une émission de rayonnement. Voilà donc une bonne source d’éclairage : les anneaux d’accrétion brillent et illuminent le trou noir central. On peut alors s’interroger : quelle est l’image apparente du disque d’accrétion autour d’un trou noir ? Continuer la lecture

Un trou noir à Hollywood (2) : Retour aux bases

Suite du billet précédent Interstellar : un trou noir à Hollywwod (1)

La plaque du foyer noir,
de réels soleils des grèves :
ah ! puits des magies.
Arthur Rimbaud, Illuminations

Depuis sa diffusion  le 5 novembre dernier sur les écrans du monde entier, le film  Interstellar de Christopher Nolan s’est imposé comme le blockbuster de l’année,  suscitant des centaines de débats et dicussions passionnées sur la toile,  alimentant des dizaines de blogs (la majorité anglo-saxons) qui ont, soit encensé, soit critiqué les exactitudes ou inexactitudes scientifiques  du film, la vraisemblance du scénario, etc.  Je rappelle que le conseiller scientique du film est mon collègue chercheur, le célèbre physicien américain Kip Thorne; avec son équipe de la compagnie  privée  Double Negative spécialisée dans les effets visuels, ils ont notamment concocté l’image du disque d’accrétion illuminant le trou noir « Gargantua », censée être la plus précise jamais montrée, et qui a fait le tour du monde.

Pour accompagner la promotion du film, Kip Thorne a lui-même publié un livre de vulgarisation intitulé « The Science of Interstellar« , dans lequel il explique comment il a tenté de respecter le mieux qu’il pouvait l’exactitude scientifique, malgré les exigences parfois étranges du réalisateur, s’assurant en particulier que les despriptions visuelles des trous noirs et des effets relativistes associés soient les plus réalistes possibles.

destinPuisque, comme déjà rappelé dans le billet précédent, j’ai été en 1979 le premier chercheur au monde à effectuer des simulations numériques et à publier une image réaliste simulée d’un trou noir entouré d’un disque d’accrétion, dans les billets qui suivent je reviendrai aux bases de la visualisation des trous noirs, dans une visée non point critique mais pédagogique. Une bonne partie est adaptée d’un chapitre d’un de mes livres publié en français en 2006 chez Fayard, Le destin de l’univers, et repris en livre de poche en 2010 chez Folio/Gallimard. Continuer la lecture

Interstellar : un trou noir à Hollywood (1)

Certains d’entre vous auront sans doute noté une certaine effervescence médiatique à la veille de la sortie (le 5 Novembre) du film Interstellar. Fruit de la collaboration entre le réalisateur Christopher Nolan et mon collègue physicien Kip Thorne, Interstellar raconte les aventures d’un groupe d’explorateurs qui utilisent un trou de ver pour parcourir des distances jusque-là infranchissables et trouver une nouvelle planète habitable à coloniser pour l’humanité. A noter que Kip Thorne, conseiller scientifique du film mais aussi producteur exécutif, avait déjà été consulté dans les années 1980 par Carl Sagan lorsque ce dernier, pour son roman Contact (ultérieurement adapté au cinéma), cherchait une méthode scientifiquement plausible pour faire voyager ses héros dans l’hyperespace ; Thorne, spécialiste de la relativité générale et des trous noirs, lui avait alors suggéré ces hypothétiques racourcis de l’espace-temps que sont les trous de ver.

Mais pour espérer emprunter un trou de ver, encore faut-il d’abord pouvoir naviguer dans les parages d’un trou noir géant (comme celui qui réside au centre de notre Voie lactée, dont la masse est estimée à 4 millions de fois celle du Soleil) et y plonger. A quoi donc ressemblerait visuellement un tel panorama cosmique, vu par le hublot d’un vaisseau spatial ? Continuer la lecture