La physique étrange d’Interstellar (2/6)

Suite du billet précédent La physique étrange d’Insterstellar (1/6)

En novembre 2014, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi.  A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre la traduction française, découpée en 6 billets. Celui-ci est le deuxième.

Un trou noir supermassif en rotation rapide

Ayant franchi sans encombre le trou de ver artificiel d’Interstellar, le vaisseau spatial Endurance émerge dans un système de trois planètes gravitant autour de Gargantua, un trou noir supermassif. A première vue, une telle proximité entres les planètes et le trou noir semble invraisemblable.

Les trous noirs supermassifs, dont les masses courent de quelques millions à plusieurs milliards de masses solaires, sont censés occuper le centre de la plupart des galaxies[1]. Notre propre Voie lactée abrite un tel objet, Sagittarius A*, dont la masse mesurée indirectement vaut quatre millions de fois celle du soleil[2]. D’après Thorne, Gargantua serait semblable au trou noir encore plus gros qui se trouve au centre de la galaxie d’Andromède, rassemblant 100 millions de masses solaires[3].

CGal_IR_1al
Une vue du Centre Galactique en rayons X

CGal_*Keck
L’analyse des trajectoires des étoiles gravitant autour du Centre Galactique conduit à estimer la masse du trou noir central à 4 millions de masses solaires

Andromede_spiral
La Galaxie d’Andromède M31, située à 2,2 millions d’années-lumière

coeurM31_HST
Détail du noyau de la Galaxie d’Andromède par le Hubble Space Telescope. Il abriterait un trou noir d’environ cent millions de masses solaires.

Gargantua est décrit comme un trou noir supermassif en rotation rapide. Sa rotation dépend de deux paramètres: la masse M et le moment angulaire J. Contrairement aux étoiles qui sont en rotation différentielle, les trous noirs tournent de façon parfaitement rigide. Tous les points de leur surface, l’horizon des événements, se meuvent à la même vitesse angulaire. Il y a cependant une valeur critique du moment angulaire, Jmax, au-dessus de laquelle l’horizon des événements se disloque. Cette limite correspond à une surface tournant à la vitesse de la lumière. Pour de tels trous noirs dits « extrémaux », le champ de gravité à l’horizon des événements serait annulé, l’attraction gravitationnelle étant contrebalancée par d’énormes forces centrifuges répulsives. Il est bien possible que la plupart des trous noirs formés dans l’univers réel aient un moment angulaire proche de cette limite critique[4]. Continuer la lecture

La physique étrange d’Interstellar (1/6)

Il y a tout juste un an, en novembre 2014 donc, le film de science-fiction Interstellar (réalisation Christopher Nolan, Warner Bros Pictures, 169 minutes, 2014) sortait sur nos écrans. Véritable « blockbuster » hollywoodien, il a suscité un énorme battage médiatique, comme en témoignent les innombrables forums de discussion et articles de presse ayant fleuri au cours des jours, semaines et mois qui ont suivi. Moi-même, sollicité par la presse, j’y ai un peu sacrifié de mon temps, par exemple ici sur  slate.fr ou là sur figaro.fr .

A la demande de la revue de langue anglaise Inference : International Review of Science, j’ai par la suite fait un travail d’analyse scientifique beaucoup plus développé et approfondi, publié au printemps 2015. Je vous en livre ici la traduction française, découpée en 6 billets.

interstellar-posterPetit rappel pour les lecteurs qui n’ont pas vu le film (c’est tout à fait permis!). Interstellar conte les aventures d’un groupe d’astronautes partis en quête de planètes habitables situées dans une autre galaxie, dans l’espoir d’une colonisation future. Sur Terre en effet, ravages climatiques et famines ont conduit l’humanité à chercher un nouvel habitacle dans les mondes lointains.

Le scénario d’Interstellar s’appuie en grande partie sur des développements de la physique contemporaine. Le film se réfère constamment à une vaste palette de sujets relevant de l’astrophysique, de la relativité générale et de la cosmologie, allant de concepts relativement bien établis comme les trous noirs en rotation, les disques d’accrétion, les forces de marée et les distorsions temporelles, à des idées beaucoup plus spéculatives comme les trous de ver, les dimensions spatiales supplémentaires et la « Théorie de Tout ».

La promotion d’Interstellar a beaucoup insisté sur le réalisme et la crédibilité scientifiques du film. Mention particulière a été faite de l’implication de Kip Thorne comme conseiller scientifique et producteur exécutif. Thorne a écrit un ouvrage de vulgarisation expliquant comment il avait tenté d’assurer au film la plus grande exactitude scientifique possible, malgré les exigences parfois exorbitantes des scénaristes. Selon ses dires, il a fait de son mieux[1]Continuer la lecture